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Abstract: The pervasive presence of artificial intelligence (AI) in our everyday life has nourished
the pursuit of explainable AI. Since the dawn of AI, logic has been widely used to express, in a
human-friendly fashion, the internal process that led an (intelligent) system to deliver a specific
output. In this paper, we take a step forward in this direction by introducing a novel family of kernels,
called Propositional kernels, that construct feature spaces that are easy to interpret. Specifically,
Propositional Kernel functions compute the similarity between two binary vectors in a feature space
composed of logical propositions of a fixed form. The Propositional kernel framework improves
upon the recent Boolean kernel framework by providing more expressive kernels. In addition to the
theoretical definitions, we also provide an algorithm (and the source code) to efficiently construct
any propositional kernel. An extensive empirical evaluation shows the effectiveness of Propositional
kernels on several artificial and benchmark categorical data sets.

Keywords: propositional kernels; boolean kernels; kernel methods; categorical data; propositional logic

1. Introduction

Explainable Artificial Intelligence has become a hot topic in the current research [1,2].
The recent pervasive deployment of machine learning solutions has hugely increased the
need of having transparent and easy-to-explain models. Many efforts have been devoted
to improving the interpretability of complex and non-linear models like (deep) neural
networks [3]. Despite the effort, we are still far from being able to systematically interpret
what happens under the hood. Still, there are specific applications in which explainability
is not only a desideratum but a necessity. For instance, in medical applications, physicians
need specific and comprehensible reasons to accept the prediction given by a machine.
For this reason, models like Decision Trees (DT) are widely used by non-expert users thanks
to their easy logical interpretation. The shortcoming of DTs is that, in general, they are
inferior models w.r.t. neural networks or Support Vector Machines (SVM).

Neural networks are not the only (non-linear) models that are hard to interpret.
Kernel machines, like SVMs [4–6], typically work on an implicitly defined feature space by
resorting to the well-known kernel trick. The use of such an implicit representation clearly
harms the interpretability of the resulting model. Moreover, these feature spaces are often
high dimensional and thus this makes the job even harder. Nonetheless, in the last decade,
several methods have been introduced for extracting rules from SVMs [7]. Typically, these
techniques try to build if-then-else rules over the input variables, but the task is not trivial
since the feature space might be not easy to deal with in terms of explanatory capabilities.

Given binary-valued input data, a possible approach to make SVM more interpretable
consists of defining features that are easy to interpret, for example, features that are logical
rules over the input. To this end, recently, a novel Boolean kernel (BK) framework has been
proposed [8]. This framework is theoretically well-founded and the authors also provide
efficient methods to compute this type of kernels. Boolean kernels are kernel functions in
which the input vectors are mapped into an embedding space formed by logical rules over
the input variables, and, in such space, the dot product is performed. In other words, these
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kernels compute the number of logical rules of a fixed form over the input variables that
are satisfied in both the input vectors. To show that Boolean kernels can hugely improve
the interpretability of SVM, in [9] a proof of concept method based on a genetic algorithm
has been proposed. This algorithm can extract from the hypothesis of an SVM the most
influential features (of the feature space) in the decision. Being those features logical rules
over the input, they can be used to explain the SVM’s decision.

However, the main drawback of Boolean kernels is the limited logical expressiveness.
Albeit the Boolean kernel framework allows defining Disjunctive Normal Form (DNF)
kernels, only a subset of all the possible DNF can be formed. This limitation is due to
the way Boolean kernels are computed and in Section 3.1 we show that such a limitation
cannot be overcome using the BK framework itself.

For this reason, in this paper, we improve upon BKs by introducing a new family
of kernels, called Propositional Kernels [10]. Differently from BKs, with Propositional
Kernels is possible to define kernels for any propositional logic formula (formulas with
bound variables are included in the feature space but they are not exclusive). Starting
from the main limitations of the BK framework, we show step-by-step how propositional
kernels are computed. Then, we provide a mathematical definition for all possible binary
logical operations as well as a general procedure to compose base Propositional kernels to
form any propositional kernel. This “composability” makes Propositional kernels highly
expressive, much more than BKs.

