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Abstract Deflationists argue that ‘true’ is merely a logico-linguistic device for

expressing blind ascriptions and infinite generalisations. For this reason, some

authors have argued that deflationary truth must be conservative, i.e. that a defla-

tionary theory of truth for a theory S (that interprets a sufficient amount of math-

ematics, or syntax) must not entail sentences in S’s language that are not already

entailed by S. However, it has been forcefully argued that any adequate theory of

truth for S must be non-conservative and that, for this reason, truth cannot be

deflationary (Shapiro in J Philos XCVI(10):493–521, 1998; Ketland in Mind

108(429):69–94, 1999). We consider two defences of conservative deflationism,

respectively proposed by Waxman (Mind 126(502):429–463, 2017) and Tennant

(Mind 111(443):551–582, 2002), and argue that they are both unsuccessful. In

Waxman’s hands, deflationists are committed either to a non-purely expressive

notion of truth, or to a conception of mathematics that does not allow them to

justifiably exclude non-conservative theories of truth. Tennant’s conservative

deflationism fares no better: if deflationist truth must be conservative over arith-

metic, it can be shown to collapse into a non-conservative variety of deflationism.
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Deflationism about truth has it that ‘true’ is a logico-linguistic device for expressing

blind ascriptions and infinite generalisations (as in ‘All of Peano Arithmetic’s

theorems are true’). As Vann McGee puts it, according to deflationists truth ‘doesn’t

have any legitimate applications beyond its logical uses, so it cannot play a

significant theoretical role in scientific inquiry or causal explanation’ (McGee

2016, p. 3153).1 Some authors go further and argue that a theory of truth for a

theory S ought to yield a conservative extension of S, i.e. it shouldn’t entail

sentences in the truth-free language that aren’t already entailed by S.2 In a slogan,

deflationary truth must be conservative.

However, Stewart Shapiro (1998) and Jeffrey Ketland (1999) have long argued

that any minimally adequate theory of truth cannot be conservative. A theory of

truth for first-order Peano Arithmetic (PA), their argument goes, must allow one to

prove sentences such as GPA, the Gödel sentence for PA, and Con(PA), a sentence
expressing PA’s consistency.3 But neither GPA nor Con(PA) are entailed by PA, if
PA is consistent. They conclude that truth cannot be deflationary, since it allows one

to prove substantive arithmetical truths. Call this the conservativeness argument.

In a recent paper, Waxman (2017) observes that the conservativeness require-

ment is ambiguous between two readings, a semantic and a syntactic one,

corresponding to two different conceptions of arithmetic. On the first reading,

arithmetic is understood categorically, i.e. as given by the standard modelN. On the

second reading, arithmetic is understood axiomatically, i.e. as exhausted by the

acceptance of some non-categorical (typically first-order) theory such as PA.
According to Waxman, deflationary truth can be conservative on either reading and

the conservativeness argument does not go through. More precisely, on the

categorical conception, every (consistent) theory of truth is semantically conser-

vative over its arithmetical base theory; on the syntactic conception, sentences such

as GPA and Con(PA) are not part of one’s conception of arithmetic, whence one

ought not to be able to prove them in the first place. Either way, Waxman maintains,

deflationary truth can be conservative.

We argue that Waxman’s defence of deflationary but conservative truth is

unsuccessful. By our lights, the semantic horn of Waxman’s argument has already

been shown to be problematic. Waxman’s categorical deflationists resort to a notion

of truth-in-a-higher-order-structure that appears to be in tension with the purely

expressive deflationary conception of truth (Shapiro 1998; Cieśliński 2015).4

1 See also Picollo and Schindler (2017, Sect. 6).
2 The question whether deflationary truth should be conservative has been debated in a number of places.

