
19 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Extending and assessing composite electronic structure methods to the solid state

Published version:

DOI:10.1063/1.5123627

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1723697 since 2022-03-08T12:00:04Z



Extending and assessing composite electronic structure methods to the solid
state
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A hierarchy of simplified Hartree-Fock (HF), density functional theory (DFT) methods and their combinations
have been recently proposed for the fast electronic structure computation of large systems. The covered
methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set global hybrid functional (PBEh-
3c), and its screened exchange variant (HSE-3c), all augmented with semi-classical correction potentials.
Here, we extend their applicability to inorganic covalent and ionic solids as well as layered materials. The
new methods have been dubbed HFsol-3c, PBEsol0-3c and HSEsol-3c, respectively, to indicate their parent
functional as well as the correction potentials. They have been implemented in the Crystal code to enable
routine application for molecular as well as solid materials. We validate the new methods on diverse sets
of solid state benchmarks that cover more than 90 solids ranging from covalent, ionic, semi-ionic, layered,
and molecular crystals. While we focus on structural and energetic properties, we also test band gaps,
vibrational frequencies, elastic constants, and dielectric and piezoelectric tensors. HSEsol-3c appears to be
most promising with mean absolute error (MAE) for cohesive energies and unit cell volumes of molecular
crystals of 1.5 kcal/mol and 2.8%, respectively. Lattice parameters of inorganic solids deviate by 3% from
the references and vibrational frequencies of α-quartz have standard deviations of 10 cm−1. Overall, this
shows an accuracy competitive to converged basis set dispersion corrected DFT with substantial increase in
computational efficiency.

I. INTRODUCTION

Kohn–Sham density functional theory (DFT) is rou-
tinely used for the fast computation of large systems and
will most likely continue to be the method of choice for
the generation of reliable geometries in the foreseeable
future.1,2 Recently, a hierarchy of simplified electronic
structure methods designed for consistent structures and
non-covalent interactions of large systems have been de-
veloped on the past five years.3 They are designed as an
ideal compromise between cost and accuracy for calcu-
lations on molecular systems of increasing size. Success-
ful applications include protein-ligand binding affinities4,
large molecular crystals with shortest intermolecular hy-
drogen contacts5, unusual halogen bonding motifs6, and
screening of zeolite thermodynamics.7 They are based on
the pure Hartree-Fock (HF) method or HF/DFT hybrid
functionals with the target of yielding good structures
and reasonable energetic properties. The key ingredi-
ents are (i) the use of minimal or small-to-medium basis
sets expressed in terms of atom-centered Gaussian-type
functions and (ii) the combination of three (or two) semi-
classical atom-pairwise (or triplewise) corrections to in-
clude London dispersion interactions,8–10 to remove the
basis set superposition error (BSSE)11 and to compensate
for the basis set incompleteness error (BSIE) through a
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short-range correction (SRB). This has lead to a pseudo-
hierarchical ladder of methods in which the percentage of
Hartree-Fock exchange ranges from 100% (i.e. full HF) to
0% (i.e. pure generalized gradient approximated (GGA)
functional) passing through 42% for hybrid HF/DFT
functionals and the basis set size increases from mini-
mal to double-zeta and to triple-zeta quality. The result-
ing methods have been dubbed as HF-3c12, PBEh-3c13,
HSE-3c14 and B97-3c15.

The four methods have been successfully applied to
study small-to-large molecules and molecular adducts
and have been extended to periodic systems, in particular
to study molecular crystals13–16. Although the compos-
ite methods cover all elements of the periodic table, their
application to inorganic solids is mainly limited by the
adoption of molecular basis sets. Unmodified molecu-
lar basis sets can be problematic to use in certain solid
state calculations17–19 because they usually contain basis
functions with low exponents that can lead to numerical
instability and linear dependency problems.

In this communication, we extend the applicability of
three composite methods to inorganic solids and layered
materials. Our guidelines for the revisions: (i) employ
exchange-correlation functionals developed for solids (i.e.
PBEsol20 and HSEsol21); (ii) reduce the amount of HF
exchange in DFT hybrid methods for a better description
of electronic properties22–24 (e.g. 25%) and (iii) apply a
simple recipe to make molecular basis sets suitable for
inorganic solids. The revised methods have been tagged
with a label “sol” (as for “solids”) to distinguish them
from the original ones and are thus denoted as HFsol-3c,
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PBEsol0-3c and HSEsol-3c.