In the experimental section, we evaluate the effectiveness of these new kernels on
several artificial and benchmark categorical data sets. Moreover, we propose a heuristic,
based on a theoretically grounded criterion, to select good propositional kernels given the
data set. We empirically show that this criterion is usually able to select, among a set of
randomly generated Propositional kernels, the one that performs best. This framework is
open-source, and it is publicly available at https://github.com/makgyver/propositional_
kernels (accessed on 6 August 2021).

The rest of the paper is structured as follows. In Section 2 we review the related
work, while in Section 3 we provide an overview of the Boolean kernel framework giving
a particular emphasis to the limitations of such framework. Then, Section 4 presents the
main ideas behind Propositional kernels and how to compute all kernels corresponding
to binary and unary logical operations. Section 5 demonstrates how to compose base
Propositional kernels to obtain any possible Propositional kernel. The empirical evaluation
is presented in Section 6, and finally, Section 7 wraps up the paper and provides some
possible future directions.

2. Related Work

The concept of Boolean kernel, i.e., kernels with a feature space representing Boolean
formulas over the input variables, has been introduced in early 2000 by Ken Sadohara [11].
He proposed an SVM for learning Boolean functions: since every Boolean (i.e., logic) function
can be expressed in terms of Disjunctive Normal Form (DNF) formulas, the proposed kernel
creates a feature space containing all possible conjunctions of negated or non-negated
Boolean variables.

For instance, given x ∈ R2, the feature space of a DNF kernel with a single conjunction
contains the following 32 − 1 features: x1, x2,¬x1,¬x2, x1 ∧ x2, x1 ∧ ¬x2,¬x1 ∧ x2,¬x1 ∧
¬x2.

Formally, the DNF and the monotone DNF (mDNF) kernel, i.e., DNF with no negated
variables, between x, z ∈ Rn are defined as

κDNF(x, z) = −1 +
n

∏
i=1

(2xizi − xi − zi + 2), κmDNF(x, z) = −1 +
n

∏
i=1

(xizi + 1).

Sadohara’s DNF kernel works on real vectors, thus conjunctions are multiplications
and disjunctions are summations. Using such a DNF kernel, the resulting decision function
of a kernel machine can be represented as a weighted linear sum of conjunctions (Repre-
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senter Theorem [12,13]), which in turn can be interpreted as a “soft” DNF. The DNF kernel,
restricted to binary inputs, has been independently discovered in [14,15]. Its formulation is
a simplified version of the Sadohara’s DNF kernel:

κ′DNF(x, z) = −1 + 2〈x,z〉+〈1−x,1−z〉, κ′mDNF(x, z) = −1 + 2〈x,z〉.

A drawback of these types of kernels is the exponential growth of the size of the
feature space w.r.t the number of involved variables, i.e., 3n − 1 for n variables. Thus,
the similarity between the two examples is equally influenced by simple DNFs over the
input variables, as well as very complex DNFs. To give the possibility of controlling the size
of the feature space, i.e., the involved DNFs, Sadohara et al. [16] proposed a variation of
the DNF kernel in which only conjunctions with up to d variables (i.e., d-ary conjunctions)
are considered. Over binary vectors, this kernel, dubbed d-DNF kernel, is defined as

κd
DNF(x, z) =

d

∑
i=1

(
〈x, z〉+ 〈1− x, 1− z〉

i

)
,

Following the same idea of Sadohara, Zhang et al. [17] proposed a parametric version
of the DNF kernel for controlling the influence of the involved conjunctions. Specifically,
given x, z ∈ {0, 1}n and σ > 0, then

κ
(σ)
DNF(x, z) = −1 +

n

∏
i=1

(σxizi + σ(1− xi) + σ(1− zi) + 1),

where σ induces an inductive bias towards simpler or more complex DNF formulas.
An important observation is that the embedding space of a classical non homogeneous

polynomial kernel of degree p is composed of all the monomials (i.e., conjunctions) up to
the degree p. Thus, the only difference between the polynomial and the d-DNF kernel is
the weights associated to the features.

A kernel closely related to the polynomial kernel is the all-subset kernel [18,19],
defined as

κ⊆(x, z) =
n

∏
i=1

(xizi + 1).

This kernel has a feature space composed of all possible subsets of the input variables,
including the empty set. It is different from the polynomial kernel because it does not limit
the number of considered monomials/subsets, and all features are equally weighted. We
can observe that the all-subset kernel and the monotone DNF kernel are actually the same
kernel up to the constant −1, i.e., κ⊆(x, z) = κmDNF(x, z) + 1. A common issue of both the
polynomial and the all-subsets kernel is that they have limited control of which features
they use and how they are weighted.

