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Abstract: Forest height is a key parameter in forestry. SAR interferometry (InSAR) techniques have
been extensively adopted to retrieve digital elevation models (DEM) to give a representation of
the continuous variation of the Earth’s topography, including forests. Unfortunately, InSAR has
been proven to fail over vegetation due to low coherence values; therefore, all phase unwrapping
algorithms tend to avoid these areas, making InSAR-derived DEM over vegetation unreliable. In
this work, a sensitivity analysis was performed with the aim of properly initializing the relevant
operational parameters (baseline and multilooking factor) to maximize the theoretical accuracy of
the height difference between the forest and reference point. Some scenarios were proposed to test
the resulting “optimal values”, as estimated at the previous step. A simple model was additionally
proposed and calibrated, aimed at predicting the optimal baseline value (and therefore image pair
selection) for height uncertainty minimization. All our analyses were conducted using free available
data from the Copernicus Sentinel-1 mission to support the operational transfer into the forest sector.
Finally, the potential uncertainty affecting resulting height measures was quantified, showing that a
value lower than 5 m can be expected once all user-dependent parameters (i.e., baseline, multilooking
factor, temporal baseline) are properly tuned.

Keywords: Sentinel-1; SAR; interferometry; phase unwrapping avoiding; forest height; uncertainty
assessment; topographic levelling approach

1. Introduction

Forest height is a key parameter in forestry since it is adopted to retrieve above
ground biomass [1,2] and characterized canopy vertical structure [3–5]. It is often used to
detect forests [6], and to assess forest ecosystem services (e.g., timber production [7], forest
protection capabilities against natural hazards [8], biodiversity [9,10]). Forest height is
ordinarily measured through ground campaigns by means of hypsometers, with precision
ranging between 1 and 3 m [11,12]. Unfortunately, ground surveys are time and 33 cost
consuming, making them poorly dense over forested areas. Conversely, remote sensing can
fill this gap, providing continuous forest height measures over wide areas, and showing
accuracy comparable to ground surveys [13].

Space-borne Earth Observation missions fit forest requirements well, making it possi-
ble to map and monitor wide areas, allowing near-early change detection and a frequent
updating of forest properties [14]. Synthetic aperture radars (SARs) are known to be to
be useful for estimating forest geometric features when recording data in all-weather con-
dition, including equatorial/tropical climates, where clouds almost constantly cover the
forest. Among SAR application and methods, the SAR interferometry (InSAR) technique
has been extensively adopted to generate digital elevation models (DEM) intended to pro-
vide a continuous representation of Earth topography, including forest areas. Theoretically
speaking, radar interferometry can generate highly precise height estimates related to the
differences of path length between scattered signals received by two properly positioned
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antennas. The ordinary InSAR processing workflow relies on a phase unwrapping step
aimed at unambiguously recovering the local topography, which is generally achieved
by unitarily processing the entire scene. Ordinarily, these algorithms tend to avoid these
areas during unwrapping [15,16], so the approach has proven to consistently fail where
signal coherence values are low. This makes InSAR-derived DEM over vegetation highly
unreliable [17].

An alternative existing approach, not widely explored in the literature [18–20], is
considered in this work for obtaining more reliable and accurate estimates of forest height
from InSAR data by avoiding phase unwrapping. This method changes the working
paradigm from a mapping problem involving the entire scene to a local paradigm based on
the comparison between a forest pixel interferogram and a reference one closely located
outside the forest. Specifically, the potentialities and limitations of such an approach are
explored and discussed.

In this work, with reference to the above-mentioned approach, a sensitivity analysis
was also performed with the aim of properly initializing the relevant operational parameters
(i.e., baseline and multilooking factor) to maximize the theoretical accuracy of height
measures. To support the technological transfer, all the analyses were made with reference
to SAR open data (guaranteeing a cost-effective data access) with a specific focus on the
Copernicus Sentinel-1 (S1) mission.

2. Materials and Methods

Given the above-mentioned goals of this work, the analysis was performed according
to the workflow of Figure 1. The first step was to develop a reasonable model to estimate
forest height and define the conditions in which it can be adopted (see Section 2.2, Inter-
ferometric Phase Modelling). The second step was to model the theoretical uncertainty
of the estimates (see Section 2.3, Modelling dh Uncertainty). The third step to tune the
involved parameters to optimize the operational conditions for minimizing the uncertainty
of forest height estimates (see Section 2.4, Minimizing σdh through simulated scenarios).
All simulations were performed according to Sentinel-1 data.

