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Tail optimality and preferences consistency for

intertemporal optimization problems ∗

Elena Vigna†

October 22, 2021

Abstract

Given an intertemporal optimization problem over a time interval [t0, T ] and a control

plan associated to it, we introduce the four notions of local and global tail optimality of the

control plan, and local and global preferences consistency of the agent. While the notion of

tail optimality of a control plan is not new, the main innovation of this paper is the definition

of preferences consistency of an agent, that is a novel concept.

We prove that, in the case of a linear time-consistent problem where dynamic program-

ming can be applied, the optimal control plan is globally tail-optimal and the agent is globally

preferences-consistent. Opposite, in the case of a non-linear problem that gives rise to time

inconsistency, we find that global tail optimality and global preferences consistency do not

coexist. We analyze three common ways to attack a time-inconsistent problem: (i) precom-

mitment approach, (ii) dynamically optimal approach, (iii) consistent planning approach.

We find that none of the three approaches keeps simultaneously the desirable properties of

global tail optimality and global preferences consistency: the existing approaches to time

inconsistency are flawed in various ways. We also prove that if the performance criterion

∗An earlier version of this paper has been circulated also under the title “Tail optimality and preferences
consistency for stochastic optimal control problems”. I am indebted to Tiziano De Angelis, Bjarne Højgaard,
Bertrand Lods, Massimo Marinacci and Luigi Montrucchio for useful comments that improved the paper.

†University of Torino and Collegio Carlo Alberto, Italy. Corso Unione Sovietica 218 bis, 10134, Torino, Italy.
E–Mail: elena.vigna@unito.it. Tel. +39 011 670 5754.



includes a convex function of expected final wealth and a globally tail-optimal plan exists,

then the three approaches coincide and the problem is linear.

The contribution of the paper is to disentangle the notion of time consistency into the

two notions of tail optimality and preferences consistency. The analysis should shed light on

the price to be paid in terms of tail optimality and preferences consistency with each of the

three approaches currently available for time inconsistency.

Keywords. Time consistency, dynamic programming, Bellman’s optimality principle, time

inconsistency, precommitment approach, game theoretical approach, dynamically optimal

approach, mean-variance portfolio selection.

JEL classification: C61, D81, G11.

1 Introduction

The aim of this paper is twofold: (i) to shed light on the differences between linear intertemporal

optimization problems, where dynamic programming can be applied, and non-linear intertemporal

optimization problems, where dynamic programming cannot be applied; (ii) to shed light on the

differences among the three common approaches to non-linear problems, namely precommitment,

dynamically optimal and consistent planning. The first class of problems is said to be time-

consistent (see Björk & Murgoci, 2010) or to produce a time-consistent plan (see Strotz, 1956),

while problems belonging to the second class are said to be time-inconsistent.

The notion of time inconsistency for optimization problems dates back to Strotz (1956).

Broadly speaking, time inconsistency arises in an intertemporal optimization problem when the

optimal strategy selected at some time t is no longer optimal at time s > t. In other words, a

strategy is time-inconsistent when the agent at future time s > t is tempted to deviate from the

strategy decided at time t. For an illuminating and clarifying formalization of the possible sources

of time inconsistency in intertemporal optimization problems, see Björk & Murgoci (2014) for the

discrete time framework and Björk, Khapko & Murgoci (2017) for the continuous-time framework.

In the context of intertemporal optimization problems, the term time-consistent/inconsistent

is somehow ambiguous, for it is used sometimes for the plan or behaviour adopted by the agent,
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sometimes for the optimization problem or criterion used, sometimes for the agent herself. The

meaning of optimality becomes doubtful too: Björk & Murgoci (2010) notice that “It is thus

conceptually unclear what we mean by ‘optimality’ and even more unclear what we mean by ‘an

optimal control law’.” The idea of valid time-consistent candidate strategies is unclear too. Ben-

soussan, Wong & Yam (2019) stress that “the ‘plan that he (would) actually follow’,1 which is

expected to be the very definition of time-consistent plans, has not yet been rigorously described.”

This general confusion stems from the fact that when talking about time consistency the two

notions of optimality of the strategy and consistency to one’s own preferences are merged together.

In an attempt to add some clarity to the picture, in this paper we disentangle the notion

of time consistency for an intertemporal optimization problem over [t0, T ] into the two notions

of tail optimality of the control plan and preferences consistency of the agent, and we provide

rigorous definitions. Because of the dynamic nature of intertemporal optimization problems, both

definitions of tail optimality and preferences consistency are provided at local level (at a single

time point) and at global level (over a whole time interval).

The notions of tail optimality and preferences consistency are defined in detail in Sections 2

and 3, so we refer the reader to these sections for the rigorous mathematical treatment. However,

a rough intuition could be the following. A control map is locally tail-optimal at t with respect to

a given optimization problem on [t, T ] if, whenever played from t to T , permits the achievement

of the optimum, and is globally tail-optimal on [t0, T ] if all its restrictions on every interval [t, T ]

are locally tail-optimal. An agent is locally preferences-consistent at time t with respect to a given

optimization problem if she is instantaneously optimal at t with respect to that problem, and is

globally preferences-consistent on a time interval [t0, T ] if she is locally preferences-consistent at

every time over that time interval.

The feature of global tail optimality of a control plan for a linear stochastic optimal control

problem where dynamic programming is applicable is not a new concept and is indeed due to the

validity of the Bellman’s optimality principle. Opposite, the definition of preferences consistency of

an agent wishing to solve an intertemporal stochastic optimal control problem is novel. However,

the idea of consistency to preferences is not new in the economics and decision theory literature,

in particular in the context of choice among lotteries in a discrete setup. Epstein & Le Breton

(1993) formulate that preferences should be updated to new information in order to preserve their

1See Strotz (1956).
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dynamic consistency. Johnsen & Donaldson (1985) investigate what are the restrictions imposed

by time-consistent planning on the agent’s preferences. A link between non-linear problems and

preferences consistency of the agent is partly addressed by Chew & Epstein (1990), who investigate

whether a behaviour driven by non-expected utility preferences can be intertemporally consistent.

A preview of our results is the following. Expectedly, global tail optimality and global prefer-

ences consistency occur simultaneously in the case of linear optimization problems where dynamic

programming can be applied. However, they no longer hold together with a non-linear problem

for which dynamic programming cannot be applied. In particular, we find that for the precom-

mitment approach there is local tail optimality and local preferences consistency at initial time

t0; for the dynamically optimal approach there is global preferences consistency, but there is no

local tail optimality at any time; for the consistent planning (or game theoretical) approach there

is neither local tail optimality nor local preferences consistency at any time with respect to the

original non-linear problem, but there is global tail optimality and global preferences consistency

with respect to a different linear problem. It is worth noting that the inconsistency to preferences

of the consistent planning agent was already observed by Chew & Epstein (1990), see Sections 4.3

and 6.2.

Although the three approaches to time inconsistency turn out to be flawed in different ways, in

the literature on time-inconsistent problems these approaches have been extensively used without

considering the issues discussed here. For instance, Bensoussan et al. (2019) notice that “To tackle

this time-inconsistency issue, the game-theoretic approach is widely used to recommend a time-

consistent solution.” Ekeland, Mbodji & Pirvu (2012) adopt the game theoretical approach and

notice that in the presence of time inconsistency “the optimal strategies are not implementable”.

Dai, Hin, Kou & Xu (2021) celebrate the equilibrium approach for the mean-variance problem

introduced by Basak & Chabakauri (2010) as a breakthrough over earlier work based on the

precommitment. Björk, Murgoci & Zhou (2014) place a mean-variance portfolio optimization in

continuous time within a game theoretical framework simply because of its time inconsistency.

This paper introduces a new perspective and framework under which time-inconsistent prob-

lems should be considered, and sheds further light on some of the criticisms of the game theoretical

approach to the mean-variance problem appeared in the literature. Some examples are: Wang

& Forsyth (2011), who find that in some cases the efficient frontier of the constrained investor is

higher than the frontier in the absence of constraints; Bensoussan et al. (2019) provide an analysis
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of how the constrained strategy can actually outperform the unconstrained one arguing that time

consistency can be seen as an additional constraint on admissible controls, that limits the flexibil-

ity of earlier players and imposes a sort of penalty on the value function; and Forsyth (2020), who

notices that requiring time consistency changes the objective function and may produce strategies

with undesirable characteristics.

The remainder of the paper is as follows. In Section 2, we formulate the notions of local tail

optimality and global tail optimality of a control plan, and we prove global tail optimality in the

case of a linear optimization problem. In Section 3, we formulate the notions of local preferences

consistency and global preferences consistency of an agent, and we prove global preferences consis-

tency in the case of a linear optimization problem. In Section 4, we extend the analysis to general

non-linear time-inconsistent problems, analyzing tail optimality and preferences consistency for

the three common approaches to time inconsistency. In Section 5 we prove that when the per-

formance criterion includes a convex function of expected final wealth the existence of a globally

tail-optimal control plan implies the linearity of the optimization problem and the coincidence of

the three approaches. In Section 6, we illustrate in detail the special case of the mean-variance

portfolio selection problem. Section 7 concludes.