A well-known variant of the all-subset kernel is the ANOVA kernel [18] in which the
feature space is formed by monomials of a fixed degree without repetitions. For instance,
given x ∈ R3 the feature space induced by the all-subset kernel would have the features
x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3 and ∅, while the feature space of the ANOVA kernel of
degree 2 it would be made up by x1x2, x1x3 and x2x3.

Boolean kernels have also been used for studying the learnability of logical formulae
using maximum margin algorithms, such as SVM [20,21]. Specifically, [21] shows the learn-
ing limitations of some Boolean kernels inside the PAC (Probably Approximately Correct)
framework. From a more practical stand point, Boolean kernels have been successfully
applied on many learning tasks, such as, face recognition [22,23], spam filtering [24], load
forecasting [25], and on generic binary classification tasks [16,17].

3. Boolean Kernels for Categorical Data

Recently, a novel Boolean kernel framework for binary inputs, i.e., x ∈ {0, 1}n, has
been proposed [8]. Differently from the kernels described in the previous section, this
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novel Boolean kernels family [8] defines feature spaces formed by specific types of Boolean
formulas, e.g., only disjunctions of a certain degree or DNF with a specific structure.
This framework offers a theoretically grounded approach for composing base Boolean
kernels, namely conjunctive and disjunctive kernels, to construct kernels representing
DNF formulas.

Specifically, the monotone conjunctive kernel (mC-kernel) and the monotone Disjunc-
tive kernel (mD-kernel) of degree d between x, z ∈ {0, 1}n are defined as follows:

κd
mC =

(
xᵀz

d

)
, (1)

κd
mD =

(
n
d

)
−
(

xᵀx
d

)
−
(

zᵀz
d

)
+

(
n− xᵀx− zᵀz + xᵀz

d

)
. (2)

The mC-kernel counts the number of (monotone) conjunctions (formed using all differ-
ent variables) involving d variables are satisfied in both x and z. Similarly, the mD-kernel
computes the number of (monotone) disjunctions (formed using all different variables)
involving d variables that are satisfied in both x and z. Boolean kernel functions heavily
rely on the binomial coefficient because they consider clauses without repeated variables,
e.g., x1 ∧ x1 is not considered in the feature space of a mC-kernel of degree 2.

Starting from the mD- and mC-kernel (and their non-monotone counterpart) we can
construct (m)DNF and (m)CNF kernels. The core observation is that DNFs are disjunctions
of conjunctive clauses, and CNFs are conjunctions of disjunctive clauses. Thus, we can reuse
the definitions of the mD- and mC-kernel to construct mDNF/mCNF kernels by replacing
the dot-products (that represents the linear/literal kernel) with the kernel corresponding
to the right Boolean operation. For example, if we want to construct an mDNF-kernel
composed of three conjunctive clauses of degree 2 we need to substitute the dot-product
in (2) with κ2

mC, obtaining

κ3,2
mDNF(x, z) =

(
(n

2)

3

)
−
(

xᵀx
3

)
−
(

zᵀz
3

)
+

(
(n

2)− xᵀx− zᵀz + xᵀz
3

)
,

where the degree of the disjunction is 3, i.e., d = 3, and the degree of the conjunctions is 2,
i.e., c = 2. The size of the input space for the disjunction becomes the size of the feature
space of the mC-kernel of degree 2, i.e., (n

2). In its generic form, the mDNF-kernel(d, c) is
defined as

κd,c
mDNF(x, z) =

(
(n

c)

d

)
−
(

xᵀx
d

)
−
(

zᵀz
d

)
+

(
(n

c)− xᵀx− zᵀz + xᵀz
d

)
.

This kernel computes the number of mDNF formulas with exactly d conjunctive
clauses of degree c that are satisfied in both x and z. This way of building (m)DNF and
(m)CNF kernels imposes a structural homogeneity in the formulas, i.e., all elements in
a clause have the same structure. Let us consider again the mDNF-kernel(3,2): each
conjunctive clause has exactly two elements, and these elements are literals. As we will
discuss in the next section, the BKs’ structural homogeneity is a limitation that can not be
overcome using this framework.