2.1. Sentinel 1 Data

Satellite missions, such as the European Union (EU) Copernicus Sentinels, generate a
significant volume of data that may be proficiently used to aid the support of environmental
studies and land management. Nevertheless, technological transfer, presently, appears to
be limited, even if web-based services based on these data are becoming operational [21–23].
In the general context of satellite open data, SAR imagery shows a further weakness in
entering operational services mainly due to the complexity of data processing [24,25] and
data availability.

S1 is one of the current largest space-borne missions providing free and open accessible
SAR data. Furthermore, the European Space Agency (ESA) has made the free software
SNAP (Sentinel Application Platform) available for users, enabling an easier and focused
exploitation of products from the Copernicus Programme [17,26]. The S1 mission is a
two-satellite constellation (Sentinel-1A and Sentinel-1B) acquiring a microwave C-band
(5.6 cm wavelength). Its main acquisition mode over land is the interferometric wide swath
(IW) recording backscattered signal in dual pole mode (VV and VH). Data are natively
recorded as complex values (I/Q components) and in-SAR geometry (range and azimuth).
In particular, its medium–high spatial resolution and high revisit time (6 days) make S1
mission useful for a wide range of applications, including forest mapping.

In the literature, many methods based on SAR interferometry have been proposed to
estimate forest height and can be summarized into three main categories: (a) the Pol-InSAR
methodology [27–29]; (b) coherence-based methodology [30–32]; and (c) interferometric
phase-based methodology [19,20]. Unfortunately, S1 data are not suitable for (a) due to the
lack of quad-pol channels that would be required [21,33]. Approach (b) is mainly applied
using tandem acquisition mode that guarantees a higher coherence over vegetation. Since
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S1 does not support tandem acquisition, coherence values over forests are generally low,
limiting this approach. Consequently, approach (c) appears to be the most promising,
because it is somehow consistent with the technical features of S1 data. S1 main technical
features [34–37] are reported in Table 1, and used for the following simulations.
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(ground) point, respectively; ߱ is the gain factor that allows the conversion of an interferometric 
phase difference (݀∆߮) into height difference. 
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Figure 1. Workflow adopted in this work. B is the baseline; NL is the interferogram multilooking
factor; hv is the expected average forest height; dh is the estimated forest height according to proposed
model; ∆ϕFP and ∆ϕRP are the interferometric phases of a forest point and a reference (ground) point,
respectively; ω is the gain factor that allows the conversion of an interferometric phase difference
(d∆ϕ) into height difference.

Table 1. S1 mission nominal features.

Feature Values Units

Frequency (λ) 5.54 cm
Nominal Satellite Altitude (H) 693 km

Look Angle (θ) 30–45 ◦

Attitude accuracy (σθ ) 0.01 ◦

Maximum Noise Equivalent Sigma Zero (NESZ) −22 dB
Spatial resolution range

(
δrg ) 5 m

Spatial resolution azimuth (δaz ) 20 m
Satellite position accuracy POD 5 cm

Bandwidth (Bw) 42–56 MHz
Antenna real length (L) 12 m

2.2. Interferometric Phase Modelling

SAR interferometry relies on image pairs processing acquired from different positions
separated by a proper distance known as a baseline (B). This condition makes it possible to
recover “stable” object height through a simple geometric transformation [38–40]. Unfortu-
nately, this technique is known to suffer from many limitations in vegetated areas, mainly
due to the noise induced by canopy volume and interferometric signal decorrelation.
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Assuming a flattened interferogram with no significant ground shifts affecting the
area, the contribution to the interferometric phase (∆ϕ) given by local topography can be
defined according to Equation (1):

d∆ϕ

dh
=

4π B
λ R tan θ

= kz =
1
ω

(1)

where ∆ϕ is the interferometric phase; h is the target point elevation; λ is the wavelength of
the radar signal; R is the sensor-target slant range; θ is the antenna off-nadiral angle (look
angle); B is the baseline; and ω is the gain factor needed to convert back a phase difference
into the correspondent height difference.