II. COMPUTATIONAL METHODS

A. Methodologies

The total energy provided by the composite methods
can be written as3

Esol-3c
tot = E

HF,DFT/basis
tot + ED3

disp + EgCP
BSSE + ESRB (1)

The different contributions are discussed in details be-
low. E

HF,DFT/basis
tot denotes the total energy evaluated

at HF or DFT level of theory in a fixed basis set ex-
pansion. In the present work, we use HF, the global
hybrid functional PBEsol020 and the screened exchange
hybrid functional HSEsol21. The latter two are chosen
because they were specifically devised for solids. We re-
vise the original MINIX basis set for HFsol-3c and def2-
mSVP for PBEsol0-3c and HSEsol-3c (see later on for
details). The total energy is supplemented with an es-
tablished semi-classical London dispersion correction (D3
model).25 D3 is used in the rational (Becke-Johnson)
damping variant26 and includes dipole-dipole, dipole-
quadrupole, as well as three-body triple-dipole terms.
While the long-range contributions are determined by the
ab-inito computed dispersion coefficients, the short-range
damping includes two empirically optimized parameters.
The removal of the BSSE due to the use of small basis
sets with large BSIE is accomplished through a geomet-
rical counterpoise correction (gCP). A pre-computed ele-
ment and basis set specific BSIE measure is used to gen-
erate a repulsive atom-pairwise potential with four free
parameters. HF-3c employs an additional short-range
basis set correction (SRB) that corrects the systematic
overestimation of bond lengths involving electronegative
elements. The two SRB parameters are trained on a set
of 107 small molecule structures.12 A comparison of the
method hierarchy with different ingredients is given in
Table I. All functional and basis set specific parame-
ters were empirically optimized for each revised compos-
ite method as shortly discussed in the Appendix and their
values are reported in Table IV.

B. Basis set revision

The original composite methods use minimal (MINIX)
and double-zeta quality (def2-mSVP) atomic basis sets
for HF and hybrid DFT, respectively. As previously men-
tioned, they are based on molecular basis sets that are not
fully suitable for certain solid state calculations. There-
fore, one of the main purposes of the present work was
a revision of these basis sets. To that aim, we applied
a simple recipe based on a re-scaling of the exponents
of the outermost uncontracted Gaussian functions. For
sake of brevity, more details about the revision of the ba-
sis sets are reported as supporting information.

TABLE I. Feature summary of the revised composite methods

HFsol-3c PBEsol0-3c HSEsol-3c

method HF PBEsol0 HSEsol

AO basis set sol-MINIX sol-def2-mSVP sol-def2-mSVP

HF exchange % 100 25 a25-0

D3 dispersion yes yes yes

gCP correction yes byes byes

SRB correction yes no no

a 25% at short-range and 0% at long-range using standard
range-separation with ω = 0.11.14

b Damped variant of gCP correction is used.13

Basis set exponents have been revised from He to Xe for
def2-mSVP.27 We follow the two steps:

(i) Scale the exponent of the most diffuse Gaussian
function to a value equal or slightly greater than
0.1 Bohr−2 that has been considered as a lower
bound limit to avoid numerical instability.

(ii) Scale the exponent of the previous Gaussian func-
tion by keeping the original exponent ratio.

Step (i) and (ii) of this scheme were applied to s and
p shells while for d and f functions solely step (i) was
applied. For the MINIX basis set the same procedure
is adopted, where for elements H-Ar the the orbitals are
decontracted before applying the scaling. The revised
basis sets have been implemented in Crystal17 and are
explicitly given in the supporting information.

