
31 January 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Reimagining Robust Distributed Systems through Accountable MAS

Published version:

DOI:10.1109/MIC.2021.3115450

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1845236 since 2022-03-02T23:00:15Z

Department: Head
Editor: Name, xxxx@email

Reimagining Robust
Distributed Systems through
Accountable MAS
Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, Stefano Tedeschi
Università di Torino, Dipartimento di Informatica, Torino, Italy

Abstract—Robustness is an important property of software systems; the availability of proper
feedback is crucial to obtain it, especially when a system consists of distributed and
interconnected components. Multiagent Systems (MAS) are valuable for conceptualizing and
implementing distributed systems, but they fall short in addressing robustness in a systematic
way at design time. In this paper we provide a definition of accountability and show its use for
designing robust MAS.

THE INTRODUCTION

Distributed systems are often characterized
by complex networks of functional dependencies
defined among a heterogeneous set of actors, all
interacting with each other to achieve goals, that
otherwise they would not achieve, or not so easily.
A challenge in realizing such a kind of systems
is to guarantee robustness.

According to ISO/IEC/IEEE 24765 vocabu-
lary, robustness is the degree to which a system
or component can function correctly in the pres-
ence of invalid inputs or stressful environmental
conditions – that we generally call perturbations.
For dealing with perturbations, the components
of a robust system must adapt their behavior to
unexpected contextual conditions, showing auton-
omy in their decision process. Multiagent Sys-
tems (MAS) [1] are a particularly appropriate ap-
proach: MAS, indeed, offer powerful abstractions

for realizing (complex) systems, that are made
of cooperating autonomous parts (agents) that
amount to loci of decision. However, approaches
to MAS design and development fall short in ad-
dressing robustness in a systematic way. Namely,
they do not devise specific mechanisms for alert-
ing the right agents in the system about the
occurrence of perturbations, and for providing
information that enables the enactment of system-
wise behaviors for tackling them. Indeed, the lack
of mechanisms for producing, propagating, and
processing information about perturbations makes
a system fragile [2], [3].

In order to fill this gap, we take inspira-
tion from the way in which many human or-
ganizations tackle similar problems by resort-
ing on accountability frameworks (e.g., see UN
TR DP/2008/16/Rev.1). The approach is meeting
greater and greater success especially in non-

IT Professional Published by the IEEE Computer Society © 2019 IEEE 1

http://orcid.org/0000-0002-9294-0408
http://orcid.org/0000-0002-2070-0616
http://orcid.org/0000-0001-9336-0651
http://orcid.org/0000-0002-9861-390X

Department Head

government organizations, that work in contexts
where partial achievement of the desired results
is common, and perturbations occur frequently.
Accountability frameworks answer to the need of
gathering information, to analyse it, and then take
appropriate measures, based on actual data. So,
the organization may enact alternative operational
procedures, or even modify its own goals, prac-
tices or structure. In this perspective, accountabil-
ity, which in sociology is seen as a basic mecha-
nism that allows individuals to constitute societies
[4], becomes an instrument of the administrative
power, through which organizations can ensure
the compliance of their processes to predefined
standards, and it also enables changes aimed at
improving the organization [5], [6].

Thus, we rely on accountability as a key to
design and develop robust distributed systems and
organizations. The main contribution of this paper
is a conceptual model that defines and formalizes
accountability in multi-agent organizational con-
texts. The conceptual model provides guidance
for the development of systems able to account
about their internal processes. Generally, accounts
foster flexibility, that is, the reactivity, proactivity,
and social ability of the agents. The agents will
react to accounts, act so as to obtain an account,
interact with others while dealing with accounts.
We specifically show the particular use of gaining
robustness to perturbations by showing through
examples an implementation of the model that
extends the JaCaMo agent platform [8].

Accountability and MAS Robustness
Accountability is often associated with blame

[9], either post factum (who is to blame for an act
or an error that has occurred), or pre factum (who
is blameworthy for errors not yet occurred), but
this is a partial view that disregards the potential
involved in relationships, concerning the ability
and the designation to provide response about
something to someone who is legitimated to ask.
Indeed, in political sciences [10], accountability
expresses a general recognition of the legitimacy
of the authority of the parties that are involved in
the relationship: one to exercise particular powers
and the other to hold them to provide an account.
By leveraging such characteristics, it is possible
to devise systems that can, in a way, reconfig-
ure when they meet some perturbations. To this

aim: 1) relevant information should be asked to
informed agents, and delivered by these in the
right format, 2) agents should be supplied with
the means for understanding who is entitled to ask
what to whom, and under which circumstances, 3)
an appropriate treatment, based on the available
information, must be applied. In absence of such
instruments, the agents which were unable to
carry out their assigned tasks, and which detected
some perturbation, will be considered as violators
and receive sanctions, but no action will be taken
to understand the situation and tackle it.