See e.g. Shapiro (1998), Azzouni (1999), Ketland (1999, 2005, 2010), Field (1999), Halbach (2001),

Tennant (2002, 2005), Horsten (2009), Cieśliński (2010, 2015) and Waxman (2017).
3 For convenience, we talk of the Gödel sentence for PA, even though several such sentences can be

constructed. For general background on PA, GPA, and Con(PA) see e.g. Smorinski (1977) and Kaye

(1991).
4 In Waxman’s reconstruction, the categorical deflationist resorts to second-order arithmetic. Going

beyond arithmetic, we also notice that a notion of consequence that exceeds first-order logical

consequence is required for the quasi-categoricity or categoricity of stronger mathematical theories such

as (second-order versions of) ZFC or ZFC with Urelemente. We thank an anonymous referee for drawing

our attention on this point.
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Accordingly, we mostly focus on the syntactic horn. We suggest that the axiomatic

conception of arithmetic is both unduly restrictive and self-undermining: it excludes

standard pieces of mathematical knowledge such as GPA and Con(PA), and it does

not even allow the axiomatic deflationist to coherently justify her refusal to accept

such sentences. Along the way, we suggest that a strategy advocated by Tennant

(2002) for escaping the conservativeness argument while at the same time retaining

knowledge of GPA and Con(PA) is also problematic. Assuming with Tennant that

an acceptable deflationary theory of truth over PA must be conservative over PA,
we notice that the deflationist who wishes to recover standard mathematical

knowledge must also accept theories of arithmetic in which a non-conservative truth

predicate can be defined.

While our arguments do not tell against deflationism in general, they suggest that

there is little conceptual space, if any, for conservative deflationism, especially if

one’s conception of mathematics is axiomatic, i.e. exhausted by one’s acceptance of

the axioms of a first-order theory such as PA. The idea that our grasp of

mathematical notions is given by our acceptance of axiomatic theories is both

appealing and persistent.5 Our arguments show that, on such a conception,

irrespective of which mathematical axioms are accepted, one cannot reject non-

conservative theories of truth on the grounds that they are not conservative. More

precisely, conservative deflationists whose conception of mathematics is axiomatic

cannot reject mathematical claims on the grounds that they don’t follow from the

axioms of their theory. We take this to be evidence that the deflationist’s

commitment to a conservative conception of truth is misguided.6

The remainder of the paper is organised as follows. Section 1 sets up the scene.

Section 2 presents Waxman’s disjunctive argument. Sections 3–5 articulate our

responses to Waxman and Tennant. Section 6 concludes.

1 Technical preliminaries

Following Waxman, we define the following two notions of conservativeness of a

theory Sþ with language LSþ over a theory S with language LS, where LS � LSþ :

Definition 1 (Syntactic conservativeness) Sþ is a syntactic conservative extension

of S if, for every u 2 LS, if S
þ ‘ u, then S ‘ u.

Definition 2 (Semantic conservativeness) Sþ is a semantic conservative extension

of S if, for every u 2 LS, if S
þ
�u, then S�u.

5 The view can be traced back to Hilbert [see e.g. Hilbert (1959) and the letters to Frege of December 29,

1899 and September 22, 1900 (Hilbert 1935)] and still counts a number of supporters [see e.g. Curry

(1951), Robinson (1969), Detlefsen (1986), Tennant (1997), Gabbay (2010) and Weir (2010)]. As we will

see in Sect. 5.2, the position articulated in Isaacson (1987) can also be added to the list: if correct, his

arguments can be seen as establishing that all of the true arithmetical sentences that are properly about

natural numbers are derivable in Peano Arithmetic, in spite of the incompleteness theorems.
6 The view that deflationism ought to be dissociated from the conservativeness requirement is by no

means new. See e.g. Halbach (2001), Horsten (2012, Sect. 7.5), Cieśliński (2015) and Galinon (2015).
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These two notions are coextensive if the consequence relation expressed by � is

complete; they may come apart otherwise (for instance, completeness fails for

second-order consequence).

Still following Waxman, we let (first-order) PA be our base theory, i.e. the theory

to which we add the principles governing the truth predicate, and LPA be its

language. PA contains axioms for the basic arithmetical functions and operations

(successor, addition, multiplication and exponentiation), as well as every instance of

the induction schema

ðInduction SchemaÞ uð0Þ ^ 8 xðuðxÞ ! uðSðxÞÞÞ ! 8 xuðxÞ;

for every formula u 2 LPA, where SðxÞ is the successor function applied to x. In

order to add a theory of truth to PA, we need to expand LPA to a richer language

Lþ
PA, given by LPA [ fTrg, where Tr is a one-place predicate expressing truth.