2 Tail optimality of a control plan

In this section we introduce the problem’s formulation and provide the notation which will be used

throughout the paper. We define the notion of tail optimality of a control plan for an intertemporal

optimization problem and provide two definitions. The first one is for one single optimization

problem, and we will refer to it as local tail optimality of the control plan for the problem at hand.

The second one applies to a family of problems, and we will refer to it as global tail optimality of

a control plan for the family of problems considered. We recall that these concepts are not new,

and are strongly related to the Bellman’s optimality principle for optimization problems. It is,

however, important to review them carefully for two reasons. First, we introduce the reader to the

perspective of tail optimality (or lack thereof) that is a new way to frame and interpret existing

ideas. Second, and more importantly, the very definition of preferences consistency (provided in

Section 3) is based upon the notion of tail optimality that must be therefore defined accurately

at an earlier stage.
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2.1 Setting

To start fixing ideas, let us consider the following framework:

• the time frame over which the optimization is done is fixed and is [t0, T ];

• the wealth2 Xs ∈ R of the agent evolves according to the controlled stochastic differential

equation (SDE):3

dXs = µ(s,Xs, us)ds+ σ(s,Xs, us)dWs

Xt0 = x0

(1)

where Ws is a standard Brownian motion defined on a complete filtered probability space

(Ω,F , {Ft},P), with Ft = σ{W (s) : s ≤ t};

• at any time s ∈ [t0, T ] the agent can choose the control action us according to some criterion;

the set of all control actions {us}s∈[t0,T ] is said to be a control plan; adopting the terminology

common in economics, given the control plan {us}s∈[t0,T ] defined over the whole time interval

[t0, T ], its restriction on [t, T ] for t ∈ (t0, T ), {us}s∈[t,T ], is said to be the continuation plan at

t; we assume that {us}s∈[t0,T ] is a Markov control process, i.e., it is a deterministic function

of time s and the wealth at that time: us(ω) = u(s,Xs(ω)) for some deterministic function

u : [t0, T ]× R → R, also called feedback control map;

• U is the set of admissible strategies, defined as the set of R-valued stochastic processes

u = {us}s∈[t0,T ] that are Markov control processes, Fs-adapted and s.t. the SDE (1) has a

unique strong solution.4

2.2 Optimal problem and preferences

It is essential to highlight that the criterion selected by the agent in the optimization problem

represents the preferences of the agent and is typically given by the combination of different utility

2For simplicity, we here refer to wealth, but the controlled state equation Xs can be any quantity of interest to
the agent.

3Sometimes in the paper we will use the notation Xu
s to denote the value of the state variable at time s under

control u. Whenever possible, we shall try to keep the notation as simple as possible.
4For simplicity, we assume that the set of admissible controls does not change with time and wealth, i.e.,

U(t, x) = U for every (t, x) ∈ [t0, T ]× R.

6



functions. In particular, putting ourselves in the setting introduced by Björk & Murgoci (2010),

we shall assume that the agent wants to solve the following optimization problem:

Problem Pt0,x0 :

supu∈U J(t0, x0, u) = supu∈U

{
Et0,x0

[´ T
t0
U1(s,Xs, us)ds+ U2(XT )

]
+ U3 [Et0,x0(XT )]

} (2)

where U1(·), U2(·) and U3(·) are, possibly non-linear, utility functions that identify the agent’s

preferences.

Remark 1. To be more precise, we could denote by P{U1,U2,U3}
t0,x0

or by J{U1,U2,U3}(t0, x0, u) the

performance criterion of the agent, to stress the crucial role played by the utility functions in

the identification of the agent’s preferences. For notational convenience, in the following, we will

simply refer to Pt0,x0 or J(t0, x0, u).

Problem Pt0,x0 belongs to the more general family of optimization problems

{Pt,x}(t,x)∈[t0,T ]×R ,

where

Problem Pt,x :

supu∈U J(t, x, u) = supu∈U

{
Et,x

[´ T
t
U1(s,Xs, us)ds+ U2(XT )

]
+ U3 [Et,x(XT )]

} (3)

for (t, x) ∈ [t0, T ] × R. In the following, Problem Pt,x will be called the continuation problem

starting from t ≥ t0.

2.3 Linear vs non-linear problems

In line with Björk & Murgoci (2010) we recall that the nature of Problem Pt0,x0 strongly depends

on the utility function U3(·), and there are two possible cases:

1. if U3(·) is a linear function,5 then it can be incorporated into U2(·) and we have a linear

5Clearly, the problem is linear also if U3(·) is an affine function. With an abuse of terminology, in the following
we shall often use the word linear to refer to an affine function and the word non-linear to refer to a non-affine
one.
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problem:

Problem PL
t0,x0

:

supu∈U JL(t0, x0, u) = supu∈U

{
Et0,x0

[´ T
t0
U1(s,Xs, us)ds+ U2(XT )

]}
;

(4)

2. if U3(·) is a non-linear function, then it cannot be incorporated into U2(·) and we have a

non-linear problem:

Problem PNL
t0,x0

:

supu∈U JNL(t0, x0, u) = supu∈U

{
Et0,x0

[´ T
t0
U1(s,Xs, us)ds+ U2(XT )

]
+ U3 [Et0,x0(XT )]

}
.

(5)

According to Björk & Murgoci (2010) another possible source of non-linearity is the presence

of t0 or x0 in the running utility U1(·) or in the terminal utility U2(·). We disregard this case due

to space constraints, and in the remaining of the paper we shall assume that neither U1(·) nor

U2(·) depend on the initial point (t0, x0).

2.4 Local and global tail optimality

We are now ready to provide the definition of local tail optimality of a control plan.

Definition 2.1 (Local tail optimality). Given (t, x) ∈ [t0, T ]×R and the stochastic optimal control

problem Pt,x as in (3), we say that the control plan (if it exists)

u∗
t,x : [t, T ]× R → R (6)

is locally tail-optimal at t for Pt,x if

J(t, x, u∗
t,x) = sup

u∈U
J(t, x, u). (7)

The word “tail” of Definition 2.1 reflects the fact that in order to reach the supremum of the

performance criterion J(t, x, u) it is necessary that the control plan u∗
t,x(·) is played from t until

T , meaning that at each time s ∈ [t, T ] with wealth Xs ∈ R the agent plays the control action
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u∗
t,x(s,Xs). For the definition of local tail optimality at time t, what has happened before t has

no importance, but the control played after t must be determined by the optimal control plan u∗.

Intuitively, the plan u∗ is optimal in the right subinterval [t, T ] (after t), which can be seen as the

right tail of the interval [t0, T ].

Remark 2. It is important to stress that the optimal control plan u∗
t,x(·) is a function of time

s ≥ t and wealth y ∈ R, but it might depend also on the given initial point (t, x) (in Section

6 we will examine an example –the mean-variance portfolio selection problem– in which this

happens). Indeed, two optimal control plans associated to two different initial time-wealth points

are generally different on the same domain, i.e., if (t, x) ̸= (t1, x1) then, in general,

u∗
t,x(s, y) ̸= u∗

t1,x1
(s, y) for (s, y) ∈ [t ∧ t1, T ]× R. (8)

However, in some cases the above inequality holds as an equality for every couple of time-wealth

points, and in this case the stronger feature of global tail optimality, defined below, holds.

Definition 2.2 (Global tail optimality). Given the stochastic optimal control problem Pt0,x0 as in

(2), we say that the control plan

u∗
t0,x0

: [t0, T ]× R → R

is globally tail-optimal over [t0, T ] for Problem Pt0,x0 if for every t ∈ [t0, T ] and every x ∈ R
the restriction of u∗

t0,x0
to [t, T ]× R

u∗
t0,x0

: [t, T ]× R → R

is locally tail-optimal at t for Pt,x, where Pt,x is as in (3).

The following existence issue can arise:

Q1 Does a control plan exist that is globally tail-optimal for some stochastic optimal control

problem?

The answer is positive, when considering the special case of linear stochastic optimal control

problems.
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2.5 Special case: tail optimality for linear problems

If U3(·) is linear and the problem is linear as in (4), then dynamic programming is applicable. By

dynamic programming, in order to approach Problem PL
t0,x0

one should:6

• consider the more general problem to be solved at time t with wealth x, Problem PL
t,x, that

is obtained by replacing t0 with t and x0 with x in Problem PL
t0,x0

and Equation (4):

Problem PL
t,x :

supu∈U JL(t, x, u) = supu∈U Et,x

[´ T
t
U1(s,Xs, us)ds+ U2(XT )

] (9)

for (t, x) ∈ [t0, T ]× R;

• write and solve (if possible) the associated Hamilton-Jacobi-Bellman (HJB) equation to find

the value function

V (t, x) = sup
u∈U

JL(t, x, u),

and the optimal control law

u∗
t,x : [t, T ]× R → R

as the maximizing control of the HJB equation.