A Conceptual Model
Figure 1 shows our proposal for a conceptual

model of organizational accountability. The basic
idea is that the agents, for taking part to the orga-
nization, must be aware that, under certain condi-
tions, they might be called to answer to requests
by providing an account. This will happen be-
cause by entering in the organization they will be
in position to produce the requested information
and they will be expected to act accordingly. We
use UML class diagrams, and express the model
in terms of conceptual classes (rectangles) and
associations (lines). Conceptual classes express
the type of the involved objects; associations
represent relations among the conceptual objects
that belong to the conceptual classes.

Broadly speaking, an organization can be seen
as a distribution of responsibilities [11]. Norms
yield obligations, prohibitions, and authorizations
about tasks, that agents are expected to fulfill.
Norms are used to describe the ideal behavior
of the agents in terms of their responsibilities
and rights. Thereby, we say that Tasks are dis-
tributed among Agents by way of Responsibility
assumptions: an agent is part of the organization
only when it explicitly takes on the responsibility
that concerns some task. Tasks can be complex
and involve sub-tasks, consequently, the Respon-
sibility for the overall task may be assigned to
some agent while that of the sub-tasks to other
agents. For instance, this may be useful when one
agent should supervise a process, that involves
many tasks, each performed by a specialized
agent. A Responsibility is always associated with
a single (possibly complex) Task, while a Task
may not be associated with any Responsibility
or, on the contrary, it may be associated with more

2 IT Professional

Figure 1. Organizational accountability: a conceptual model.

than one. Responsibilities are governed by Norms
[11], that orchestrate the task execution according
to the organizational goals. Indeed, it is not suffi-
cient that an agent takes on the responsibility for a
task. By generating obligations, permissions, etc.,
Norms signal to the agents when specific tasks
should be performed.

Accountability and Answerability are
abstract classes. Accountability grounds in
Answerability (the ability to provide an
answer), and is realized through a mutual
understanding, captured by Accountability
Agreement, by which the parts recognize
each other’s power (of producing a request
and of producing an account, respectively
[10]), together with the right of producing a
request, under the stipulated conditions, and the
obligation to produce an account as an answer,
by following the modalities that are specified
by the Accountability Agreement itself. In the
literature [12], the party who is legitimately
required to provide the account is commonly
called “account giver”, or a-giver, while the
party who can legitimately ask, under some
agreed conditions, to the other party an account

about a process of interest is called the “account
taker”, or a-taker.

Accountability complements Responsibility
in getting the overall organization answerable.
This is captured by the decorator pattern (dashed
box in Figure 1), involving Answerability, Ac-
countability, Responsibility, and Accountability
Agreement where Answerability is considered
as an abstract concept modeling a desired prop-
erty of the system as a whole. The pattern high-
lights two important features. First, accountability
has a recursive structure. This enables an agent
to provide accounts even for tasks that have
been carried out by others, or that involve the
intervention of others. The rationale is that an
agent can provide an account about a (complex)
task by gathering the accounts it receives from
other agents concerning other (related) tasks. Sec-
ond, the recursion always closes on a Respon-
sibility. This implies that only tasks under the
responsibility of some agents can be accounted
for. More importantly, the recursive structure of
accountability implies that an account is a reliable
piece of information because it can always be
traced back to the agents responsible for that

May/June 2019 3

Department Head

task. This explains why Accountability cannot
be reduced to Accountability Agreement, that
is, to the right/obligation involved in the relation-
ship. Rather, we see accountability as having two
main dimensions: normative dimension, capturing
the legitimacy of asking and the availability to
provide accounts, yielding expectations on the
agents’ behavior; structural dimension, capturing
that, for being accountable about a task, an agent
must have control over that task and awareness
of the situation it will account for. The structural
dimension is related to having power over a situ-
ation of interest [7], [13]. The model captures the
normative dimension via Accountability Agree-
ment, and the structural dimension, via the com-
posite pattern. The Accountability Agreement
between two parties specifies the a-taker and a-
giver agents, the condition under which some
request is allowed (Requesting Condition) and
the structure of the account (Account Template,
possibly many). By means of the association con-
cerns, it establishes the task about which requests
and accounts refer to. Account Templates are
crucial because they allow a-taker and a-giver to
tune by specifying the kind of Account one needs
and expects from the other. In other words, a
Requesting Task expects some Account Tem-
plate to be followed. Conversely, the Account
produced by an Accounting Task should comply
to some Account Template. The characteristic of
Requesting Tasks and Accounting Tasks, with
respect to plain Tasks, is their relationship with
an Account Template and with Account.