Following Tarski (1956), we assume that, for some appropriate coding scheme, the

theory of truth for PA is materially adequate, i.e. that it derives all instances of the

T-schema

ðT- SchemaÞ TrðpuqÞ $ u;

where u 2 LPA and puq is the numeral of the code of u. Still following Tarski, we

also assume that an adequate theory of truth must prove ‘the most important and

most fruitful general theorems’ Tarski (1956, p. 257), such as that every sentence is

either true or untrue, that no sentence is both true and untrue, and so on. Since the T-

schema only proves every instance of such theorems but not the general claims, a

theory of truth must therefore include the Tarskian compositional clauses for the

logical operators and predicates of the base language—for instance, that a con-

junction is true if and only if both of its conjuncts are true, that a universally

quantified sentence 8xu is true if and only if each of its instances u½t=x� is true, and
so on.7

We can distinguish between two versions of the compositional theory: PATr,

which is given by PA together with the compositional axioms for Tr; and PAþ
Tr,

which is given by adding to PATr all the instances of the Induction Schema that in

which the truth predicate occurs.8 It is well-known that that while PATr is

syntactically conservative over PA, PAþ
Tr isn’t. In particular, the so-called semantic

argument, an argument establishing the consistency of PA, can be carried out in

7 More precisely, the Tarskian compositional axioms for conjunction, conditional, and universal

quantifier are as follows:

ð^Þ 8x8yðSentLPA
ðx

�̂
yÞ ! ðTrðx

�̂
yÞ $ TrðxÞ ^ TrðyÞÞÞ

ð!Þ 8x8yðSentLPA
ðx!

�
yÞ ! ðTrðx!

�
yÞ $ TrðxÞ ! TrðyÞÞÞ

ð8Þ 8x8yðSentLPA
ð8
�
xyÞðTrð8

�
xyÞ $ 8tTrðx½t=y�ÞÞÞ

SentLPA
is an arithmetically definable predicate that represents the sentences of LPA in LPA, while dotted

logical operators (e.g.
�̂
) indicate their representation in LPA.

8 For a detailed analysis of PATr and PAþ
Tr, see Halbach (2014, Ch. 8)
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PAþ
Tr. The argument proceeds as follows. First, one observes in PAþ

Tr that all of

PA’s axioms are true and that all of PA’s inference rules preserve truth. Second, one

infers, reasoning in PAþ
Tr, that all of PA’s theorems are true. Third, one notices that

PAþ
Tr proves :Trðp0 ¼ 1qÞ, and hence that 0 ¼ 1 is not a theorem of PA, since PAþ

Tr

proves that every theorem of PA is true. But the sentence ‘0 ¼ 1 is not a theorem of

PA’ is formalized in LPA as ConðPAÞ, the canonical consistency statement for PA.

So, PAþ
Tr proves the consistency of PA, which by Gödel’s Second Incompleteness

Theorem is not provable in PA itself, if PA is consistent. Moreover, since GPA is

provably equivalent to ConðPAÞ in PA, the semantic argument also establishes that

PAþ
Tr proves GPA. Crucially, the semantic argument requires that the Induction

Schema be extended to formulas containing Tr, and therefore cannot be carried out

in PATr.

Critics of deflationism, such as Ketland and Shapiro, maintain that ‘in one form

or another, conservativeness is essential to deflationism’ (Shapiro 1998, p. 497). At

the same time, they argue that any adequate theory of truth must be able to

reproduce the semantic argument. Insofar as conservativeness is interpreted in

syntactic terms, it follows that deflationary theories of truth cannot be adequate. As

Ketland puts it,

our ability to recognize the truth of Gödel sentences involves a theory of truth

...which significantly transcends the deflationary theories. (Ketland 1999, p.

88)

Waxman disagrees. In his view, deflationary truth can be both conservative and

adequate.

2 Waxman’s disjunctive argument

Waxman begins by observing that the conservativeness requirement is ambiguous

between a syntactic and a semantic reading. He then considers two broad families of

conceptions of arithmetic. As he puts it,

[t]he first conception is broadly model-theoretic in nature: for lack of a better

term, let us call it the categorical conception of arithmetic. It holds that

arithmetic is a subject about a particular mathematical structure—the natural

numbers, ½N�, the elements of which are obtained by beginning with 0 and

iterating the successor operation finitely many times. By contrast, the other

conception is broadly proof-theoretic in nature: let us call it the axiomatic

conception of arithmetic. It holds that our best understanding of arithmetic

consists in (and is exhausted by) the proof-theoretic consequences of a

particular set of axioms, namely, first-order PA. (Waxman 2017, p. 447;

emphases added)

On the categorical conception, conservativeness is defined in semantic terms; on the

axiomatic conception, conservativeness is defined in syntactic terms. Waxman
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contends that, irrespective of how arithmetic is understood, the conservativeness

argument breaks down.