Inverting Equation (1), the height difference (dh) between the two compared points can
be obtained by Equation (2). This approach appears to be similar to an ordinary topographic
levelling problem [41]. Subsequently, forest point absolute elevation can be obtained by
adding dh to at least one reference point (representing the ground) having known elevation:

dh = hFP − hRP = ω
(

∆ϕFP − ∆ϕRP
)

(2)

where hFP and ∆ϕFP are elevation and interferometric phase of the forest point, respec-
tively, and hRP and ∆ϕRP are elevation and interferometric phase of the reference point,
respectively. It is worth to noting that Equation (2) can be retained phase unwrapping
independent if the expected forest height is maintained lower than the so called height of
ambiguity (HOA) [19,30].

This condition is satisfied if no significant elevation difference exists between forest
and reference ground levels. This condition can be a priori-verified using an external DEM
(e.g., global SRTM or ASTER DEMs). The condition must be tested for each interferogram
pixel to remove inadequate ones. HOA can be obtained multiplying 2π to ω, and it is
possible to model the relationship between HOA and B.

2.3. Modelling dh Uncertainty

Once the above-mentioned condition has been satisfied, one can proceed to estimate
the expected uncertainty of hFP, taking care of the contribution of the involved parameters.
hFP uncertainty (σdh) can be estimated by Equations (3) and (4), assuming hRP uncertainty
as a priori known. Equation (3) is the one commonly adopted in the literature to estimate
σdh [42]:

σdh = ω·σd∆ϕ (3)

where σdh is dh uncertainty and σd∆ϕ is the interferometric phase difference uncertainty.
It is worth highlighting that this formula does not consider for ω uncertainty; this has

to be further considered to properly model error propagation that can be proficiently esti-
mated by the Variance Propagation Law (VPL, [43]). VPL is a statistical tool (Equation (4))
useful to estimate the a priori variance of a statistical variable (y) depending on some other
independent ones (xi):

σ2
y =

(
∂y
∂x1

)2
· σ2

x1
+

(
∂y
∂x2

)2
· σ2

x2
+ . . . +

(
∂y

∂xn

)2
· σ2

xn (4)

where y= f (x1, x2, . . . , xn) is the dependent variable, xi the independent one, and σ2
xn their

variance (supposed to be known).
Application of VPL to Equation (3) results in Equation (5):

σdh =

√(
∂dh
∂ω

σω

)2
+

(
∂dh

∂d∆ϕ
σd∆ϕ

)2
(5)

where σω and σd∆ϕ are the expected uncertainties for ω and d∆ϕ, respectively.
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2.3.1. Theoretical Uncertainty of ω

ω uncertainty (σω) depends on the parameters involved in its computation. Again,
the variance propagation law can be used to obtain the estimate of the theoretical value of
σω (Equation (6)):

σω =

√(
∂ω

∂B

)2
·σ2

B +

(
∂ω

∂R

)2
·σ2

R +

(
∂ω

∂θ

)2
·σ2

θ +

(
∂ω

∂R
∂ω

∂θ

)
ρ(R,θ)σRσθ (6)

where R is the slant range (here computed as R = H
cos θ ); σB is the baseline uncertainty;

σR and σθ are the slant and look angle uncertainty, respectively; ρ(R,θ). is the Pearson’s
correlation coefficient between R and θ. These are known to be geometrically related (thus
correlated), and consequently ρ(R,θ) must be set to +1.

Concerning σB, the S1-declared positional accuracy of the ESA provided precise orbit
state vectors (Precise Orbit Determination—POD) is 5 cm [35,36]. This determines a σB
value of 12 cm. σθ was assumed equal to 0.01◦, and that is the nominal antenna attitude
accuracy. σR can be estimated by Equation (7), assuming factors contribution as additive:

σR =
√

σtropo2 + σiono
2 + σproc2 + σTOF

2 (7)

where σtropo and σiono are the uncertainty of atmospheric delay induced by troposphere and
ionosphere; σproc is the estimated contribution of SAR data processing effects in the S1 IW
products; σTOF is the uncertainty of slant range signal time, i.e., the minimum detectable
slant range distance between two scatterers.

In order to evaluate the relative contribution of factors to the final estimate of σω,
“weights” of Table 2 (wi) were computed with reference to σ2

ω according to Equation (6).