The structural dimension of accountability
concerns the actual synthesis of an Account
that relies on the explained recursive structure.
Specifically, the a-taker must be an agent which
takes responsibility for the given Requesting
Task. The same holds for the a-giver and the
Accounting Task. From a normative perspective,
the a-taker is permitted to perform a Requesting
Task in order to ask for an account. The a-
giver may be obliged to perform an Accounting
Task to produce an account. This is captured
by means of the twofold association between
Accountability Agreement and Agent. In one
case, an agent plays the role of a-taker; in the
other, of a-giver.

Tackling Perturbations
In distributed settings, that encompass inter-

acting agents, action and decision depend on
the availability of the right contextual informa-
tion, that is, of the relevant causal dependencies
between events. This can only be built in the
right context. The problem is that such a context
rarely is the one in which a perturbation occurs,
especially in complex systems, where each agent
has only a partial view of the overall ongo-
ing process. Accountability allows integrating the
management of perturbations in a seamless way.
Indeed, norms govern the responsibilities about
tasks that agents take on when taking part to an
organization. Among these, there are those re-
sponsibilities which concern Requesting Tasks,
and Accounting Tasks. Overall, in presence of
perturbations (e.g., failures or some symptomatic
situations that call for attention), it will be pos-
sible to ask and obtain accounts. This provides
the ground for applying an adequate treatment,
possibly revising the system behavior as done
in human organizations. Actually, according to
[14], accounts are expected to be used – typically
by the account taker. In the model, accounts are
treated by Treatment Tasks, and agents take on
responsibility concerning Treatment Tasks. Such
tasks can be complex and involve many agents,
and it is also possible that an account is treated
by way of many Treatment Tasks. Notice that
Treatment Task is not part of Accountability
Agreement, but rather it depends on the kind
of robustness one wants to obtain, exploiting
the structural and the normative dimensions of
accountability.

Some Examples of Perturbations and
Treatments Implemented

As an exemplification, we enriched JaCaMo
[8] with the conceptual model in Figure 1 –
http://di.unito.it/moiseaccountability. JaCaMo is
a programming platform that integrates agents,
environments and organizations. Moise, one of
the elements of JaCaMo, implements the orga-
nization layer. It specifies roles and groups, a set
of schemes that captures how the organizational
goals are decomposed into sub-goals, grouped
into missions, and a set of norms. Role-playing
agents must take on the responsibility for mission
goals. Triggered by the current system state,

4 IT Professional

http://di.unito.it/moiseaccountability

Figure 2. JaCaMo scheme of the industrial production cell.

norms issue obligations to achieve mission goals
directed to the agents. Norms are thus used for
coordinating the distributed execution. To fulfill
an obligation, an agent maps it on one of its inter-
nal goals: the satisfaction of the latter will, then,
amount to the achievement of the corresponding
mission goal. This approach guarantees a strong
decoupling between the agents and the organiza-
tion, allowing agents to autonomously determine
how to accomplish the organizational goals. In
short, in JaCaMo, an organization is seen as a
shared environment, where the satisfaction (or vi-
olation) of a responsibility makes the institutional
situation evolve. Norms issue obligations accord-
ingly. Agent programming amounts to specifying
plans for satisfying incoming obligations while
playing some role, so as to discharge all respon-
sibilities.