Consider the first case first, i.e. suppose the deflationist’s conception of

arithmetic is given by a categorical theory of arithmetic, such as second-order Peano

Arithmetic (PA2). PA2 is given by the axioms of PA formulated in second-order

logic, a comprehension schema for any formula of the language, and with the

infinitely many instances of the Induction Schema replaced by the second-order

Induction Axiom:

ðInductionAxiomÞ 8X½Xð0Þ ^ 8 xðXðxÞ ! XðSxÞÞ ! 8 xXðxÞ�:

PA2 is categorical, i.e. it has (up to isomorphism) exactly one model N. Let now

PA2Tr be any consistent theory of truth for PA2. Since every true sentence of the

language of PA2 is true-in-N, for every sentence u of the language of PA2, every

model of PA2Tr is a model of u only if every model of PA2 is a model of u. That is,
any consistent theory of truth for PA2 is ipso facto semantically conservative.9

Consider now the second case. If one’s conception of arithmetic isn’t categorical,

it cannot be said to be constituted by a grasp of the standard model N. Waxman

maintains that it must be exhausted by one’s acceptance of some fixed theory, such

as PA. However, Waxman argues, if one’s conception of arithmetic is exhausted by

PA, the deflationist can justifiably reject PAþ
Tr in favour of PATr, on the grounds that

the former, unlike the latter, allows one to prove sentences such as GPA and

Con(PA), and therefore exceeds one’s conception of arithmetic (Waxman 2017, p.

456).10 Waxman concludes that, irrespective of whether one’s conception of

arithmetic is categorical or axiomatic, ‘[e]ither way, the deflationist is in the clear’

(p. 431). Before turning in Sects. 4–5 to the second horn of Waxman’s argument, a

few words on the first horn are in order.

Shapiro (1998, p. 509) already observed that ‘[a]rithmetic truth is semantically

conservative over arithmetic, in the sense that any model of second-order arithmetic

can be extended to a model of arithmetic-plus-arithmetic-truth’ and that, for this

reason, ‘second-order logic may be the salvation for the deflationist’. However,

Shapiro correctly points out that establishing the semantic conservativeness of a

given theory of truth doesn’t help the deflationist establishing the ‘thinness’ of truth:

all it shows is that truth isn’t ‘thicker’ than truth-in-a-second order structure.11 But,

it might be insisted, such a notion is already ‘thick’. For instance, as Shapiro (1991)

points out, ‘a considerable amount of mathematics can be expressed in (pure)

second-order languages and, moreover, second-order logic is thoroughly intertwined

9 As Waxman acknowledges, this fact had long been pointed out by Shapiro (1998, p. 509 and ff.). To be

sure, suitable choices of PA2Tr may yield a non-conservative extension of PA2 in the syntactic sense.

However, the semantic deflationist can reasonably maintain that this should be no cause of concern, since

one’s notion of consequence is then given by the full (much more powerful) second-order consequence

relation (see Waxman 2017, p. 457).
10 As Waxman points out, Azzouni (1999) already argues in favour of PATr on precisely these grounds.
11 We thank [redacted] for a very helpful discussion on this point.
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with set theory’ (Shapiro 1991, p. 97).12 In what follows, we focus on the first horn

of Waxman’s argument, and on syntactic ways of circumventing the conservative-

ness argument more generally.

3 The implicit commitment thesis

We begin with a preliminary point. Intuitively, if one accepts a mathematical theory

S, one is also implicitly committed to accepting claims that go over and above

S. Walter Dean calls this the implicit commitment thesis:13

(ICT) Anyone who accepts the axioms of a mathematical theory S is thereby also

committed to accepting various additional statements which are expressible

in the language of S but which are formally independent of its axioms.