C. Computational details

The revised composite methods for solids have been
implemented in a development version of the Crys-
tal17 code.17,28 The crystalline orbitals are represented
as linear combinations of Bloch functions, with each
of them being built from atom-centered atomic orbitals
(AO), which are expressed in terms of Gaussian-type-
functions. In contrast to plane-wave codes, the imple-
mentation of Fock exchange is easier in terms of AO
and well-established in Crystal since more than three
decades.29 Crystal is the ideal program for large scale
solid state applications as it can employ all point and
space group symmetries.30 Furthermore, it scales well
on high-performance computational facilities with up
to 30 000 cores and electronic structure calculations on
14 000 atoms in the primitive unit cell have been pre-
sented recently.31 All calculations for both revision and
validation purposes were carried out with default com-
putational parameters.17
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TABLE II. Statistical analysis of original and revised composite methods on the benchmark set S66x832 and X2333,34

Dataset Prop. HF-3c HFsol-3c PBEh-3c PBEsol0-3c HSE-3c HSEsol-3c

S66x8a Dist. MARE(%) 0.50 0.39 1.50 0.51 1.50 0.49

BE MAE(kcal/mol) 0.43 0.71 0.50 0.64 0.50 0.66

X23b Vol. MARE(%) 6.46 2.31 3.60 3.18 2.90 2.84

CE MAE(kcal/mol) 2.06 3.03 1.30 1.53 1.30 1.50

a Equilibrium distance (Dist.) and binding energy (BE). This set was part of the D3 and gCP parameter training.
b Equilibrium unit cell volume (Vol.) and cohesive energy (CE).

III. RESULTS AND DISCUSSION

The performance of the revised composite methods
were first benchmarked against corresponding results of
the original methods for the S66x8 dataset of molecu-
lar dimers32 and the X23 set of molecular crystals33,34.
In addition, a set of 20 simple inorganic solids22 with
cubic structure, dubbed as SS20, was used to compare
them with the uncorrected methods (i.e. HF, PBEsol0,
HSEsol0). Here lattice constants, band gaps, and bulk
moduli are tested. Lattice parameters have been cor-
rected to remove thermal and zero-point effects.35 Sta-
tistical results of original and revised composite methods
are given in Tables II and III.

For the non-covalently interacting systems S66 and
X23, the uncorrected methods do not yield satisfac-
tory results. All composite methods yield binding en-
ergies and equilibrium geometries competitive to results
of state-of-the-art dispersion corrected DFT (see e.g.
Ref.10, Table 9). The revised (sol) variants significantly
improve the dimer distances and unit cell volumes of
molecular crystals while just slightly deteriorating the
binding and cohesive energies, respectively. In partic-
ular HSEsol-3c seems to be promising with MAE of
1.5 kcal/mol and MARE of 2.8 % for the X23 lattice en-
ergies and unit cell volumes, respectively. Keeping in
mind the minimal basis set leading to a substantial speed-
up, HF-3c and HFsol-3c results are also satisfying (see
also Ref. 16 for broader molecular crystal tests). Over-
all, the reparametrization keeps the excellent accuracy of
the original composite methods for non-covalently bound
systems, which is mandatory if the revised methods are
intended as generally applicable methods.

The original composite methods could not be tested on
the SS20 set, because the SCF is not converging within
standard settings. In contrast, the revised methods all
converged smoothly, which is important for a readily ap-
plicable method. Figure 1 shows the correlation between
computed and experimental lattice parameters. As sum-
marized in Table III, all three revised methods give ex-
cellent results with MAE well below 0.1 Å. Results from
PBEsol0-3c and HSEsol-3c are almost identical, demon-
strating that the long-range Fock exchange is not needed
for the properties under consideration. Not unexpect-
edly, band gaps are substantially overestimated by HFsol-

FIG. 1. Lattice parameters for the SS20 dataset computed
with the revised composite methods compared to experimen-
tal reference data.
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3c whereas hybrid composite methods for solids perform
much better with a MAE below 1 eV, which is close to un-
corrected functionals. The same holds for the computed
bulk moduli with the accuracy being slightly improved
by the correction potentials.

We additionally considered a broader set of more than
50 different inorganic solids containing cubic, hexago-
nal and orthorhombic, ionic and covalent systems (re-
sults summarized in supporting information).36,37 While
HFsol-3c does not yield reasonable lattice parameters,
PBEsol0-3c and HSEsol-3c have MAREs of 3.3 and 3.4%,
respectively, which is similar to typical hybrid function-
als like PW1PW evaluated in larger triple-zeta basis set
expansions. Overall, the revised methods can be success-
fully applied to inorganic solids, and in particular the two
hybrid methods give results of triple-zeta quality with
significantly reduced computational cost. For instance, a
HSEsol-3c calculation on a 64-atom NiO supercell is more
than twice as fast compared to the same functional with
a pob-TZVP basis set. See the supporting information
for further data.