Table 2. “Weights” defining the relative importance of factors to determine σ2
ω .

Parameter wi Formula

Baseline (B) wB =
( ∂ω

∂B )
2·σ2

B
σω

2

Slant range (R) wR =
( ∂ω

∂R )
2·σ2

R
σω

2

Look angle (θ) wθ =
( ∂ω

∂θ )
2·σ2

θ

σω
2

Mixed term (R, θ) wcorr(R,θ) =
( ∂ω

∂R
∂ω
∂θ )·ρ(R,θ)σRσθ

σω
2

2.3.2. Theoretical Uncertainty of d∆ϕ

The theoretical uncertainty of d∆ϕ (σd∆ϕ) can be computed by Equation (8):

σd∆ϕ =
√

σ2
∆ϕFP + σ2

∆ϕRP (8)

where interferometric phase uncertainties, σ∆ϕFP, and σ∆ϕRP were proved [18,44,45] to be
strictly correlated to the local coherence magnitude, |γ|, according to Equation (9):

σ∆ϕ =
1√

2NL

√
1− |γ|2

|γ| (9)

where NL is the multilooking factor (i.e., number of pixels used to compute the complex
multilooked interferogram).

These considerations drive to admit that σdh = f
(
ω, σ∆ϕ

)
and, consequently, they

depend on the operational parameters B and NL.
Equations (1) and (3) show that dh accuracy is higher for long baselines. This is what

is ordinarily reported in the literature. Nevertheless, this condition appears to fail over
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vegetation. In fact, longer baselines decrease coherence, thus negatively affecting σ∆ϕ and,
consequently, σd∆ϕ. This effect is more evident while analysing the decorrelation model of
Equation (10), as proposed by [44,46]. This model defines the coherence magnitude as the
product of several contributions related to decorrelation agents.

γobs = γthermal · γDoppler · γtemp · γgeom · γvol (10)

where γobs is the observed coherence magnitude; γthermal is the signal decorrelation due
to additive thermal noise [47]; γDoppler accounts for non-perfect overlap of the azimuth
spectra for the master and slave SAR acquisitions and misregistration error [48]; γtemp is
associated to changes in the dielectric and structural proprieties of the target [49]; γgeom
depends on geometric relationships between the two compared SAR acquisitions; and γvol
is the decorrelation component due to canopy scattering from multiple heights within each
scattering cells.

Because γthermal , γDoppler, γtemp are independent from any operational parameter that
can be controlled by users, these were not taken into consideration in the optimization
process addressed by authors in [50].

Differently, γgeom is dependent from baseline according to Equation (11):

γgeom = 1−
2 B cos2 θ δrg

λR
(11)

where δrg is the range resolution of the radar.
Similarly, γvol has to be taken into consideration, since this is caused by the volumetric

decorrelation related to the vegetation canopy volume (distributed scatters). Assuming a
uniform volume showing an exponential extinction of absorption and scattering, γvol can
be modelled by Equation (12) ([18,49,50]). It states that SAR signal decorrelation depends
on vegetation volume depth hv (i.e., tree height) and from the system parameter kz (see
Equation (1)).

γvol =
2 sin

(
kz

hv
2

)
kzhv

(12)

Equation (12) assumes a uniform radar backscatter cross section from canopy volume
and no significant scattering from the background. By inverting Equation (12), it would be
possible to estimate forest height if decorrelation was caused entirely by volumetric effects.
Unfortunately, this is unrealistic due to canopy signal attenuation, scattered movements,
and the proportion of area filled by trees. These issues determine significant observational
errors [50] making this approach with S1 data a poor choice.

Within this framework and according to the above-mentioned simplifications, a new
synthetic variable γbaseline = γgeom·γvol can be considered as directly related to the base-
line value.

2.4. Minimizing σdh through Simulated Scenarios

As demonstrated in the previous sections, σdh depends on both ω and σ∆ϕ. While
trying to minimize it, the only parameters a user can manage are image pair selection
(spatial and temporal baseline) and the multilooking factor (NL). These can be optimized to
guarantee the lowest σdh.

Concerning the temporal baseline selection, since forests are continuously changing,
the longer the temporal baseline, the lower the associated coherence (temporal decorrela-
tion) [17,51]. Therefore, short temporal baseline and winter acquisitions are more suitable
for forest height retrieval as discussed by [19,31,51]; however, currently, no formalized
model exists to support this evidence.