Besides its theoretical value, this kernels family hugely improves the interpretability
of Boolean kernels as shown in [9], and achieves state-of-the-art performance on both
classification tasks [26] and on top-N item recommendation tasks [27].

In this work, we improve upon [8] by showing the limitations of this framework
and providing a well-founded solution. The family of kernels presented here, called
Propositional kernels, allows building Boolean kernels with feature spaces representing
(almost) any logical proposition. In the remainder of this paper, we will use the term
Boolean kernels to refer to the kernel family presented in [8].
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3.1. Limitations of the Boolean Kernels

Before diving into the details of how to compute Propositional kernels, we show
the limitations of the Boolean kernel framework [8], and how Propositional kernels over-
come them.

Boolean kernels are designed to produce interpretable feature spaces composed of
logical formulas over the input variables. However, the set of possible logical formulas
that can be formed using Boolean kernels is limited. In particular, two aspects limit the
logical expressiveness of the Boolean kernels [8]:

(i) BKs do not consider clauses with the same variable repeated more than once (This
refers to disjunctive and conjunctive BKs). Even though the features considered by
BKs are, from a logical point of view, appropriate, they make the kernel definition
cumbersome by introducing the binomial coefficient to generate all combinations
without repetitions. For instance, the mC-kernel of degree 2 between x, z ∈ {0, 1}3

can be unfolded as

κ2
mC(x, z) =

(
xᵀz

2

)
= ∑

i∈[1,3]
∑

j∈[1,3]
i 6=j

(xi ∧ xj)(zi ∧ zj)

= (x1 ∧ x2)(z1 ∧ z2) + (x2 ∧ x3)(z1 ∧ z3) + (x2 ∧ x3)(z2 ∧ z3).

Thus, the binomial coefficient is introduced to take into account only clauses with no
repeated variables in it, e.g., avoiding clauses like x2 ∧ x2.

(ii) BKs are structurally “homogeneous”: each Boolean concept, described by a feature in
the feature space, is homogeneous in their clauses. For example, an mDNF-kernel(3,2)
creates mDNF formulas that are disjunctions of three conjunctive clauses of two
variables. So, every single conjunctive clause is structurally homogeneous to the others
(each of them has exactly 2 variables). It is not possible to form an mDNF of the form
(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x4) where different conjunctive clauses have different degree.

For these reasons, in this paper, we propose a framework to produce kernels with a
feature space that can potentially express any logical proposition over the input variables.
To accomplish our goal, we need to overcome the limitations of the Boolean kernels, and we
have also to provide a way to construct any possible logical formulas.

Overcoming the first limitation of the Boolean kernels, i.e., no repeated variables in
the formulas, is very simple: it is sufficient to include any possible combination, even those
that are logically a contradiction or a tautology, e.g., x1 ∧ ¬x1 or x1 ∧ x1. Regarding the
homogeneity, some considerations need to be taken. Let us assume we want to create a
kernel function such that its feature space is composed of monotone DNFs of the form
f (a, b, c) = (a ∧ b) ∨ c, using the Boolean kernels. The embedding map of an mDNF-
kernel [8] is defined as the composition of the embedding maps of the mD-kernel and the
mC-kernel as:

φ̃mDNF : x 7→ φ̃mD(φ̃mC(x)), x ∈ {0, 1}n,

where we omitted the degrees and put a ~ over the functions to emphasize that we do not
want to be linked to specific degrees. By this definition, there is no way to get a feature
space with only formulas like f because we would need conjunctive clauses with different
degrees, which is not feasible. Now, let say we redefine φ̃mC, in such a way that it contains
both conjunctions of degree 1 and degree 2, for instance, by summing an mC-kernel of
degree 1 and an mC-kernel of degree 2 (the sum of two kernels induces a feature vector
that is the concatenation of the kernels’ feature vectors). The resulting mapping φ̃mDNF

would not create an embedding space with only f -like formulas anyway, because it would
also contain formulas like a ∨ b. Unfortunately, we cannot overcome this last issue using
Boolean kernels in the way they are defined.