Once Problem PL
t,x is solved, the initial problem PL

t0,x0
is also retrieved as a special case by re-

placing (t, x) with (t0, x0). In this standard case, the Bellman’s optimality principle holds: quite

remarkably, and contrary to what observed in Remark 2 for the general case, the optimal control

plan u∗
t0,x0

is optimal not only on [t0, T ] but also on every subinterval [τ, T ] with τ > t0 for the

continuation problem starting from τ , PL
τ,xτ

. This is the well-known Bellman’s optimality principle

(see Bertsekas, 2012). This means that the optimal strategy for the continuation problem PL
τ,xτ

at time τ with current wealth xτ coincides with the restriction on [τ, T ] of the optimal strategy

found at initial time t0 (i.e., with the continuation strategy at τ):

argmaxu∈UJ
L(τ, xτ , u) = {u∗

τ,xτ
(s, y)}(s,y)∈[τ,T ]×R = {u∗

t0,x0
(s, y)}(s,y)∈[τ,T ]×R. (10)

6For brevity, we omit all details and refer the interested reader to classical sources, e.g., Yong & Zhou (1999),
Björk (1998).
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Because this happens for every τ ∈ [t0, T ] and every xτ ∈ R, the optimal control law is the same

regardless of the initial time-wealth point, and with some abuse of notation,7 we shall simply

denote it by u∗(s, y):

u∗
τ,xτ

(s, y) = u∗
t0,x0

(s, y) = u∗(s, y). (11)

This equality shows that for a linear problem the optimal control plan does not depend on

the initial time-wealth point (t, x): it is simply a function of time s ∈ [t0, T ] and wealth y ∈ R.
Therefore, the infinitely many optimal control plans u∗

t,x(s, y) of the continuation problems PL
t,x

can be identified by the infinitely many restrictions of the control plan u∗ : [t0, T ] × R → R for

each (t, x) ∈ [t0, T ]× R

u∗
t,x(s, y) = u∗(s, y) for (s, y) ∈ [t, T ]× R.

Given Definition 2.2 and the validity of the Bellman’s optimality principle for linear problems,

we can now state the following known result, that answers question Q1.

Proposition 2.3. Given the linear problem PL
t0,x0

as in (4), the optimal control plan

u∗ : [t0, T ]× R → R

found via dynamic programming is globally tail-optimal over [t0, T ] for Problem PL
t0,x0

.

This proposition is nothing but a rephrasing of the Bellman’s optimality principle (see Bert-

sekas, 2012) for stochastic optimal control problems in continuous time.

3 Preferences consistency of an agent

While the notion of global tail optimality is not new and essentially coincides with the Bellman’s

principle, the notion of preferences consistency for an intertemporal optimization problem deserves

special care. As mentioned in Section 1, the link between the agent’s preferences and a time-

consistent behaviour have been addressed in some papers in decision theory economic literature:

7The maximum domain of the control plan u∗(s, y) is [t0, T ] × R, whereas the domain of the optimal control
plan of the continuation problem PL

τ,xτ
is restricted to [τ, T ]× R.
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see Johnsen & Donaldson (1985), Epstein & Le Breton (1993), Chew & Epstein (1990). The

mentioned works consider choices among lotteries in a discrete framework, whereas in this paper

we consider an intertemporal optimization problem in continuous time. In this setup, we provide

a novel definition of preferences consistency.

As in Section 2.2, imagine an agent who sits at initial time t0 with wealth x0, and optimizes

over the time horizon [t0, T ] with preferences identified by the utility functions U1, U2 and U3 (see

also Remark 1). She then wants to solve the initial optimization problem Pt0,x0 as in (2). In this

paper we disregard the case of time-varying preferences: we here make the assumption that she

does not change her preferences over time and that her preferences are represented by U1, U2 and

U3 also over [t, T ] for any t ∈ (t0, T ]. Therefore, no matter what happens between t0 and t > t0,

we assume that the agent at time t > t0 with wealth xt will be solving the continuation problem

Pt,xt as in (3), because of unchanged preferences. Intuitively, if this happens, we will say that the

agent is preferences-consistent.

In particular, we will say that the agent who was solving Problem Pt0,x0 driven by {U1, U2, U3}
at initial time t0 is preferences-consistent at time t > t0 if the action that she plays at time

t optimizes the continuation problem Pt,xt , still driven by {U1, U2, U3}. It is evident that the

notion of preferences consistency at time t needs a reference point, that consists in the initial

preferences {U1, U2, U3} at time t0.

The notion of local preferences consistency is formalized by the following definition.

Definition 3.1 (Local preferences consistency). An agent whose initial preferences at time t0 are

described by the optimization problem Pt0,x0 as in (2) is locally preferences-consistent at t

with respect to Pt0,x0, where t > t0 is fixed, if for every x ∈ R the current control action that she

chooses at time t with wealth x coincides with the first control action of the tail-optimal control

plan of the continuation problem Pt,x as in (3), i.e., if at time t with wealth x she chooses u∗
t,x(t, x),

where u∗
t,x(s, y) (for (s, y) ∈ [t, T ]× R) is the tail-optimal control plan for Pt,x:

J(t, x, u∗
t,x) = sup

u∈U
J(t, x, u).

In other words, being a locally preferences-consistent agent at t means being instantaneously

optimal for the continuation problem Pt,x. Notice that the local preferences consistency at time t

implies only that for every wealth x the agent plays the optimal control action for Pt,x at time t,

12



but does not mean that she will continue to play the optimal plan u∗
t,x(s, ·) also for s > t.

Quite naturally, if an agent is locally preferences-consistent at t for every t in a given interval,

she is globally preferences-consistent over the interval. The notion of global preferences consistency

is formalized by the following definition.

Definition 3.2 (Global preferences consistency). An agent whose initial preferences at time t0 are

described by the optimization problem Pt0,x0 as in (2) is globally preferences-consistent over

[t0, T ] with respect to Pt0,x0 if she is locally preferences-consistent at t with respect to Pt0,x0 for

every t ∈ [t0, T ].

Definition 3.2 has a strong connection with Definition 2 of dynamical optimality given by

Pedersen & Peskir (2017) in the case of mean-variance preferences. Roughly speaking, according

to their definition, a control is dynamically optimal if, for every fixed t and x, it coincides with

the first control of the optimal strategy at (t, x). While Pedersen & Peskir (2017) focus on the

control strategy and its instantaneous optimality, we here stress the importance of the consistency

of the agent to her initial preferences, that are described by the original optimization problem

Pt0,x0 . The link between the two definitions will become clear in Section 4, where we show that

the dynamically optimal agent is globally preferences-consistent.

As in the case of global tail optimality, the following existence issue can arise:

Q2 Does an agent exist who is globally preferences-consistent over a time interval [t0, T ] with

respect to some initial preferences?

The answer is again positive, by considering again the special case of the agent of a linear

stochastic optimal control problem.

3.1 Special case: preferences consistency for linear problems

Let us assume that the original preferences of the agent are identified by the linear problem PL
t0,x0

as in (4). Then, the agent can apply dynamic programming as explained in Section 2.5 to solve

it and find the optimal control plan u∗
t0,x0

: [t0, T ] × R → R. Imagine that the agent plays the

optimal control u∗
t0,x0

(s,Xs) over [t0, T ]. Then, because of the Bellman’s optimality principle and

equation (10), it turns out that at time τ with wealth xτ she plays exactly the first control action
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of the tail-optimal control plan of the continuation problem PL
τ,xτ

. This means that the agent is

preferences-consistent at time τ > t0 with respect to her original preferences identified by PL
t0,x0

.

Because this happens at every time τ ∈ [t0, T ] we conclude that the agent is globally preferences-

consistent over [t0, T ] with respect to the original problem PL
t0,x0

.

This result is formalized by the following proposition, that answers question Q2.

Proposition 3.3. Let the preferences of an agent be identified by the linear problem PL
t0,x0

. If the

agent plays the optimal control plan u∗
t0,x0

(s,Xs) = u∗(s,Xs) over [t0, T ], where u∗(·) is found via

dynamic programming, then she is globally preferences-consistent over [t0, T ] with respect to PL
t0,x0

.

4 Non-linear problems

Propositions 2.3 and 3.3 show that in the ideal world of linear problems where dynamic program-

ming can be applied, the two desirable features of global tail optimality of the control plan and

global preferences consistency of the agent take place simultaneously. The coexistence of global

tail optimality and global preferences consistency is a consequence of the validity of the Bellman’s

principle and the applicability of dynamic programming.