As far as baseline optimization (i.e., B value minimizing σdh) is concerned, this must be
managed going back to Equations (3), (11) and (12). These make it possible to generate dif-
ferent scenarios depending on varying baseline and hv values (i.e., expected average forest
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height). With reference to the scenarios, the optimal B value can be retrieved once an ex-
pected forest hv is set. To make the estimate more immediate, a power model (Equation (13))
was calibrated directly relating hv with the optimal B value:

Bopt = a·(hv)
b. (13)

where a and b are model parameters.
Concerning NL value optimization, one has to consider Equation (5) that relates NL

with σ∆ϕ: the higher NL, the lower the interferometric phase uncertainty. NL can therefore
be optimized by fixing an expected value for σdh once ω and local coherence are known
(Equation (14)).

NL = 0.5
(

1
γ2 − 1

)(σdh
ω

)2
(14)

According to Equation (14), after setting an expected σdh, the correspondent NL value
can be obtained. To make this information more operational, NL can be easily translated
into the correspondent squared pixel size (SGRP) by Equation (15). This works under the
condition that the ratio between azimuth and range pixel size is the one of S1, i.e., 1:4 (see
Table 1).

SGRP (m) =
δaz·
√

NL
2

(15)

Considering that the accuracy of forest height by ground survey is lower than 3 m,
in this work some simulations retrieving SGRP at σdh = 3 m were performed by changing
the γ value between 0.1 and 1 in Equations (14) and (15). This makes it possible to find an
optimal value of NL suitable to guarantee the expected accuracy of forest estimates.

Once optimal B and NL (or SGRP) values corresponding to an expected hv were found,
that part of σdh, depending on settable operational parameters, can be finally minimized.

Unfortunately, a significant part of σdh additionally depends on systematic errors
such as orbital-related ones, flattening residuals and atmospheric delays. These cannot be
directly accounted for, because they are difficult to model. Nevertheless, one can try to
remove/minimize them by considering height differences between neighbour targets in
place of absolute height measures. Measure differencing is expected to reasonably remove
these errors, assuming that they occur similarly for close points [42].

Conversely, remaining error components depending on targets attributes, i.e., temporal
decorrelation and random noise, cannot be further removed or minimized.

Their joint effect on the final uncertainty of dh, described in Equation (5), can be
evaluated through simulations based on a sensitivity analysis approach.

These were achieved by differencing a reference ground point, external to the forest,
and showing a very high coherence value (≥0.8) with one representing the forest itself.
The analysis proceeded by progressively varying the coherence value of the forest point
(γFP) from 0.05 to 1 and assuming different dh values with expected tree heights ranging
between 1 m and HOA.

3. Results and Discussion

To verify if dh values associated with tree heights could be reasonably estimated
independently from phase unwrapping, HOA was related to B according to the above-
mentioned equations, namely HOA = 2π·ω and Equation (1). B values were progressively
changed to generate graphs of Figure 2.

With reference to Figure 2, one can deduce that a baseline value lower than about
120 m can be used to ensure that forest height estimates can be given. In fact, forests around
the world rarely show tree heights higher than 100 m. If focusing on temperate forests
where maximum tree height is 65 m, baseline values lower than about 270 m can be used,
ensuring to remain within HOA.
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3.1. Theoretical Uncertainty of ω

ω is the parameter that converts the interferometric phase difference (radians) into the
correspondent height difference (meters, dh). ω uncertainty (σω) depends both on the B, R,
θ factors value and on their accuracy (Equation (6)).

Concerning σB, it was obtained considering the S1-declared positional accuracy of
the ESA provided POD, i.e., 5 cm [35,36]. A reference value for σB was found to be equal
to 12 cm. σθ was assumed equal to 0.01◦, corresponding to the nominal antenna attitude
accuracy for S1. σR was determined according to Equation (7). σtropo and σiono were set
to 4 m and 1 m, respectively, according to [52]. This was obviously an approximation,
since atmospheric conditions can locally change. The same paper [52] reported 0.4 m as
a reference value for σproc. σTOF was set equal to 3.3 m, assuming that S1 Bw (see Table 1)
was 46 MHz.

According to the above-mentioned values, σR was finally computed (Equation (7))
resulting in 5.3 m.