Layered materials are challenging systems because of
the combination of strong covalent bonds (intralayer) and
weak van der Waals interactions (interlayer). Here, we
test graphite, hexagonal BN (h-BN) and black phospho-
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TABLE III. Mean Absolute Error of original and revised composite methods on the benchmark set SS2022.

Property d dHF HFsol-3c dPBEsol0 PBEsol0-3c dHSEsol HSEsol-3c

LP (Å) 0.07 0.07 0.03 0.03 0.03 0.03

BG (eV) 6.75 6.95 0.78 0.92 0.67 0.77

BM (GPa) 22.05 26.70 9.34 7.93 8.96 7.63

c Lattice parameter (LP), band gap (BG), and bulk modulus (BM).
d Used in identical basis set expansion as corresponding “3c” methods, but without correction potentials.

rus (black-P), for which high level theoretical reference
data on the binding energy as well as high-quality exper-
imental data on structural features are available. When
compared to the uncorrected methods, all revised com-
posite methods provide good structural properties and
interlayer energies. However, the performance seems
to be very system specific. For graphite, the three re-
vised methods provide good results in particular HFsol-
3c, while the two hybrid methods give slightly underes-
timated interlayer energies. The opposite is observed in
the case of h-BN. All three methods predict an interlayer
energy in good agreement with the diffusion Monte-Carlo
(DMC) reference38 while the interlayer lattice parame-
ter tends to be underestimated, although the experimen-
tal lattice parameters39 were not back-corrected to the
athermal limit. Finally, for black-P the interlayer dis-
tance is underestimated by the two hybrids but slightly
overestimated by HFsol-3c. In turn, the interlayer energy
(in meV/atom) computed with PBEsol0-3c and HSEsol-
3c (-163 and 164, respectively) results to be substantially
overestimated compared to the DMC and CCSD(T) es-
timates (-80 and -92, respectively). The problematic ex-
foliation energy of black-P seems to be related to the
damping function of the used dispersion correction as
analyzed in Ref. 40. Incidentally, HFsol-3c (-88) is in
excellent agreement with reference data.40,41

Other important properties of solids are vibrational
frequencies, elastic, dielectric and piezoelectric proper-
ties. We tested the revised composite methods on α-
Quartz (see supporting information).42–45 As expected,
HF in a MINIX basis set is not capable of describing
these properties. On the other hand, PBEsol0-3c and
HSEsol-3c give results in good agreement with experi-
ment. Especially vibrational frequencies have small er-
rors with with MAE of about 8 cm−1 and standard de-
viations of 10 cm−1. Notably, for the latter methods the
cost of the calculation is about 3 times less expensive
than with a triple-zeta basis set as pob-TZVP.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, we have presented a revision of the
composite methods pioneered by S. Grimme and co-
workers12–14 that were originally designed with specific
focus on consistent structures and interactions of large
molecular systems and molecular crystals. Here, we

changed the adopted semi-local functional, revised the
basis set expansions, and refitted the D3 and gCP cor-
rections. The revised methods, dubbed as ”sol-3c” to
emphasize the focus on solids, were benchmarked on dif-
ferent datasets including molecular adducts, molecular
crystals, and a large set of solids including covalent, ionic,
semi-ionic, and layered materials. Different properties
were tested from structures to energetics, from band gaps
to vibrational frequencies and response properties. Over-
all, the results demonstrate that the revised methods per-
form equally well as the original ones and importantly
extend and improve their applicabilty significantly.
As expected, HFsol-3c shows some drawbacks because of
the known limitations of plain HF and the minimal basis
set. We expect that the best results can be obtained when
dealing with molecular crystals for which structure and
energetics are strikingly accurate. For covalent and ionic
solids the revised HFsol-3c shows a moderately good ac-
curacy for structural features, which can be sufficient for
screening applications. Known deficiencies of HF limit
the use of HFsol-3c for metals and very small-gap sys-
tems.
On the other hand, composite methods based on hybrid
functionals for solids and a double-zeta quality basis set
(i.e. PBEsol0-3c and HSEsol-3c) show consistently good
performance over all system classes and structural, chem-
ical, and physical properties of solids are very well de-
scribed. We expect that they can also be safely applied
to small-gap and metallic systems, in particular HSEsol-
3c, which is based on a screened Coulomb exchange func-
tional. They are overall well-suited for a broad range of
applications in solid state chemistry and physics.
Work is in progress to apply these methods to porous
materials7 and metal-organic frameworks. The accuracy
of hybrid composite methods combined with their com-
putational efficiency are ideal for high-throughput screen-
ings. Further improvements can be foreseen by the inclu-
sion of the D4 dispersion correction46,47 or a more specific
refitting of the parameters based on solid state reference
data.