The situation becomes more complicated in the case of non-linear problems, when the bequest

function includes also a non-linear function of expected final wealth.8 In this case, the non-

applicability of dynamic programming and the non-validity of the Bellman’s principle prevent the

simultaneous occurrence of global tail optimality and global preferences consistency.

Let us suppose that an agent wants to solve the non-linear problem PNL
t0,x0

as in (5), where

U3(·) is a non-linear utility function.

It is well known (see Björk &Murgoci, 2010) that the presence of the non-linear term U3 [Et0,x0(XT )]

prevents the straight use of dynamic programming. According to the current literature, this prob-

lem gives rise to time inconsistency, and there are different approaches to deal with it. We will see

that none of the existing approaches keeps simultaneously both properties of global tail optimality

and global preferences consistency. Nevertheless, it is possible to analyze them and see what are

the properties characterizing each of them.

8In a standard expected utility linear problem (4) the bequest function is given by U2 only. In the general
problem (2) the bequest function includes also U3.
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The three approaches currently available for the non-linear problem PNL
t0,x0

are:

1. precommitment approach;

2. dynamic optimality approach;

3. consistent planning (also known as game theoretical, or Nash-equilibrium) approach.

4.1 Precommitment approach

To solve the non-linear problem PNL
t0,x0

with the precommitment approach, one fixes the initial

point (t0, x0) and finds, if it exists, the control law û that maximizes only JNL(t0, x0, u), i.e., the

precommitment strategy. This is formalized by the following definition.

Definition 4.1. Given the non-linear problem PNL
t0,x0

as in (5), the strategy û that maximizes

JNL(t0, x0, u), i.e., the control plan

ût0,x0 : [t0, T ]× R → R (12)

such that

JNL(t0, x0, ût0,x0) = sup
u∈U

JNL(t0, x0, u)

if it exists, is called the precommitment strategy for PNL
t0,x0

.

Because in these kinds of problems dynamic programming cannot be applied and the Bellman’s

principle does not hold, by adopting ût0,x0 one disregards the fact that at a later point in time

τ ∈ (t0, T ] with wealth xτ the continuation plan ût0,x0(s, y) at τ (for (s, y) ∈ [τ, T ] × R), is, in
general, not optimal for the continuation criterion JNL(τ, xτ , u). In other words,

argmaxu∈UJ
NL(τ, xτ , u) = {ûτ,xτ (s, y)}(s,y)∈[τ,T ]×R ̸= {ût0,x0(s, y)}(s,y)∈[τ,T ]×R, (13)

while there would be equality with validity of the Bellman’s principle, see Equation (10). In other

words, the precommitment strategy for PNL
t0,x0

(12) depends essentially on the initial point (t0, x0).

This is the reason why the strategy is named precommitment strategy: the precommitted agent

standing at time t0 should “precommit” herself to follow the strategy ût0,x0(s, y) from t0 to T , even
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if she knows that at later point in time τ she will still be solving the original problem PNL
t0,x0

, but

not the continuation problem PNL
τ,xτ

. Indeed, due to (13), the control action that the precommitted

agent plays at every time τ > t0 is, in general, not equal to the first optimal control action for the

continuation problem PNL
τ,xτ

. Therefore, the precommitted agent is locally preferences-consistent

at time t0 with respect to PNL
t0,x0

(because at time t0 she plays ût0,x0(t0, x0) that is the first action of

the optimal plan for PNL
t0,x0

), but, in general, is not preferences-consistent at any time τ > t0 with

respect to PNL
t0,x0

. Supported by Definition 3.1, we can formalize this result in the next proposition.

Proposition 4.2. Let the preferences of an agent be identified by the non-linear problem PNL
t0,x0

as

in (5), and let us assume that there exists the precommitment strategy ût0,x0 for Problem PNL
t0,x0

. If

the agent plays the precommitment strategy ût0,x0(s,Xs) over [t0, T ], then she is locally preferences-

consistent at t0 with respect to PNL
t0,x0

.

Let us now turn to the feature of local and global tail optimality of the control plan. By

Definitions 2.1 and 4.1, it is clear that, if it exists, the precommitment strategy is locally tail-

optimal at initial time t0 for Problem PNL
t0,x0

.

Proposition 4.3. Given the non-linear problem PNL
t0,x0

as in (5), the precommitment strategy ût0,x0

given by (12), if it exists, is locally tail-optimal at t0 for PNL
t0,x0

.

Local tail optimality at initial time t0 of the control plan and local preferences consistency at

initial time t0 of the precommitted agent is all that the precommitment approach can offer. In

general, for a non-linear problem the precommitment strategy ût0,x0 is not globally tail-optimal

and the precommitted agent is not globally preferences-consistent. While a proof of this result in

general is far from trivial, this can be easily proven in the important case of the mean-variance

portfolio selection problem, see Section 6.

Clearly, the precommitment strategy is the best strategy standing at time t0 with the aim

of optimizing JNL(t0, x0, u), see also Vigna (2020). The problem of precommitment is about

preferences inconsistency after t0: the precommitted agent only cares about initial time t0 and

final time T , disregarding that she will be preferences-inconsistent at any time t ∈ (t0, T ). In other

words, the precommitment approach is closer in spirit to the single-period Markowitz framework

than to the dynamic continuous-time setup: only t0 and T matter, what happens at any time

t ∈ (t0, T ) does not matter. The interval (t0, T ) goes into a black box and the agent is consistent
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to her own preferences only at initial time t0. In this respect, the name “static” given by some

authors to identify the precommitment strategy (Pedersen & Peskir, 2017) or the optimization

problem as defined in (t0, x0) only (Karnam, Ma & Zhang, 2017), could not be more appropriate.

4.2 Dynamic optimality approach

We illustrate the construction of the dynamically optimal strategy introduced by Pedersen &

Peskir (2017) for a non-linear problem PNL
t0,x0

in 4 steps.9

Step 1. A family of non-linear problems {PNL
t,x }(t,x)∈[t0,T ]×R, with PNL

t,x as in (3), is given.

Step 2. Assume that for the initial time-wealth point (t0, x0) the precommitment strategy ût0,x0

maximizing the criterion JNL(t0, x0, u) exists and is given by (12).

Step 3. Define the new control plan

ũ(s, y) = ûs,y(s, y), for (s, y) ∈ [t0, T ]× R, (14)

where the right hand side of (14) is obtained by replacing t0 with s and x0 with y in the function

(12).

Step 4. The strategy ũ : [t0, T ]× R → R, is called the dynamically optimal strategy.10

Remark 3. Unlike the precommitment strategy (12), the dynamically optimal strategy (14) does

not depend on the initial time-wealth point: it is a simple function of time s ∈ [t0, T ] and wealth

y ∈ R. In this respect, it looks similar to the optimal control plan of a linear optimization problem

u∗ as in (11). For this reason, the dynamically optimal strategy is known to be time-consistent

(see Pedersen & Peskir, 2017).

Let us analyze the preferences consistency of the dynamically optimal agent.

By construction, at generic time t ∈ [t0, T ] with wealth x the dynamically optimal agent faces

the problem PNL
t,x and solves it with the precommitment approach for PNL

t,x , as if (t, x) was the initial

9Pedersen & Peskir (2017) introduce the dynamically optimal strategy in order to solve the mean-variance
portfolio selection problem. Clearly, their approach can be extended to any non-linear problem PNL

t0,x0
.

10As a practical example of the construction of the dynamically optimal policy from the precommitment one as
illustrated by Equation (14), we refer to the mean-variance portfolio selection case in Section 6: the dynamically
optimal policy (25) is derived by replacing (t0, x0) with (s, y) in the precommitment policy (24).
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time-wealth point. In fact, she plays the first control action of the precommitment strategy for

PNL
t,x , for she plays ût,x(t, x). Because the initial preferences of the agent are given by Problem PNL

t0,x0

and because at time t she plays the first control action of the optimal strategy for the continuation

problem PNL
t,x , by definition she is locally preferences-consistent at time t with respect to PNL

t0,x0
.

This happens for every t ∈ [t0, T ], and therefore she is globally preferences-consistent over [t0, T ]

with respect to PNL
t0,x0

.

This result is formalized by the next proposition, that, together with Proposition 3.3, also

answers question Q2.

Proposition 4.4. Let the preferences of an agent be identified by the non-linear problem PNL
t0,x0

as in (5), and let us assume that there exists the precommitment strategy ût0,x0 for PNL
t0,x0

. If the

agent plays the dynamically optimal strategy ũ(s,Xs) over [t0, T ], then she is globally preferences-

consistent over [t0, T ] with respect to PNL
t0,x0

.