To investigate σω dependency from involved parameters, one has to take care that
R and θ change along the scene, while B and H could be assumed constant. Measuring
errors affecting these system parameters (Equation (1)) necessarily affect σω. VPL can be
used to explore how B and θ affect the theoretical value of σω (Equation (6)). Figure 3a
shows that for B values greater than 50 m, σω was lower than 10 m and increased while θ
values increased (i.e., tending to the swath far range). These findings raise some doubts
about Equation (3), which does not take into account the error contributions of the system
parameters. Additionally, σω appeared to be highly significant. A better estimate of σdh
could come from Equation (4) where, differently from Equation (3), σω is considered.

In order to explore the importance of system parameters on σω , correspondent weights
(wi) were computed according to equations reported in Table 2. Results are reported in
Figure 3b where it can be noted that 64%, 11% and 24% of the total variance (σ2

ω) were due
to the look angle, R and the mixed term accounting for R and θ correlation, respectively. B
uncertainty participated for less than 1%.

From an operational point of view, a rough sensitivity analysis can help to interpret
results. For example, a look angle difference of 1◦ determines a ∆ω of about +3.7%;
a satellite altitude difference of 10 km determines a ∆ω of about +1.4%; a slant range
difference of 10 km determines a ∆ω of about +1.2%. θ appears to be the most conditioning
factor for ω computation.
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Given these values, ω can be reasonably computed directly using the coarse estimates
of θ, R, H, and B, as reported in the SAR metadata information or satellite-approximated
state vectors.

While using S1 nominal features in Equation (6), it can be easily derived that σω varies
between 1 m to 10 m, thus demonstrating to significantly contribute to the interferometric-
derived dh.
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3.2. Theoretical Uncertainty of d∆ϕ

According to Equations (11) and (12), some simulations were performed to explore the
relationship between the baseline and γgeom and γvol using S1 nominal values of Table 1
(Figure 4a,b). Figure 4a shows that expected forest height (i.e., the thickness of forest
volume) does not significantly affect γvol if B is maintained lower than 50 m. Differently,
for B values > 50 m, hv participates to reduce γvol . Figure 4b shows a perfect negative linear
correlation between B and γgeom having a steeper decreasing rate for lower look angles.
Because γbaseline = γgeom · γvol , according to Equation (9), one can admit that the higher
the baseline, the lower γbaseline and the higher σ∆ϕ.
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3.3. Minimizing σdh through Simulated Scenarios

According to Equation (12), σd∆ϕ depends on B and hv. To explore its dependency, B
and hv were changed progressively from 5 m to 1000 m and from 5 m to 50 m, respectively,
testing their effects on σdh (Figure 5a).
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Simulations in Figure 5a show that hv value > 15 m (i.e., the majority of forests), and
σdh presents a minimum with respect to B.

It is worth noting that σdh values are certainly underestimated. In fact, γthermal , γDoppler,
γtemp are factors that cannot be properly modelled, being independent from the features of
interferometer.

Considering B values minimize σdh for the different hv values, a model directly relating
the “optimal” B value with the expected hv was defined (Equation (13) and Figure 5b).

A simple power model can be calibrated (Equation (13)), as reported in Figure 5b
(see figure for model a, b and R2 coefficients). It is worth noting that the optimal B value
occurs within the critical baseline (for S1, about 5 km) supporting the hypothesis that, over
vegetation, the accuracy of interferometric-derived heights does not increase by using large
baselines. The operational utility of this model can be easily exemplified using a case study.
Suppose we investigate tree heights in a forest having an expected value of 25 m. The
model of Figure 5b makes possible to obtain an optimal baseline value of 150 m. Similarly,
it can be said that the optimal B value in forests with tree heights ranging between 15 m and
30 m (the majority of forest in temperate zones) should range between 250 m and 100 m,
respectively.

Since pixel size (NL/SGRP) has been proved to significantly impact σ∆ϕ, and conse-
quently σd∆ϕ (Equation (9)), some simulations were performed to describe SGRP depen-
dency from γ (Figure 6). Equations (14) and (15) were applied repeatedly assuming a refer-
ence σdh = 3 m, and setting the following values for the involved parameters: H = 693 km,
θ = 35◦, and δaz = 20 m. This made it possible to describe SGRP variation against γ and B.
Figure 6 shows that SGRP is inversely proportional to γ.