(Dean 2015, p. 31)

The schema of local reflection for PA, according to which if PA proves u then u, is
a case in point:

RFNPA ProvPAðpuqÞ ! u;

where ProvPA is a standard provability predicate for PA.
Proponents of ICT typically maintain that, if one accepts PA, one is implicitly

committed to its soundness, encoded by RFNPA, and to its consistency, encoded by

ConðPAÞ. For instance, Graham Leigh and Leon Horsten have recently argued that

when we are justified in believing a theory, we do not need extra justification

for adopting a reflection principle for that theory. In such a situation, we are

entitled to adopt a reflection principle without giving additional justification

for accepting it. (Leigh and Horsten 2017, p. 211)

However, it is well known that not all instances or RFNPA are provable in PA: since
any theory that proves all instances of RFNPA also proves ConðPAÞ, PA does not

prove all instances of ProvPAðpuqÞ ! u.
Waxman does not deny that the ability to prove RFNPA is ‘an attractive feature

for a theory of truth to possess’ (Waxman 2017, p. 456, fn. 34). But, as he himself

points out, it is clearly incompatible with the axiomatic deflationist’s own notion of

acceptance, according to which to accept S is to accept all and only the theorems of

S. As Waxman puts it, a theory’s ability to prove RFNPA

12 In a similar vein, Cezary Cieśliński has recently argued that ‘describ[ing] arithmetical truth—truth

simpliciter—as truth is some chosen (intended) model of arithmetic, while treating the last notion as

indispensable and primary’ is incompatible with the deflationary doctrine that ‘truth simpliciter is fully

characterised by nothing other than [. . .] basic truth axioms’ (Cieśliński 2015, p. 73).
13 Versions of the thesis have been famously proposed and explored by Solomon Feferman in a number

of articles [see e.g. Feferman (1962), Feferman (1991); see also Franzen (2004)]. It is sometimes objected

that ICT is incompatible with certain foundational positions in the philosophy of mathematics. For a

recent discussion, see e.g. Dean (2015, p. 32) and Nicolai and Piazza (2017).
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presupposes the falsity of the axiomatic conception of arithmetic, for it

requires the acceptance of truths in the language of arithmetic that do not

follow (in the relevant sense) from its axioms. (Waxman 2017, p. 456, fn. 34)

Intuitive though it may seem, the implicit commitment thesis is precluded to the

axiomatic deflationist.

4 Two problems

According to the axiomatic conception of arithmetic, ‘our best understanding of

arithmetic consists in (and is exhausted by) the proof-theoretic consequences of a

particular set of axioms, namely, first-order PA’ (Waxman 2017, p. 447). A

conservativeness requirement seemingly follows from such a conception: if one’s

conception of arithmetic is exhausted by PA, one shouldn’t accept arithmetical

sentences that are not derivable in PA. More precisely, the axiomatic deflationist

should be agnostic about sentences such as GPA, i.e. she should neither accept nor

reject them. Non-conservative theories of truth are therefore to be rejected, on the

grounds that they prove arithmetical sentences one doesn’t accept. In particular, if

one’s understanding of arithmetic is exhausted by PA, one should accept PATr as

opposed to PAþ
Tr, since PAþ

Tr allows one to prove GPA and GPA is not provable in

PA.
Axiomatic deflationists face at least two problems, however. The first is that GPA

appears to be a standard piece of mathematical knowledge—one that should be

included in any viable account of mathematics. For instance, here is Andrzej

Mostowski:

We see that the [Gödel] sentence GPA is intuitively obvious and does not

represent any difficult mathematical problem the solution of which would

surpass our mathematical knowledge. (Mostowski 1952, p. 107, cited in Dean

(2015))

Knowledge of sentences like GPA is ‘intuitively obvious’. Yet, it seems necessarily

precluded to the axiomatic deflationist, who must thereby place herself outside the

community of mathematical practitioners.

The second problem is that, even though the axiomatic deflationist demurs from

accepting GPA, her argument against non-conservative theories assumes GPA. More

precisely, the justification Waxman attributes to the axiomatic deflationist for

demurring from accepting sentences like GPA, and non-conservative theories of

truth more generally, is self-undermining. Let us explain.

According to Waxman,

[the] deflationist has a principled reason to accept PATr [...] and in particular

to demur from accepting PAþ
Tr. The reason for resisting the move to PAþ

Tr

more or less falls out of the axiomatic characterization of arithmetic:

extending induction to cover sentences containing [Tr] allows the derivation

of ½GPA�—a sentence that is (on this view) not licensed by the background
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understanding of arithmetic, since it is not derivable from the axioms.