Remark 4. Regarding the relationship between precommitment approach and dynamically optimal

approach, we see that by construction at each t ∈ [t0, T ] with wealth x the control action of the

dynamically optimal strategy ũ(t, x) coincides with the first control action of the precommitment

strategy for PNL
t,x , i.e., it coincides with the first control action of the control plan ût,x(s, y) ((s, y) ∈

[t, T ]×R) selected by the agent who wants to solve PNL
t,x with the precommitment approach. But

it deviates from it immediately after, at time t′ = t + dt, because at time t′ with wealth x′ the

dynamically optimal strategy coincides with the first control action of the precommitted strategy

for PNL
t′,x′ . Therefore, the dynamically optimal agent can be seen as the continuous reincarnation of

the precommitted agent. Moreover, even if this strategy has been formalized and deeply studied

by Pedersen & Peskir (2017), the dynamically optimal agent is similar to the continuous version of

the naive agent described by Pollak (1968). We notice that the dynamically optimal naive agent

is the only one to be globally preferences-consistent in the presence of a non-linear optimization

problem. Moreover, the dynamically optimal approach has strong similarities with the receding

horizon procedure or the model predictive control (see Powell, 2011), that are well established

methods of repeated optimization over a rolling horizon for engineering optimization problems

with an infinite time horizon (although in the problem considered in this paper the time interval

over which the optimization is done shrinks when time passes, while it remains fixed in those

problems).
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Let us now turn to the question of tail optimality of the dynamically optimal strategy.

From Definition 2.1, we see that a control plan is locally tail-optimal at time t for an optimiza-

tion problem if, whenever played from t to the time horizon T , it reaches the supremum of the

performance criterion. The dynamically optimal strategy is a collection of infinitely many first

optimal control actions for infinitely many problems. As such, there is no problem for which it

is locally tail-optimal at time t. Indeed, as Pedersen & Peskir (2017) notice, the control plan ũ

is instantaneously optimal at each t ∈ [t0, T ], so it is instantaneously optimal for infinitely many

non-linear problems. Therefore, unlike the precommitment strategy that is locally tail-optimal at

the initial time point t0 —and only at t0— for PNL
t0,x0

, there exists no such t ∈ [t0, T ] that makes

the dynamically optimal strategy locally tail-optimal at t for PNL
t,x .

4.3 Consistent planning, game theoretical, Nash equilibrium approach

According to the consistent planning approach, in order to solve the non-linear problem PNL
t0,x0

, one

should choose “the best plan among those that he will actually follow”. The construction of this

strategy is based on the game theoretic interpretation that to each point in time t is associated a

player who can choose the control at time t. At time s > t there is another player who chooses the

control at time s. The key of this approach is to search for a Nash subgame perfect equilibrium

among the continuum of players [t0, T ]. A strategy u is an equilibrium strategy if, given that all

players in (t, T ] will play u then also player t finds it optimal to play u. The equilibrium strategy is

found by solving an extended Hamilton-Jacobi-Bellman equation for the value function, see Björk

& Murgoci (2010). Like the optimal control law of a linear problem, the Nash equilibrium strategy

u does not depend on the initial time-wealth point and is a function of time s and wealth y only:

u : [t0, T ]× R → R. (15)

This is the reason why it is known to be time-consistent.

Notably, Björk & Murgoci (2010) also prove that to each time-inconsistent non-linear problem

PNL
t0,x0

it is possible to associate a standard time-consistent linear problem PL−ass−NL
t0,x0

such that (i)

the optimal value function of the linear problem is equal to the equilibrium value function of the

time-inconsistent non-linear problem; (ii) the optimal control law of the linear problem is equal to

the equilibrium strategy of the time-inconsistent non-linear problem, see Björk & Murgoci (2010),
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Proposition 5.1.

This remarkable result implies that there exist utility functions U4(·) and U5(·) (not necessarily
easy to find) such that the Nash equilibrium strategy u associated to the non-linear problem PNL

t0,x0

coincides with the optimal control law found via dynamic programming solution to the linear

problem

Problem PL−ass−NL
t0,x0

:

supu∈U Et0,x0

[´ T
t0
U4(s,Xs, us)ds+ U5(XT )

]
.

(16)

For instance, in the case of the mean-variance preferences, where U1(x) = 0, U2(x) = x− αx2

and U3(x) = αx2, it is easy to show that U4(x) = 0 while U5(·) is the exponential utility function,

see Section 6.

We use this important result to analyze the consistent planning approach under the two criteria

of tail optimality of the control plan and preferences consistency of the agent.

By noting that the Nash equilibrium control plan u coincides with the optimal control plan of

the associated linear problem PL−ass−NL
t0,x0

, using Proposition 2.3 it is straightforward to conclude

that the Nash equilibrium control plan is globally tail-optimal for Problem PL−ass−NL
t0,x0

, which is

the result of the next proposition.

Proposition 4.5. Given the non-linear problem PNL
t0,x0

as in (5), and given the linear problem

PL−ass−NL
t0,x0

as in (16) associated to the non-linear problem PNL
t0,x0

in the sense of Proposition 5.1

of Björk & Murgoci (2010), the control plan

u : [t0, T ]× R → R (17)

that is the equilibrium strategy of PNL
t0,x0

found via the consistent planning approach, is globally

tail-optimal over [t0, T ] for the linear problem PL−ass−NL
t0,x0

.

Similarly, using Proposition 3.3 it is immediate to conclude that the agent who plays the

Nash equilibrium strategy over [t0, T ] is globally preferences-consistent over [t0, T ] with respect to

Problem PL−ass−NL
t0,x0

, which is the result of the next proposition.

Proposition 4.6. Let the preferences of an agent be identified by the non-linear problem PNL
t0,x0

as

in (5), and let us assume that there exists the Nash equilibrium strategy u for PNL
t0,x0

. If the agent
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plays u(s,Xs) over [t0, T ], then she is globally preferences-consistent over [t0, T ] with respect to the

linear problem PL−ass−NL
t0,x0

associated to PNL
t0,x0

in the sense of Proposition 5.1 of Björk & Murgoci

(2010).

To sum up, the consistent planning agent is globally preferences-consistent with respect to the

associated linear problem, and she plays a strategy that is globally tail-optimal for the associated

linear problem. In general, she is not preferences-consistent to her original non-linear preferences

and the plan that she plays is not tail-optimal for the original non-linear problem.

Regarding their surprising result in Proposition 5.1, Björk & Murgoci (2010) comment that

there is no gain by enlarging the class of consumer behaviour to time-inconsistent preferences,

because every time-inconsistent strategy can be replicated by some time-consistent utility func-

tion. We comment on this result from a different angle. For a non-linear problem PNL
t0,x0

the Nash

equilibrium approach is equivalent to applying the solution to the associated linear problem (16).

This means that in order to be time-consistent in the consistent-planning sense, the agent has

to choose a different objective functional, in other words, different preferences, see also Forsyth

(2020). For the mean-variance problem, the agent who chooses the Nash-equilibrium approach

applies a strategy that is optimal according to a different criterion than the mean-variance one,

namely the exponential preferences. The price to be paid in order to be time-consistent in the

consistent-planning sense consists in changing preferences. As mentioned in Section 1, the pref-

erences inconsistency of the Nash equilibrium agent was already observed by Chew & Epstein

(1990) who write: “The equilibrium represents a time-consistent form of behaviour, even though

preferences are not intertemporally consistent”.

4.4 Discussion

In the previous sections we have showed that each of the three approaches currently available for a

non-linear dynamic optimization problem PNL
t0,x0

presents only some of the two desirable properties

of tail optimality and preferences consistency.

By Propositions 4.2 and 4.3, the precommitted agent is locally preferences-consistent at time

t0 with respect to her initial preferences given by Problem PNL
t0,x0

, and the precommitment strategy

is locally tail-optimal at t0 for Problem PNL
t0,x0

. Therefore, the precommitment apprach keeps local

tail optimality and local preferences consistency at initial time t0.
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By Proposition 4.4, the dynamically optimal agent is globally preferences-consistent with re-

spect to her initial preferences given by Problem PNL
t0,x0

.

By Propositions 4.5 and 4.6, the Nash equilibrium strategy is globally tail-optimal for the

linear problem that is associated to Problem PNL
t0,x0

, and the Nash equilibrium agent is globally

preferences-consistent with respect to the linear problem that is associated to Problem PNL
t0,x0

.

In general, the precommitment strategy is never locally tail-optimal at time t > t0 for the

original problem PNL
t0,x0

and the precommitted agent is never locally preferences-consistent at time

t > t0 with respect to the original problem PNL
t0,x0

. In general, the dynamically optimal strategy is

never tail-optimal, not even locally, for the original problem PNL
t0,x0

. In general, the Nash equilib-

rium strategy is never tail-optimal, not even locally, for the original problem PNL
t0,x0

and the Nash

equilibrium agent is never preferences-consistent, not even locally, with respect to the original

problem PNL
t0,x0

.

5 On global tail optimality and linearity

The lack of local tail optimality for t > t0 of the three strategies analyzed above seems to suggest

that a globally tail-optimal strategy does not exist if the problem is non-linear. In other words,

one may think that if a globally tail-optimal strategy exists, then the problem must be linear.