V. APPENDIX

Revised composite methods required a careful repa-
rameterization because of the different exchange-
correlation functionals adopted and the basis sets revi-
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sion. Therefore, both D3 and the gCP specific parame-
ters were re-optimized by using the S66x8 data set32. In
order to achieve more flexibility with the D3/gCP correc-
tions, the fitting procedure was applied simultaneously to
the D3 and gCP part.
For PBEsol0-3c and HSEsol-3c methods, we re-
determined the parameters in the Becke-Johnson damp-
ing function for the D3 correction:

ED3
disp = −1

2

∑
AB

∑
n=6,8

sn
CAB

n

RAB
n f

(n)
damp(RAB) (2)

Here, CAB
n denotes the nth-order dispersion coefficient

(orders = 6, 8) for each atom pair AB, RAB is their inter-
nuclear distances and sn are the order-dependent scaling
factors. The rational Becke-Johnson damping function is

f
(n)
damp(RAB) =

Rn
AB

Rn
AB + (a1RAB

0 + a2)n
(3)

The damping function incorporates radii for atomic pairs

RAB
0 =

√
CAB

8 /CAB
6 and functional-specific parameters

a1 and a2 that have been refitted in the present work.
In addition, the Axilrod-Teller-Muto48,49 (ATM) three-
body dipole-dipole-dipole term is also included.

The gCP correction is given by the atom-pairwise po-
tential

EgCP
BSSE =

σ

2

∑
AB

V gCP
A (RAB) fgCP

damp(RAB) (4)

The difference in atomic energy between a large (nearly
complete) basis set and the target basis set for each free
atom is used as a measure to generate the repulsive po-

tential V gCP
A with fitting parameters α, β, η. As orig-

inally proposed for the PBEh-3c and HSE-3c methods,
the value of σ, s6 and s8 were fixed to 1.00, 1.00 and 0.00,
respectively.
Note that for the D3 correction in HFsol-3c (see eq. 2)
we only modified the s8 scaling factor reducing it by a
factor of 0.7 as proposed for the original HF-3c method
in ref. 16, all other parameters were unchanged. The pa-
rameters of the short range correction for HF were not
re-evaluated and gCP is used in its undamped variant.
The whole sets of refitted values for the three revised
composite methods are reported in Table IV.

VI. SUPPLEMENTARY MATERIAL

Details of the revision of the def2-SVP and MINIX ba-
sis sets and the modified basis sets in Crystal format,
all computed data for the X23, SS20 and POB datasets
and results for structure, vibrational frequencies, elastic,
dielectric and piezoelectric properties of α-Quartz are in-
cluded as supporting information.

TABLE IV. Summary of all empirical parameters of the re-
vised composite methods.

D3 gCP

a1 a2 s8 α β σ η

HSEsol-3c 0.520 4.939 a0.000 0.294 1.957 a1.000 1.428

PBEsol0-3c 0.536 4.645 a0.000 0.275 1.965 a1.000 1.369

HFsol-3c 0.417 2.915 0.237 1.155 1.176 0.129 1.153

SRB s γ

b0.03 b0.70

a Value not optimized.
b Value taken from original HF-3c parametrization.12
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4S. Ehrlich, A. H. Göller, and S. Grimme. Towards
full quantum-mechanics-based protein–ligand binding affinities.
ChemPhysChem, 18:898–905, 2017.
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