(Waxman 2017, p. 456; emphases added)

However, Waxman’s reason for not ‘requiring the derivation of [GPA]’ is that GPA

‘is not derivable from the axioms [of PA]’ (Waxman 2017, p. 431). Yet this very

sentence, i.e. ‘GPA is not provable in PA’, is provably equivalent to GPA in PA.
More specifically, ‘GPA is not provable in PA’ is expressed in PA itself as

:ProvPAðpGPAqÞ, which in PA is provably equivalent to GPA. Thus, the claim that

GPA isn’t derivable in PA requires accepting GPA itself, and hence cannot be

accepted by someone whose conception of arithmetic is exhausted by PA. In

conclusion, the axiomatic deflationist’s justification for not accepting theories that

prove sentences she cannot accept requires accepting these very sentences.

5 Three unsuccessful strategies

How can the axiomatic deflationist respond to the above problems? We see at least

three avenues of reply, which we explore in turn.

5.1 Silence

In response to the objection from the self-undermining nature of her demurral from

accepting non-conservative theories of truth, the axiomatic deflationist might just

bite the bullet, and simply refrain from offering a principled reason for not accepting

sentences like GPA. That is, she might insist that accepting a theory S while simply

demurring from accepting its Gödel sentence GS (as well as theories that are non-

conservative over S) results in a perfectly stable position—if not one she is able to

explicitly justify.

This seems deeply unsatisfactory, though, for at least two reasons. First, when

presented with PATr and PAþ
Tr as candidate theories of truth for PA, the axiomatic

deflationist who adopts this line of reply is forced to choose blindly: in order to

motivate her choice, she cannot offer grounds that are in line with her conservative

conception of truth. To be sure, such a deflationist will prefer PATr over PAþ
Tr.

However, she will do so for reasons that are in principle not accessible to her, as

required by her ‘strategy of silence’. Second, this response does not address the first

problem mentioned above, that sentences like GPA are simply common mathemat-

ical knowledge.

5.2 Iasaacson’s thesis and Tennant’s strategy

In response to the two problems mentioned in Sect. 4, the axiomatic deflationist

might retort that she does have a reason to demur from accepting non-conservative

theories of truth while at the same time accepting GPA. It is just that such a reason is

not part of her conception of arithmetic. More precisely, the axiomatic deflationist

might follow Daniel Isaacson (1987, 1992) and distinguish between two kinds of

LPA-sentences. On one hand, there are sentences that are ‘directly perceivable as
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true from our grasp of the fundamental nature and structure of the natural numbers’

(Isaacson 1992, p. 95), which extensionally coincide with the set of PA’s theorems.

On the other hand, there are sentences of LPA that are unprovable in PA, such as

GPA, that are ‘shown to be true by an argument in terms of truths concerning some

higher-order notion’ (Isaacson 1987, p. 220). The axiomatic deflationist might then

endorse Isaacson’s Thesis, viz. the idea that the set of arithmetical truths is to be

identified with the set of theorems of PA, and that the proofs of true LPA-sentences

that are unprovable in PA require ‘ideas that go beyond those that are required in

understanding PA’ (Smith 2008, p. 1). Armed with such a thesis, she might insist

that any proof of the non-conservativeness of PAþ
Tr over PA should be seen as extra-

arithmetical, so that the assertion of sentences of LPA that are unprovable in PA
need not exceed her conception of arithmetic.

In a similar vein, the deflationist might appeal to a strategy advocated by Neil

Tennant (2002) to argue that the grounds for accepting GPA need not be truth-

theoretic. According to Tennant, the deflationist can adopt a syntactically

conservative theory of truth while at the same time proving sentences such as

GPA by means of non-truth-theoretic principles such as the local reflection principle

for PA:

RFNPA ProvPAðpuqÞ ! u

This is how, in Tennant’s view, the deflationist can meet the challenge, originally

raised by Ketland (1999), to account for our knowledge of GPA, without thereby

validating a non-conservative conception of truth.14 Given the distinction between

arithmetical and extra-arithmetical truths of LPA provided by Isaacson’s Thesis, the

axiomatic deflationist might employ RFNPA to prove standard pieces of mathe-

matical knowledge such as GPA and ConðPAÞ, without thereby exceeding her

conception of arithmetic as given by PA.
Unfortunately, though, neither Isaacson’s Thesis nor Tennant’s Strategy help the

axiomatic deflationist addressing the problems mentioned in Sect. 4. For if the

axiomatic deflationist ought to accept GPA on the grounds that it is a standard piece

of mathematical knowledge, she ought to arguably also accept other standard pieces

of mathematical knowledge. However, this leads her to accept mathematical

theories that re-introduce a non-conservative notion of arithmetical truth. More

specifically, the axiomatic deflationist who wishes to retain common mathematical

knowledge arguably ought to accept ACA, a subsystem of second-order arithmetic

that can be seen as a formalisation of a fragment of analysis.15 But here lies the

problem. ACA and PAþ
Tr are intertranslatable, in a sense made precise by the

following result:

Theorem 3 (Halbach 2014, Theorem 8.42, pp. 108–115) The systems PAþ
Tr and

ACA are proof-theoretically equivalent. More precisely, PAþ
Tr’s truth predicate can

14 For more discussion on this point, see also Ketland (2005), Tennant (2005), Incurvati (2009),

Cieśliński (2010) and Ketland (2010).
15 ACA is a non-categorical second-order theory in which the comprehension axiom is restricted to

arithmetically definable sets. See e.g. Friedman and Simpson (2000, p. 128) and Halbach (2014, p. 94).
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be defined in ACA and there is a relative interpretation of ACA in PAþ
Tr that does

not reinterpret arithmetical expressions.

For our purposes, the crucial part of the theorem is the definability of PAþ
Tr’s truth

predicate in ACA. This shows that, if one accepts ACA, then one ipso facto also

accepts the truth predicate of PAþ
Tr, since that truth predicate is implicitly contained,

and can be explicitly defined, in ACA. However, recall, PAþ
Tr’s truth predicate is

arithmetically non-conservative, and hence unacceptable by (conservative) defla-

tionist lights. Thus, the conservative deflationist who wishes to retain common

mathematical knowledge must reject not only PAþ
Tr, but also, implausibly, ACA

together with the standard fragment of mathematics it encodes.

In conclusion, the axiomatic deflationist might appeal to Isaacson’s Thesis to

retain knowledge of sentences such as GPA while at the same time rejecting non-

conservative notions of truth. Furthermore, she might invoke Tennant’s Strategy to

show how, more precisely, such sentences might be established, without making use

of a non-conservative truth predicate. However, this is not enough: since an

arithmetically non-conservative truth predicate is definable within ACA, the

conservative deflationist must either adopt a non-conservative conception of

arithmetical truth, or give up standard pieces of mathematical knowledge such as the

fragment of analysis encoded by ACA.

5.3 Conservative deflationism beyond PA?

The deflationist might object at this point that she is out to defend syntactically

conservative mathematical truth—not just conservative arithmetical truth. That is,

she might consider a strong mathematical theory representing all or most of our

mathematical knowledge, call it M, and demand that truth be conservative over it.

To be sure, sentences such as Con(M), a sentence expressing M’s consistency, or

GM , a Gödel sentence for the theory M, would still fall out of the deflationist’s

conception of mathematics. However, the deflationist might reasonably argue that

this need not be a problem. In the case of M, agnosticism about M’s consistency

statement and its Gödel sentence seems justified, on the grounds that Con(M) and

GM (and more generally sentences independent from M), are not common

mathematical knowledge.

George Boolos (1990) famously voiced a similar view about ZF:

I suggest that we do not know that we are not in the same situation vis-à-vis

ZF that Frege was in with respect to naive set theory [...] before receiving [...]

the famous letter from Russell, showing the derivability in his system of

Russell’s paradox. It is, I believe, a mistake to think that we can see that

mathematics as a whole is consistent, a mistake possibly fostered by our

ability to see the consistency of certain of its parts. (Boolos 1990, p. 390)

Even if one thinks that the consistency of ZF is quite safe, the spirit of Boolos’s

remark still stands: if M is sufficiently powerful and complex, it is at least doubtful

that we can be in a position to know M’s consistency.
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Nevertheless, considering strong mathematical theories does not help the

axiomatic deflationist with the problem at hand: she still cannot coherently justify

her demurral from accepting non-conservative theories of truth over M. For suppose

the deflationist’s conception of mathematics is exhausted by her acceptance of M.

Suppose moreover she is given the choice between two theories of truth over M: a

conservative one, call it MTr, and a non-conservative one, call it Mþ
Tr. How can she

justify her choice of MTr over M
þ
Tr? As before, such a deflationist cannot simply

reject Mþ
Tr on the grounds that it proves GM , on pain of presupposing GM itself.