This is indeed the case if the objective function includes a convex function U3(·) of expected final

wealth: this result is proven in Theorem 5.2 below, which – for convex functions – is the converse

of Proposition 2.3.

Throughout this section, we shall work in the setting introduced in Section 2.1 and we shall

also add the following technical assumption on the nature of the control plan u given a convex

function h:

Assumption 5.1. Let Xu
t be a controlled diffusion as in Section 2.1, where u ∈ U . Let h : R → R

be a convex function, and let Ih ⊂ R be the set where h is strictly convex. We will say that the

control plan u satisfies this assumption with the function h if either (i) Ih = ∅, or (ii) by setting

Y u
t := E[Xu

T |Ft], we have Supp(Y u
t′ |Ft) ∩ Ih ̸= ∅ for all t0 ≤ t < t′ ≤ T .

Remark 5. This assumption, which will be used to prove Lemma 5.3, holds for instance if either
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Ih = R or Supp(Y u
t′ |Ft) = R. The former will be the case of the mean-variance portfolio selection

problem, see Section 6.

Theorem 5.2. In the setting of Section 2.1, consider the optimization problem

Problem Pt0,x0 :

supu∈U J(t0, x0, u) = supu∈U

{
Et0,x0

[´ T
t0
U1(s,Xs, us)ds+ U2(XT )

]
+ U3 [Et0,x0(XT )]

}
,

where U3(·) is a convex function. Suppose that the control plan

u∗
t0,x0

: [t0, T ]× R → R

is globally tail-optimal over [t0, T ] for Problem Pt0,x0 and satisfies Assumption 5.1 with h = U3.

Then, U3(x) = ax + b for some a, b ∈ R, and the problem Pt0,x0 is linear. Moreover, the precom-

mitment strategy, the dynamically optimal strategy and the Nash equilibrium strategy coincide.

In order to prove Theorem 5.2 we need the following lemma.

Lemma 5.3. Let Xu
t be a scalar diffusion process as in Section 2.1 and let {us}s∈[t0,T ] satisfy

Assumption 5.1 with the convex function h : R → R. If h(·) is non-affine, then there are two

times t0 ≤ t < t′ ≤ T such that, conditional on Ft:
11

h (E [Xu
T |Ft]) < E [h (E [Xu

T |Ft′ ]) | Ft] (18)

Proof. Let

Y u
t =: E [Xu

T |Ft] (19)

If h is strictly convex, for any two times t0 ≤ t < t′ ≤ T , by the Jensen’s inequality we have that,

conditional on Ft

h(E[Y u
t′ |Ft]) < E[h(Y u

t′ )|Ft] (20)

However Y u
t is a martingale, therefore

h(E[Y u
t′ |Ft]) = h(E[Xu

T |Ft])

11By “conditional on Ft” we mean outside the sets with zero conditional probability.
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Thus, for every two times t0 ≤ t < t′ ≤ T , conditional on Ft

h(E[Xu
T |Ft]) < E[h(E[Xu

T |Ft′])|Ft] (21)

that is (18). Let now h be convex but not strictly convex and not affine. Then there exists a set

Ih ⊂ R s.t. h is strictly convex on Ih. By Assumption 5.1 for any t0 ≤ t < t′ ≤ T conditional

on Ft the random variable Y u
t′ = E[Xu

T |Ft′ ] has support with non-empty intersection with Ih, i.e.

Supp(Y u
t′ |Ft) ∩ Ih ̸= ∅. Then, in this case, conditional on Ft,

h(E[Y u
t′ |Ft]) < E[h(Y u

t′ )|Ft]

meaning that (18) holds.

We can now prove Theorem 5.2.

Proof of Theorem 5.2. See the Appendix. �

Remark 6. Theorem 5.2 is proven for U3 being a convex function. It is also possible to prove a

weaker version of the theorem for U3 concave. However, for concave functions Assumption 5.1

should be satisfied not only by the globally optimal control plan but also by all the admissible

control plans belonging to U . In this paper, we have preferred to present the stronger version of

the theorem, that is also consistent with the classical example of non-linear problem in finance,

namely, the mean-variance portfolio selection problem, that is the subject of the next section.

6 A notable example: the mean-variance problem

To better illustrate the theoretical results of the previous sections, we analyze a notable case

example, the mean-variance portfolio selection problem, that is probably the most famous example

of a non-linear time-inconsistent problem in finance. Its time inconsistency is due to the presence

of the variance of final wealth in the performance criterion.

In the simplest framework, the mean-variance problem can be formalized as follows.
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6.1 Formulation of the mean-variance portfolio selection problem

An investor has a wealth x0 > 0 at time t0, and wants to solve a portfolio selection problem on

the time horizon [t0, T ]. The financial market is the Black-Scholes model (see e.g. Björk (1998)):

it consists of two assets, a riskless one, whose price B(t) follows the dynamics:

dB(t) = rB(t)dt,

where r > 0, and a risky asset, whose price dynamics S(t) follows a geometric Brownian motion

with drift λ ≥ r and volatility σ > 0:

dS(t) = λS(t)dt+ σS(t)dW (t),

where W (t) is a standard Brownian motion defined on a filtered probability space (Ω,F , {Ft},P),

with Ft = σ{W (s) : s ≤ t} the natural filtration. The proportion of portfolio invested in the risky

asset at time t is denoted by u(t). The fund at time t under control u, Xu(t), grows according to

the following SDE:

dXu(t) = Xu(t) [u(t)(λ− r) + r] dt+Xu(t)u(t)σdW (t),

Xu(t0) = x0.
(22)

The investor is a mean-variance agent and her aim is to solve the problem

Problem PMV
t0,x0

:

sup
u∈U

JMV (t0, x0, u) = sup
u∈U

{Et0,x0(X
u(T ))− αVt0,x0(X

u(T ))} , (23)

where α > 0 and where V(·) is the variance operator. It is easy to see that Problem (23) is a

non-linear problem as in (5) with U1(x) = 0, U2(x) = x− αx2 and U3(x) = αx2.

By the results in Section 4, there are three approaches for the mean-variance problem: (i)

precommitment, (ii) dynamic optimality, and (iii) consistent planning.
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The precommitment strategy ût0,x0 is (see Zhou & Li, 2000):

ût0,x0(s, y) =
δ

σy

[
x0e

r(s−t0) − y +
1

2α
eδ

2(T−t0)−r(T−s)

]
, for (s, y) ∈ [t0, T ]× R, (24)

where δ = (λ− r)/σ.

The dynamically optimal policy ũ is (see Pedersen & Peskir, 2017):

ũ(s, y) =
δ

σy

1

2α
e(δ

2−r)(T−s), for (s, y) ∈ [t0, T ]× R. (25)

The consistent planning, Nash equilibrium policy u is (see Basak & Chabakauri, 2010, and

Björk & Murgoci, 2010):

u(s, y) =
δ

σy

1

2α
e−r(T−s), for (s, y) ∈ [t0, T ]× R. (26)

6.2 Tail optimality and preferences consistency for mean-variance

In order to discuss tail optimality and preferences consistency for the three approaches to the

mean-variance problem, we need to define the family of mean-variance problems

{PMV
t,x }(t,x)∈[t0,T ]×R

where
Problem PMV

t,x :

supu∈U JMV (t, x, u) = supu∈U {Et,x(X
u(T ))− αVt,x(X

u(T ))} .

We can now prove the results mentioned in Section 4.4 for the mean-variance problem.

Proposition 6.1. (i) For every (t, x) ∈ (t0, T ]× R, the precommitment strategy

ût0,x0(s, y) =
δ

σy

[
x0e

r(s−t0) − y +
1

2α
eδ

2(T−t0)−r(T−s)

]
, for (s, y) ∈ [t, T ]× R, (27)

given by the restriction of (24) to [t, T ]× R, is not locally tail-optimal at t for PMV
t,x .

(ii) The precommitted investor who adopts the precommitment strategy ût0,x0(s,Xs) (where û
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is given by (24)) over [t0, T ] is not locally preferences-consistent at t with respect to PMV
t0,x0

for any

t ∈ (t0, T ].

Proof. (i) Let (t, x) ∈ (t0, T ) × R. By Definition 4.1 and Equation (24), the control plan that

maximizes JMV (t, x, u) is given by

ût,x(s, y) =
δ

σy

[
xer(s−t) − y +

1

2α
eδ

2(T−t)−r(T−s)

]
, for (s, y) ∈ [t, T ]× R. (28)

Because ût0,x0(s, y) ̸= ût,x(s, y) for (s, y) ∈ [t, T ] × R, the precommitment strategy (27) is not

locally tail-optimal at t for PMV
t,x .