Production Cell
The application scenario is inspired to the

well-known production cell of the KorSo project,
University of Karlsruhe 1989, which is widely
used as a benchmark. It is made of five robots
(agents): a feed belt, a depot belt, an elevating
rotary table, a press, and a rotary robot with
two extensible arms. Each device has sensors and
actuators. The cell performs the following steps:
1) the feed belt conveys the plate from the storage
rack to the elevating rotary table, 2) the table
rotates and lifts, 3) the rotary robot takes the
plate, 4) the rotary robot turns and places the
plate onto the press, 5) the press forges the plate

while the robot turns again, 6) the rotary robot
picks up the forged plate and places it on the
depot belt, and 7) the depot belt carries the plate
forward to the depot. Figure 2 shows a JaCaMo
scheme for the production of a metal plate – to
be read from left to right. Some goals are to
be achieved in sequence, while others (grouped
under a double horizontal line) are pursued in
parallel. In red the agents that are responsible for
some organizational goal. We now detail how to
tackle three perturbations within the schema.

Shortage of resources
Suppose there is a delay in the delivery of

metal plates. Having the production cell come to a
complete stop is expensive and to be avoided. The
issue is handled by slowing down the production.
Let’s see the accountability agreement and treat-
ment policy for this case. Note that JaCaMo uses
XML to specify the organizational elements, that
are turned into a body of norms. We show here
a simplified version, highlighting the information
that must be specified; the complete XML code
is found at http://di.unito.it/moiseaccountability.

Account Template id : at1
concerns : conveyPlateToTable
requesting goal : requestRemainingStock

condition : t r ue
accounting goal : not i fyRemain ingStock

argument : a v a i l a b l e P l a t e s
treatment goal : slowDownProduction

condition : a v a i l a b l e P l a t e s <= 10

The Account Template specifies, via
concerns, the goal (we use goal to align with
JaCaMo’s terminology, goals amount to Tasks)

May/June 2019 5

http://di.unito.it/moiseaccountability

Department Head

about which an account can be asked (in
the example conveyPlateToTable). The
account can be asked, when its corresponding
condition holds, by achieving the requesting goal
requestRemainingStock. The account
is produced through the achievement of the
accounting goal notifyRemainingStock,
by conveying the number of remaining plates
availablePlates. argument, not limited
to one occurrence, specifies the format of
the account. Finally, the treatment goal
slowDownProduction denotes how to
handle this kind of perturbation. It is associated
with a condition that specifies when the goal
can be pursued; so, many treatment goals can
be defined as alternative answers for the same
perturbation. For instance the goal is activated
when the number of plates is less than 10 pieces.
Conditions can also mention the state of other
organizational goals. This can be exploited to
devise treatment goals that handle multiple
perturbations.

An agent that takes responsibility for a re-
questing goal will be a-taker; an agent that takes
responsibility for an accounting goal will be a-
giver. So, the rotary robot assumes responsibility
of requestRemainingStock, and hence is
a-taker. The feed belt robot assumes responsibility
of notifyRemainingStock and hence is a-
giver. Next comes an excerpt of a Jason imple-
mentation of the rotary robot.

Jason agents have a BDI architecture includ-
ing a belief base and a plan library storing the set
of plans available to the agent for execution. A
Jason program is a set of plans of kind event :
context← body, where event denotes the event
the plan handles (e.g. adding “+” a belief or a
goal), context is the circumstance when the plan
can be used, and body says what should be done.
Operator “!” achievement goals.

1 +delay[source(supplier)]
2 <- !requestRemainingStock.
3

4 +!requestRemainingStock
5 <- // Perform the request...
6 goalAchieved(requestRemainingStock).
7

8 +obligation(Ag,_,done(_,slowDownProduction,Ag),_)
9 : .my_name(Ag) & availablePlates(N) & N >= 5
10 <- setProductionSpeed(0.7); // set speed to 70%
11 goalAchieved(slowDownProduction).
12

13 +obligation(Ag,_,done(_,slowDownProduction,Ag),_)
14 : .my_name(Ag) &
15 availablePlates(N) & N < 5 & N >= 2

16 <- setProductionSpeed(0.3);
17 goalAchieved(slowDownProduction).
18

19 +obligation(Ag,_,done(_,slowDownProduction,Ag),_)
20 : .my_name(Ag) & availablePlates(N) & N <= 1
21 <- stopProduction;
22 goalAchieved(slowDownProduction).

The first plan is triggered when a delay is no-
tified by the supplier. The robot can, then, request
an account about the remaining stockpile to the
feed belt. The request is performed by setting the
requesting goal requestRemainingStock as
achieved. The organizational infrastructure will
issue an obligation to the feed belt to pur-
sue the accounting goal notifyRemaining-
Stock. The following Listing shows the excerpt
of the feed belt robot’s code, that is triggered by
such obligation. The information is provided to
the rotary robot by the organizational infrastruc-
ture as a new belief in its internal state.