Could the problem be solved by appealing, once again, to an analogue of Isaacson’s

Thesis for M? More precisely, could an analogue of Isaacson’s Thesis be invoked to

claim that GM is non-mathematical? Perhaps, but we see two difficulties with this

suggestion. For one thing, it is unclear whether an analogue of Isaacson’s Thesis forM

is available. LeonHorsten (2001, p. 173) defends an analogue of the thesis forZFC, to
the effect that ‘the collection of mathematical truths is identical with the set of

theorems ofZFC’. However, as far aswe can see, Horsten’s thesis has been effectively
criticised by Luca Incurvati (2008). For another, it is unclear what kind of non-

mathematical knowledge sentences such asCon(M) andGM could possibly represent.

In the case of arithmetic it is at least plausible to claim that certain sentences ofLPA are

extra-arithmetical and yet still mathematical, on the grounds that they are not about

natural numbers, but about meta-theoretic notions such as provability. By contrast, in

the case ofM it is unclear what kind of subject matter sentences such as Con(M) and

GM could possibly have.

Some recent results by Fujimoto (2017) might be thought to tell against the

argument just given. According to Fujimoto,

the appropriate formal setting for evaluating the adequacy or inadequacy of

the conservativeness argument is provided not by theories of truth over

arithmetic but by those over much ‘richer’ subject matters such as set theory.

(Fujimoto 2017, p. 4)

Theories based on arithmetic differ from theories of truth based on set theory in an

important respect: unlike arithmetic, ‘set theory intrinsically contains a theory of syntax

and is ‘rich’ enough to implement substantial meta-mathematics on the basis of it’ (p.

17). As a result, typed theories of compositional truth with unrestricted induction over

set theory, i.e. set-theoretical analogues of PAþ
Tr, are conservative over their base

theories (Fujimoto 2017, Theorems 1 and 2, pp. 18–19).Axiomatic deflationistsmight

appeal to results such as these in order to claim that deflationary theories of truth can be

both conservative and adequate, in spite of the conservativeness argument.

However, the objection fails to convince, for at least two reasons. First, not all

theories of truth over strong base theories are conservative. Fujimoto (2017, The-

orem 3, p. 20) himself provides an example of a non-conservative theory of truth

over a strong base theory. Second, the adoption of a conservative theory of truth still

won’t help the axiomatic deflationist offering a non-self-undermining reason to

demur from accepting non-conservative theories in favour of conservative ones: this

would require, again, accepting sentences not provable in the base theories in

question.
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In summary, the axiomatic deflationist is free to identify her conception of

mathematics with the adoption of a strong mathematical theory, thereby retaining

standard pieces of mathematical knowledge such as GPA, fragments of analysis, and

beyond. However, our second objection still applies. As before, the axiomatic

deflationist is not in a position to justify her demurral from accepting sentences such

as Con(M) and GM (and hence non-conservative theories of truth) because they

exceed their conception of mathematics.

6 Concluding remarks

Both Waxman and Tennant point to the existence of syntactic ways out of the

conservativeness argument. In Waxman’s view, the axiomatic deflationist can

coherently reject non-conservative theories of truth on the grounds that they exceed

her conception of arithmetic. As for Tennant, he suggests that standard pieces of

mathematical knowledge such as GPA and ConðPAÞ can be recaptured via proof-

theoretic means, without resorting to truth-theoretic resources. However, we have

argued that the axiomatic deflationist faces at least two difficulties. First, even if she

can come to know GPA and ConðPAÞ, she still seems unable to recover other

standard pieces of mathematical knowledge, such as the fragment of analysis

encoded by ACA, on pain of being committed to a non-conservative conception of

arithmetical truth. Second, the deflationist does not seem to be in a position to

explain why sentences such as GPA and ConðPAÞ, and non-conservative theories of

truth more generally, are not to be accepted. Even if the former problem can be

addressed by restricting one’s attention to strong base theories, and requiring one’s

theory of truth to be conservative over them, the second problem is not easily

solved. As soon as the axiomatic deflationist explicitly articulates her reason for

demurring from accepting sentences that are not provable in the theory the

acceptance of which she takes to constitute her conception of mathematics, she

thereby accepts sentences that exceed such a conception.
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