(ii) The precommitted investor who adopts the precommitment strategy ût0,x0(s, y) over [t0, T ],

at time t with wealth x plays ût0,x0(t, x). In order to be locally preferences-consistent with respect

to PMV
t0,x0

she should play the first control action of the control plan ût,x(s, y) given by (28). Because

ût0,x0(t, x) ̸= ût,x(t, x), the precommitted investor is not locally preferences-consistent at t with

respect to PMV
t0,x0

.

Proposition 6.2. For every (t, x) ∈ [t0, T ]× R, the dynamically optimal strategy

ũ(s, y) =
δ

σy

1

2α
e(δ

2−r)(T−s) for (s, y) ∈ [t, T ]× R,

given by the restriction of (25) to [t, T ]× R, is not locally tail-optimal at t for PMV
t,x .

Proof. Let (t, x) ∈ [t0, T ]×R. By Definition 4.1 and Equation (24), the control plan that maximizes

JMV (t, x, u) is given by (28).

At time t with wealth x the dynamically optimal control action coincides with the optimal

control action of (28): ũ(t, x) = ût,x(t, x). However, after time t there is no longer coincidence

between dynamically optimal strategy and optimal control plan (28): for (s, y) ∈ (t, T ) × R,
ũ(s, y) = ûs,y(s, y) ̸= ût,x(s, y). Hence, the dynamically optimal strategy is not locally tail-optimal

at t for PMV
t,x .

Proposition 6.3. (i) For every (t, x) ∈ [t0, T ]× R, the Nash equilibrium strategy

u(s, y) =
δ

σy

1

2α
e−r(T−s) for (s, y) ∈ [t, T ]× R, (29)
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given by the restriction of (26) to [t, T ]× R, is not locally tail-optimal at t for PMV
t,x .

(ii) The Nash equilibrium investor who adopts the Nash equilibrium strategy u(s,Xs) over [t0, T ]

is not locally preferences-consistent at t with respect to PMV
t0,x0

for any t ∈ [t0, T ].

Proof. (i) Let (t, x) ∈ [t0, T ] × R. By Definition 4.1 and Equation (24), the control plan that

maximizes JMV (t, x, u) is given by (28).

Because u(s, y) ̸= ût,x(s, y) for (s, y) ∈ [t, T ] × R, the Nash equilibrium strategy (29) is not

locally tail-optimal at t for PMV
t,x .

(ii) The Nash equilibrium investor who adopts the Nash equilibrium strategy u(s, y) over

[t0, T ], at time t with wealth x plays u(t, x). In order to be locally preferences-consistent with

respect to PMV
t0,x0

she should play the first control action of the control plan ût,x(s, y). Because

u(t, x) ̸= ût,x(t, x), the Nash equilibrium investor is not locally preferences-consistent at t with

respect to PMV
t0,x0

.

Remark 7. Proposition 6.3 is a rigorous example of the remark written by Chew & Epstein (1990)

on the fact that the Nash equilibrium approach leads to a time-consistent form of behaviour, but is

driven by preferences that are not intertemporally consistent. As mentioned in the Introduction,

this proposition sheds also further light on some of the criticisms to the game theoretical approach

to the mean-variance problem appeared in the literature, e.g. Wang & Forsyth (2011), Bensoussan

et al. (2019) and Forsyth (2020).

As mentioned in Section 4, the linear optimization problem associated to the mean-variance

problem in the sense of Proposition 5.1 of Björk & Murgoci (2010) is well known. Indeed, the

optimal solution to the linear stochastic optimal control problem

Problem PL−ass−MV
t0,x0

: sup
u∈U

Et0,x0

[
− 1

2α
e−2αXT

]
(30)

coincides with the Nash-equilibrium strategy (26) (see also Basak & Chabakauri, 2010, Remark

1, and Vigna, 2014, Remark 3). In other words, U4(x) = 0 and U5(x) = −1/(2α)e−2αx. There-

fore, Propositions 4.5 and 4.6 hold considering the linear problem (30) and its obvious version

PL−ass−MV
t,x at time t with wealth x.

Finally, the lack of local tail optimality for t > t0 of the three possible strategies for the

mean-variance problem implies that the precommitment, the dynamically optimal and the Nash-
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equilibrium strategies are not globally tail-optimal over [t0, T ] for the mean-variance problem PMV
t0,x0

.

This result, that is formalized in the following corollary, is an obvious consequence of Propositions

6.1, 6.2 and 6.3, but it can be proved also as a corollary of Theorem 5.2.

Corollary 6.4. The control plans

ût0,x0 : [t0, T ]× R → R,

ũ : [t0, T ]× R → R

and

u : [t0, T ]× R → R

given by (24), (25) and (26), respectively, are not globally tail-optimal over [t0, T ] for PMV
t0,x0

.

Proof. We provide two proofs.

First proof, as a corollary to Theorem 5.2. In Problem PMV
t0,x0

, U3(x) = αx2, thus U3 is convex

and Assumption 5.1 is trivially satisfied by the control plans ût0,x0 , ũ and u, because IU
3
= R.

Moreover, U3(·) is not in the form ax+b. Therefore, due to Theorem 5.2, none of the three control

plans is globally tail-optimal over [t0, T ] for P
MV
t0,x0

.

Second proof, as a corollary to Propositions 6.1, 6.2 and 6.3. Due to Propositions 6.1, 6.2 and 6.3,

none of the three control plans is locally tail-optimal at t for PMV
t,x for every t ∈ (t0, T ]. Therefore,

by definition, none of the three control plans is globally tail-optimal over [t0, T ] for P
MV
t0,x0

.

Not only the three control plans ût0,x0 , ũ and u are not globally tail-optimal over [t0, T ] for

PMV
t0,x0

. As a corollary of Theorem 5.2, there exists no control plan that is globally tail-optimal over

[t0, T ] for P
MV
t0,x0

.

Corollary 6.5. There exists no control plan that is globally tail-optimal over [t0, T ] for PMV
t0,x0

.

Proof. In Problem PMV
t0,x0

, U3(x) = αx2, thus U3 is convex and Assumption 5.1 is trivially satisfied

by every control plan, because IU
3
= R. Moreover, U3(·) is not in the form ax+ b. Therefore, due

to Theorem 5.2, there exists no control plan that is globally tail-optimal over [t0, T ] for P
MV
t0,x0

.

29



6.3 Further discussion on the mean-variance problem

In this paper the three approaches to the mean-variance portfolio selection problem have been

analyzed under the new perspective of tail optimality and preferences consistency. In previous

literature on mean-variance this comparison has been done by several authors exploiting differ-

ent ideas. The three alternatives turn out to be meaningfully different in economics terms, and

the choice among them can be driven by subjective factors, for example the distribution of final

wealth or the behaviour of the investment strategy. Some results from the current literature are

as follows.

An illuminating paper is van Staden, Dang & Forsyth (2021a), who assume that the agent is

agnostic about the philosophical differences underlying the three approaches and compare the dis-

tribution of terminal wealth with each approach by equating the expectation of final wealths; they

find that the precommitment final wealth has the lowest variance and the highest median value,

but this advantage comes at the cost of increased left tail risk for the investor, due to negative

skewness and large kurtosis; the game theoretical strategy produces lower variance of final wealth

than the dynamically optimal one, and dominates the dynamically optimal one from a first-order

stochastic order dominance when considering final wealth outcomes below the expected value.

The analysis performed by van Staden et al. (2021a) is done at initial time t0. A different angle is

taken by Vigna (2020), who compares the three approaches not only at initial time t0 but also at

every time t ∈ [t0, T ] with an intertemporal time-t-reward function that measures the happiness

of the agent at every intermediate time; she finds that, while the precommitment agent dominates

all the other agents if the relevant point of view is t0 only, there is a unique break even point

t∗ ∈ (t0, T ) such the Nash equilibrium agent beats the dynamically optimal one from t0 to t∗ and

is dominated by him from t∗ to T .

Another point of interest to the agent could be the investment strategy. A straight comparison

between (25) and (26) clearly shows that the dynamically optimal strategy is riskier than the Nash

equilibrium one. Menoncin & Vigna (2020) investigate the precommitment and the dynamically

optimal strategies in a defined contribution pension scheme; they find that on average the pre-

commitment portfolio contains less risky asset that the dynamically optimal one but the optimal

share invested in the risky asset is highly more volatile in the precommitment case than in the dy-

namically optimal case; moreover, they also find that under extreme scenarios for market returns
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the dynamically optimal strategy allows a more effective reaction to the market conditions, that

is consistent with the results of van Staden et al. (2021a); the reason for such a better reaction

lies in the fact that the precommitment strategy makes the final wealth as close as possible to a

constant target, while the dynamically optimal strategy makes the final wealth as close as possible

to a time-varying target, that adjusts to market returns.

Another useful criterion for the comparison is the impact of misspecification errors (considered

both as model misspecification and parameter misspecification) on the dynamic mean-variance

optimization: van Staden, Dang & Forsyth (2021b) investigate on it and find that without con-

straints the precommitment strategy is less robust than the Nash equilibrium strategy, but the

opposite holds when constraints are applied.