1 +obligation(Ag,_,done(_,notifyRemainingStock,Ag),_)
2 : .my_name(Ag) &
3 inventory(I) & .member(plates(N),I)
4 <- giveAccount(availablePlates(N));
5 goalAchieved(notifyRemainingStock).

When the information is available,
the robot will execute the treatment goal
slowDownProduction.

Motor Break
Another kind of perturbation amounts to a

failure in the achievement of a goal. Let us con-
sider the elevating rotary table: it is moved by two
motors, one elevating and one rotating it. Should
a malfunction occur, causing the failure of goal
turnTableMoveUp, the rotary robot would ask
the table which motor stopped (requestStop-
pedMotorNumber paired by notifyStop-
pedMotor on the table’s side) to notify the
personnel (scheduleTableMotorFix) and,
thus, quicken the restoration; it will, then, pause
the production cell. The following accountability
template captures this behavior.

Account Template id : at2
concerns : turnTableMoveUp
requesting goal : requestStoppedMotorNumber

condition : f a i l u r e (turnTableMoveUp)
accounting goal : notifyStoppedMotorNumber

argument : motorNumber
treatment goal : scheduleTableMotorFix

condition : t r ue

Risk for Human Being
When a human operator enters in the opera-

tional area of the press, this, which can sense the

6 IT Professional

human presence, changes pace, slowing down for
the sake of safety. The rotary robot may need to
know the reason for this slowdown, eventually
deciding a complete stop in case the human gets
too close to the press.

Account Template id : at3
concerns : movePressDownUp
requesting goal : requestSlowdownReason

condition : warning
accounting goal : explainSlowdownReason

argument : slowdownCode
argument : humanCoords−x
argument : humanCoords−y

treatment goal : emergencyStop
condition : humanCoords−x <= 2 AND

humanCoords−y <= 3

In presence of a human operator, the rotary
robot will also ask his/her position, to calibrate
the functioning of the whole production cell,
possibly arriving at a complete stop:

1 +warning(movePressDownUp)
2 <- !investigatePressSlowdown.
3

4 !investigatePressSlowdown
5 <- goalAchieved(requestSlowdownReason).
6

7 +obligation(Ag,_,done(_,emergencyStop,Ag),_)
8 : .my_name(Ag) & humanCoords(X,Y)
9 <- pressEmergencyStop;

10 activateAlarm;
11 delimitArea(X,Y);
12 goalAchieved(emergencyStop).

Remarks
From a programming point of view, the model

has been integrated within JaCaMo’s organiza-
tion management infrastructure, and the runtime
behavior of its normative engine (which issues
obligations) has not been substantially changed.
When perturbations (co-)occur, the system pro-
duces obligations accordingly, thus activating re-
questing, accounting, and treatment goals, ex-
ploiting JaCaMo’s native ability to tackle the
presence of many goals. The plans for pursue-
ing such goals will be carried out concurrently.
By way of accountability, an agent can receive
accounts about perturbations occurring sparsely
in the system. The agent can then decide the best
treatment(s) to apply, relying on these accounts.
The treatment can even involve the participation
of several agents to cope with the cumulating ef-
fects of these perturbations. This is a consequence
of seeing accountability as a means for gath-
ering information and integrating efforts. When
executions compete it is necessary to foresee
appropriate policies at agent-program level.

Accountability is supported at no significant
additional computational cost w.r.t. “standard”
JaCaMo organizations; the scalability of the ap-
proach is, then, strictly related to the scalability
of the underlying platform. In [15], the authors
discuss the issue of building scalable JaCaMo
applications through CArtAgO, which is the com-
ponent that implements the organizational arti-
facts. Indeed, in CArtAgO, artifacts, as well as
agents, can be (physically) distributed in multiple
workspaces over a network. In addition, the au-
thors propose a distribution mechanism mapping
every element of a JaCaMo MAS to a web
resource, following the REST architecture. The
proposed model allows to describe (and access)
large-scale systems as a dynamic and structured
web of resources in a seamless manner.