Since vegetation usually presents medium–low coherence values expected in the range
0.2 < γ < 0.6 [17], correspondent expected SGRP falls in the range 50–300 m if B > 50 m. This
SGRP (geometric resolution) is certainly not appropriate for a fine scale height retrieval;
nevertheless, it appears to be proper for small-scale analysis (wide areas), generating a
granularity that is consistent with the ones from traditional forest surveys. These are, in
fact, characterized by a low-density of ground sampling (plots) [53].

Once the optimal B value was found and, consequently, the correspondent SGRP was
found, σdh can be estimated as a function of γFP and expected dh. To investigate these
dependencies, a simulation was run assuming baseline values in the range of 50–200 m
using Equation (5) (Figure 7). During simulations, the following operational parameters
were used: NL = 100, θ = 35◦, and H = 693 km.
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Isolines refer to the same σdh values.

Figure 7 shows that dh values consistent with forest height in the range of 10–65 m
generate σdh values varying between 1 m and 70 m, depending on γFP (coherence of the
forest area) and B values. The most favourable conditions occur for high γFP and larger
baselines. A focus point is that σdh remains at low values, while γ is higher than about 0.2,
and can suddenly and significantly increase once this threshold is overcome. This suggests
that a γ value of 0.2 can be somehow used to define significant/reliable measures.

In general, when dh tends to HOA, σdh is higher, suggesting that small dh values are
more accurate than large ones. Operationally speaking, since the authors approach is based
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on height difference computation, expected dh values (10–65 m) are always lower than
HOA and result in a σdh < 5 m. Some examples are reported in Table 3.

Table 3. Best cases from simulations in a typical Italian forest context (tree height in the range of
10–30 m).

Baseline (m) Expected dh (m) σdh (m)

50 10–30 2
100 10–30 2
150 10–30 1
200 10–30 0.5

Similar results were found in [32,54] by using ERS-1 data where phase unwrapping
was adopted. Otherwise, in the proposed approach, similar accuracy was found avoiding
phase unwrapping, resulting into a more robust and controllable forest height uncertainty
estimation. Moreover, values of Table 3 prove that forest height estimates from S1 InSAR
data can generate results with an accuracy comparable to those of traditional surveys,
making this technique an effective tool for forest structural monitoring.

Once more, this evidence highlights that an InSAR technique operated according to
the above-mentioned optimization criteria can drive forest height estimates consistent with
the ones found from ground surveys. Nevertheless, some limitations still persist concerning
low coherence targets where InSAR fails to retrieve reliable forest height estimates [55]. It is
worth stressing that these findings are based on simulations; therefore, future developments
will be expected to sustain these deductions using real data and quantifying the actual (not
the expected) errors in forest height retrieval.

4. Conclusions

This work proved that S1 interferometric data can be effectively adopted to retrieve
forest height. In particular, adopting the topographic levelling approach based on local
differencing between interferograms from a forest pixel and a neighbour bare soil, one
is permitted to operate with no phase unwrapping, resulting in an unambiguous height
estimate. The authors proved that tuning the optimal baseline and multilooking factor
can improve the accuracy of forest height retrieval. In particular, forest heights in the
range of 10–30 m require an optimal baseline between 250 and 100 m. Furthermore,
contrarily to the general rule that suggests large B values improve InSAR-derived DEM
accuracy, this work demonstrates that, in forest areas, the same rule fails. In fact, by
increasing B, forest coherence decreases, reducing interferometric phase accuracy. A simple
model was additionally proposed and calibrated, aimed at predicting the optimal B value
(and therefore image pair selection) for σdh minimization. Regarding the spatial density
of forest height estimates, it was found that SGRP values between 50 and 100 m can
guarantee a σdh < 3 m. This resolution is certainly not appropriate for fine-scale analysis,
suggesting the adoption of this method when small-scale (wide areas) mapping of forest
heights is required. Finally, in this paper, authors proved that S1 InSAR data processed by
focusing on height differencing computation (see Equation (2)) is effective in retrieving
forest heights with medium–high accuracy. This has been necessarily achieved opportunely
by tuning user-dependent parameters (B, NL, Btemp) according to the above-mentioned
maximization criteria.
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