7 Concluding remarks

When an intertemporal optimization problem over a time frame [t0, T ] is linear and can be solved

using dynamic programming, then, thanks to the Bellman’s optimality principle, two important

desirable features occur simultaneously. First, the optimal strategy is globally tail-optimal over

[t0, T ] for the considered problem. Second, the agent who adopts the optimal strategy is globally

preferences-consistent over [t0, T ] with respect to her initial preferences.

When an intertemporal optimization problem is not linear and does not permit application

of dynamic programming, then the two features described above do not hold simultaneously.

According to the existing literature, we say that the problem gives rise to time inconsistency.

The non-applicability of dynamic programming and the violation of the Bellman’s optimality

principle imposes an unavoidable price to be paid by agents. The price is different depending on

the approach selected.

With the precommitment approach, the investor solves a kind of static Markowitz problem

over [t0, T ] and therefore keeps both properties of tail optimality and preferences consistency, but

only at initial time t0: the precommitment strategy is locally tail-optimal at time t0 (only) for

the considered problem and the precommitted investor is locally preferences-consistent at time t0

(only) with respect to her initial preferences.

With the dynamically optimal approach, the investor keeps the second property but not the

first one, i.e., she is globally preferences-consistent with respect to her initial preferences, but, in
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general, the dynamically optimal strategy is not locally tail-optimal at any time t ∈ [t0, T ] for the

considered problem.

With the Nash-equilibrium approach, the investor keeps none of the properties, i.e., the Nash

equilibrium strategy is not locally tail-optimal at any time t ∈ [t0, T ] for the considered problem

and the investor who adopts it is not locally preferences-consistent at any time t ∈ [t0, T ] with

respect to her initial preferences.

Finally, if the objective function of an optimization problem includes a convex function of

expected final wealth, a globally tail-optimal control plan exists if and only if the optimization

problem is linear and dynamic programming is applicable.

In general, when dealing with non-linear problems, it seems quite hard to argue that one of the

three approaches to time inconsistency currently available should be unambiguously preferable to

the others for all agents. If the agent is agnostic about the philosophical differences underlying the

three different approaches, a meaningful help can be provided by the comparison of the distribution

of the final state variable or the behaviour of the optimal policy. If instead the agent is keen on

playing a tail-optimal plan and on being preferences-consistent, then each approach has its own

pros and cons and the appropriate strategy will depend on the subjective weight given to tail

optimality and preferences consistency. The awareness of the price to be paid in terms of (lack

of) these two criteria for each strategy might be of help to the agent.
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Appendix

Proof of Theorem 5.2

If the control plan

u∗
t0,x0

: [t0, T ]× R → R (31)
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is globally tail-optimal over [t0, T ] for Problem Pt0,x0 , then its restriction to [t, T ]× R

u∗
t0,x0

: [t, T ]× R → R (32)

is locally tail-optimal for Problem Pt,x for every (t, x) ∈ [t0, T ]× R, where Pt,x is given by (3).

In particular, the plan (31) is locally tail-optimal at t0 for Pt0,x0 , and therefore the precommit-

ment strategy for Problem Pt0,x0 , ût0,x0 : [t0, T ]× R → R, exists and

ût0,x0(s, y) = u∗
t0,x0

(s, y) for all (s, y) ∈ [t0, T ]× R. (33)

Then, for every (t, x) ∈ [t0, T ]×R the precommitment strategy for the continuation problem Pt,x,

i.e., the locally tail-optimal strategy for Pt,x, is given by

ût,x : [t, T ]× R → R.

But because the continuation plan (32) is also locally tail-optimal for Pt,x, then

ût,x(s, y) = u∗
t0,x0

(s, y) for all (s, y) ∈ [t, T ]× R. (34)

Then, (33) and (34) yield

ût0,x0(s, y) = ût,x(s, y) for all (s, y) ∈ [t, T ]× R. (35)

Because (35) holds for every (t, x) ∈ [t0, T ]×R, we deduce that the precommitment strategy ût0,x0

does not depend on the initial time-wealth point (t0, x0):

ût0,x0(s, y) = û(s, y) for all (s, y) ∈ [t0, T ]× R

and because of (33) the globally tail-optimal strategy too does not depend on (t0, x0):

u∗
t0,x0

(s, y) = u∗
t,x(s, y) = u∗(s, y).

As a consequence, the dynamically optimal strategy also coincides with the globally tail-optimal
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strategy. Indeed, by definition

ũ(t, x) = ût,x(t, x),

therefore

ũ(t, x) = ût,x(t, x) = û(t, x) = u∗(t, x) for all (t, x) ∈ [t0, T ]× R.

Furthermore, because {u∗(s, y)}(s,y)∈[t0,T ]×R is globally tail-optimal over [t0, T ] for Problem Pt0,x0 ,

by definition the Bellman’s optimality principle holds, and therefore the recursive equation for the

value function

V (t, x) = sup
u∈U

Et,x

[ˆ t′

t

U1(s,Xs, us)ds+ V (t′, Xt′)

]
for t′ ∈ [t, T ]

holds. Now notice that, using the tower property of conditional expectation, for every t0 ≤ t <

t′ ≤ T we have (in the following we shall write X∗
t in the place of Xu∗

t )
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V (t, x) = J(t, x, u∗) = Et,x

[ˆ t′

t

U1(s,X∗
s , u

∗
s)ds+

ˆ T

t′
U1(s,X∗

s , u
∗
s)ds+ U2(X∗

T )

]
+ U3 (Et,x(X

∗
T )) =

= E

[ˆ t′

t

U1(s,X∗
s , u

∗
s)ds+

ˆ T

t′
U1(s,X∗

s , u
∗
s)ds+ U2(X∗

T )
∣∣∣Ft

]
+ U3 (E(X∗

T |Ft)) =

= E

[ˆ t′

t

U1(s,X∗
s , u

∗
s)ds+

ˆ T

t′
U1(s,X∗

s , u
∗
s)ds+ U2(X∗

T ) + U3(X∗
T )
∣∣∣Ft

]
+

+ U3 (E(X∗
T |Ft))− E

[
U3(X∗

T )|Ft

]
=

= E

{ˆ t′

t

U1(s,X∗
s , u

∗
s)ds+ E

[ˆ T

t′
U1(s,X∗

s , u
∗
s)ds+ U2(X∗

T ) + U3(X∗
T )
∣∣∣Ft′

] ∣∣∣∣∣Ft

}
+

+ U3 (E(X∗
T |Ft))− E

[
U3(X∗

T )|Ft

]
=

= E

{ˆ t′

t

U1(s,X∗
s , u

∗
s)ds+ E

[ˆ T

t′
U1(s,X∗

s , u
∗
s)ds+ U2(X∗

T )
∣∣Ft′

]
+ U3(E[X∗

T |Ft′ ])

+E[U3(X∗
T )|Ft′ ]− U3(E[X∗

T |Ft′ ])

∣∣∣∣∣Ft

}
+ U3 (E(X∗

T |Ft))− E
[
U3(X∗

T )|Ft

]
=

= E

[ˆ t′

t

U1(s,X∗
s , u

∗
s)ds+ V (t′, X∗

t′)

∣∣∣∣∣Ft

]
+ U3 (E(X∗

T |Ft))− E
[
U3(E[X∗

T |Ft′ ])|Ft

]
where we have used the fact that E [E[U3(X∗

T )|Ft′ ]|Ft] = E [U3(X∗
T )|Ft] and the fact that J(t′, X∗

t′ , u
∗) =

V (t,X∗
t′). If U

3 is non-affine, then due to Lemma 5.3, there are t0 ≤ t < t′ ≤ T s.t.

U3 (E(X∗
T |Ft))− E[U3(E[X∗

T |Ft′ ])|Ft] < 0

yielding

V (t, x) < E

[ˆ t′

t

U1(s,X∗
s , u

∗
s)ds+ V (t′, X∗

t′)

∣∣∣∣∣Ft

]

≤ sup
u∈U

E

[ˆ t′

t

U1(s,X∗
s , u

∗
s)ds+ V (t′, X∗

t′)

∣∣∣∣∣Ft

]
= V (t, x)
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Therefore, U3(x) = ax + b for some a, b ∈ R and Problem Pt0,x0 is linear. Finally, if

U3(x) = ax + b, the extended Hamilton-Jacobi-Bellman equation needed to find the equilibrium

strategy in the consistent planning approach (see Björk & Murgoci, 2010) is the classical Hamilton-

Jacobi-Bellman equation of dynamic programming, and the equilibrium strategy coincides with

the optimal strategy u∗(·):

u(s, y) = u∗(s, y) for all (s, y) ∈ [t0, T ]× R.

This is what we needed to prove. �
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