Discussion and Related Works
We claimed that accountability is instrumental

for realizing distributed systems in which ro-
bustness emerges as a design property. We have
presented a conceptual model of organizational
accountability. Such a model describes what ac-
countability is, and how it relates to organiza-
tional concepts such as norms, responsibilities,
tasks. By providing accounts to the agents re-
sponsible for their treatments, we capture a wide
range of scenarios in which system robustness is
achieved by adapting to changing or stressful con-
ditions. Many works underline the relevance of
accountability as a design concept. In Sociotech-
nical Systems, accountability plays a fundamental
role in balancing the principals’ autonomy [12].
Accountability does not limit autonomy, since a
principal can decide to violate any expectation for
which it is accountable; however, the principal
would be held to account about that violation. A
system can take advantage of a norm violation,
and see it as an opportunity for innovation [16].
If the explanations, that violators are expected to
give, hint a lack in the organization, the organi-
zation is updated. Although we share this vision,
our proposal differs from [16], which does not
foresee an explicit distinction between responsi-
bility and accountability. The two concepts are
merged within a single notion somehow aligned
with liability. In our approach, the notion of
accountability is not tied to liability, but has a
wider understanding, since an accountable agent

May/June 2019 7

Department Head

is not necessarily one to be blamed. For this
reason, we separate the responsibility of action
from the accountability about situations [17]. We
do so by introducing the structural dimension, by
which the accountability of one may rely on the
accountability of another. Thus, an account giver
is not necessarily liable. Grounding the structural
dimension on the assumption of responsibility
allows agents to report legitimately about out-
comes brought about by other agents [7]. This
is essential when, in a distributed system, the
perturbation detected by an agent may have to
traverse many agents before reaching the one
capable of handling it. Note that the structural
dimension assures an agent has control over a
task, inspired to what is introduced in [18]. The
structural dimension grounds on responsibilities
that, as claimed in [19], allow establishing the
requirements of a system.

ReMMo (Responsibility MetaModel) [17]
conceptualizes how responsibility can be struc-
tured in the frame of an enterprise architecture.
Both ReMMo and our proposal agree that ac-
countability refers to the obligation to report the
achievement, maintenance, or avoidance of some
given state to an authority. ReMMo relates a
responsibility to an aggregate of accountabilities:
a responsibility is composed of duties, and an
agent assigned to that responsibility is answer-
able, via accountabilities, for these duties. In our
case, the relationship between the two concepts
is more articulated, including the structural di-
mension of accountability. Moreover, in ReMMO
accountability overlaps with liability. In our view,
it is restrictive to see accountability just as a way
to find a culprit to be sanctioned; rather, it is
an important tool to get a better understanding
of what is going on in the system, and act ac-
cordingly. Although they may serve as deterrent,
sanctions remove accountability [16]: by paying
its sanction, an agent needs no longer to provide
an account about its violation.

MOCA [7] is another attempt to capture ac-
countability in computational terms. It is not
a conceptual model, but an information model
that captures what kind of data (facts) must be
available to permit the identification of account-
givers, in any situation of interest arising in a
group of interacting agents.

Acknowledgements
S. Tedeschi was supported by “Bando Talenti

della Società Civile” promoted by Fondazione
CRT with Fondazione Giovanni Goria.

REFERENCES
1. M. J. Wooldridge, Introduction to multiagent systems.

Wiley, 2002.

2. D. L. Alderson and J. C. Doyle, “Contrasting views

of complexity and their implications for network-centric

infrastructures,” IEEE Trans. Syst. Man Cybern. Part A,

vol. 40, no. 4, 2010.

3. M. Baldoni, C. Baroglio, and R. Micalizio, “Fragility and

robustness in multiagent systems,” in EMAS, ser. LNCS,

vol. 12589. Springer, 2020, pp. 61–77.

4. A. W. Rawls, “Harold Garfinkel, Ethnomethodology

and Workplace Studies,” Organization Studies, vol. 29,

no. 5, pp. 701–732, 2008.

5. M. J. Dubnick and J. B. Justice, “Ac-

counting for accountability,” 2004, Meeting of

the American Political Science Association. [On-

line]. Available: https://pdfs.semanticscholar.org/b204/

36ed2c186568612f99cb8383711c554e7c70.pdf

6. M. Bovens, “Two concepts of accountability: Account-

ability as a virtue and as a mechanism,” West European

Politics, vol. 33, no. 5, pp. 946–967, 2010.

7. M. Baldoni, C. Baroglio, K. M. May, R. Micalizio, and

S. Tedeschi, “MOCA: An ORM MOdel for Computational

Accountability,” J. of Intelligenza Artificiale, vol. 13,

no. 1, pp. 5–20, 2019.

8. O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci,

and A. Santi, “Multi-agent oriented programming

with JaCaMo,” Science of Computer Programming,

vol. 78, no. 6, pp. 747 – 761, 2013. [Online].

Available: http://www.sciencedirect.com/science/article/

pii/S016764231100181X

9. M. J. Dubnick, “Blameworthiness, Trustworthiness,

and the Second-Personal Standpoint: Foundations for

an Ethical Theory of Accountability,” (September 11,

2013). Available at SSRN: http://dx.doi.org/10.2139/

ssrn.2324724

10. R. W. Grant and R. O. Keohane, “Accountability and

Abuses of Power in World Politics,” The American Po-

litical Science Review, vol. 99, no. 1, 2005.

11. V. Dignum, F. Dignum, and J.-J. Meyer, “An agent-

mediated approach to the support of knowledge sharing

in organizations,” The Knowledge Engineering Review,

vol. 19, no. 2, pp. 147–174, 2004.

12. A. K. Chopra and M. P. Singh, “From social machines to

social protocols: Software engineering foundations for

8 IT Professional

https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://dx.doi.org/10.2139/ssrn.2324724
http://dx.doi.org/10.2139/ssrn.2324724

sociotechnical systems,” in Proc. of the 25th Int. Conf.

on WWW, 2016.

13. B. Burgemeester and J. Hulstijn, “Designing for the

values of accountability and transparency,” in Handbook

of ethics, values, and technological design : Sources,

theory, values and application domains. Springer, 2015,

pp. 303–333.

14. D. H. Rached, “The Concept(s) of Accountability: Form

in Search of Substance,” Leiden Journal of International

Law, no. 29, p. 317–342, 2016.

15. A. Ricci, A. Ciortea, S. Mayer, O. Boissier, R. H. Bordini,

and J. F. Hubner, “Engineering Scalable Distributed

Environments and Organizations for MAS,” in Proc. of

the AAMAS 2019, IFAAMAS, p. 790–798

16. A. K. Chopra and M. P. Singh, “Sociotechnical Systems

and Ethics in the Large,” in Proc. of the 2018 AAAI/ACM

AIES 2018. ACM, 2018, pp. 48–53.

17. C. Feltus, “Aligning access rights to governance needs

with the responsability metamodel (remmo) in the frame

of enterprise architecture,” Ph.D. dissertation, University

of Namur, Belgium, 2014.

18. E. Marengo, M. Baldoni, C. Baroglio, A. Chopra, V. Patti,

and M. Singh, “Commitments with regulations: reason-

ing about safety and control in REGULA,” in Proc. of

AAMAS 2011, vol. 2, pp. 467–474.

19. A. K. Chopra, F. Dalpiaz, F. B. Aydemir, P. Giorgini,

J. Mylopoulos, and M. P. Singh, “Protos: Foundations

for engineering innovative sociotechnical systems,” in

Proc. of IEEE RE 2014, pp. 53–62. [Online]. Available:

https://doi.org/10.1109/RE.2014.6912247

Matteo Baldoni (matteo.baldoni@unito.it) is an as-
sociate professor at the University of Torino. He got a
Ph.D in Computer Science and his research interests
are artificial intelligence, multiagent systems, and so-
cial computing.

Cristina Baroglio (cristina.baroglio@unito.it) is an
associate professor at the University of Torino. She
has a Ph.D in Cognitive Sciences and is interested in
engineering multiagent systems and accountability.

Roberto Micalizio (roberto.micalizio@unito.it) is an
assistant professor at the University of Torino. He
has a Ph.D in Computer Science and is interested
in planning, model-based diagnosis, and multi-agent
systems.

Stefano Tedeschi (stefano.tedeschi@unito.it) is a
Ph.D. candidate at the University of Torino. His Ph.D
thesis is about multiagent systems, organizations,

and exceptions.

May/June 2019 9

https://doi.org/10.1109/RE.2014.6912247

	Accountability and MAS Robustness
	A Conceptual Model
	Tackling Perturbations

	Some Examples of Perturbations and Treatments Implemented
	Production Cell
	Shortage of resources
	Motor Break
	Risk for Human Being
	Remarks

	Discussion and Related Works
	REFERENCES
	Biographies
	Matteo Baldoni
	Cristina Baroglio
	Roberto Micalizio
	Stefano Tedeschi