The main problem originates from the basic idea behind Boolean kernels, that is
creating logical formulas “reusing” the same set of inputs in each clause. Let us consider
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the simple case of a disjunctive kernel of degree 2. Given an input binary vector x, both
literals in the disjunction are taken from x, thus they are by definition structurally identical
(i.e., they are both literals). Now, let us consider an mDNF kernel with d disjunctions
and conjunctive clauses of c literals. We have seen that an mDNF kernel is defined as the
mD-kernel applied to the output of an mC-kernel. Hence, firstly, the conjunctive kernel
embedding is computed, i.e., φc

mC(x), where all features have the same structure. Then,
the disjunctive kernel embedding over φc

mC(x) is computed creating the final feature space.
This case is the same as the previous example with the only difference that the input
features are conjunctive clauses (with the same form) rather than literals. Thus, it is evident
that by construction all the clauses are structurally homogeneous.

4. Propositional Kernels

Based on the observations made in the previous section, we now give the intuition
behind the construction of Propositional kernels.

Let us take into consideration logical formulas of the form f⊗(a, b) = a⊗ b where ⊗
is some binary Boolean operation over the variables a, b ∈ {0, 1}. To construct formulas
in such a way that a is taken from a set of variables and b from (possibly) another set, we
need to consider two different input Boolean domains, which we call A and B, respectively.
These domains are generally intended as sets of other Boolean formulas over the input
variables. Now, given an input vector x ∈ {0, 1}n, we map x in both the domain A and B,
i.e., φA(x) and φB(x), and then we perform the Boolean function f⊗ by taking one variable
from φA(x) and one from φB(x). Figure 1 graphically shows the just described procedure.

x

φA(x)

φB(x)

(φA(x)a ⊗ φB(x)b)a∈A,b∈B φA⊗B(x)

φA

φB

Figure 1. A graphical depiction of the idea behind Propositional kernels for breaking the homogeneity
of Boolean kernels: the input vector is mapped onto two, potentially different, spaces, and then the
final feature space is composed of all possible pairs of features one taken from the space of φA and
one taken from the space of φB. Finally the logical interpretation of such final features depends on ⊗.

Formally, we can define a generic propositional embedding function for the logical
operator ⊗ over the domains A and B as:

φA⊗B(x) : x 7→ (φA(x)a ⊗ φB(x)b)a∈A,b∈B, (3)

and consequently the corresponding kernel function κA⊗B(x, z) is defined by

κA⊗B(x, z) = 〈φA⊗B(x), φA⊗B(z)〉 = ∑
(a,b)∈A×B

(φA(x)a ⊗ φB(x)b)(φA(z)a ⊗ φB(z)b), (4)

with x, z ∈ {0, 1}n. The kernel κA⊗B(x, z) counts how many logical formulas of the form
a⊗ b, with a taken from the feature space of φA and b taken from the feature space of φB,
are satisfied in both x and z. To check whether this formulation is ideally able to build
kernels for a generic Boolean formula, let us reconsider the example of the previous section,
i.e., f (a, b, c) = (a ∧ b) ∨ c. If we assume that the domain A contains all the formulas of
the form (a ∧ b), while the domain B contains single literals (actually it corresponds to the
input space), then by using Equation (4) we can define a kernel for f by simply posing
⊗ ≡ ∨. In the next section, we expand upon the idea showed in the example above proving
that we can implement any propositional formula that not contains bound literals (we
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will discuss this limitation). However, we need to design a method to compute it without
expliciting any of the involved spaces (except for the input space).

4.1. Construction of a Propositional Kernel

Since we want to be as general as possible, we need to define a constructive method
for generating and computing a Propositional kernel, rather than a specific formulation for
any possible formula. To do this, we use the fact that Boolean formulas can be defined as
strings generated by a context-free grammar.

Definition 1 (Grammar for propositional logic [28]). Formula in propositional logic are derived
from the context-free grammar, GP , whose terminals are:

• a set of symbols P called atomic propositions;
• a set B of Boolean operators.

The context-free grammar GP is defined by the following productions:

F ::= p, p ∈ P
F ::= ¬ F

F ::= F⊗ F, ⊗ ∈ B

A formula is a word that can be derived from the non-terminal F.

Starting from the grammar GP , we can define the Propositional kernel framework by
providing a kernel for each production (that we call “base” Propositional kernels), and then,
with simple combinations, we can build any Propositional kernel by following the rules of
the grammar.

The first production, i.e., F ::= p, is trivial since is the literal kernel (or monotone
literal kernel in the Boolean kernels’ jargon), i.e., the linear kernel. Similarly, the second
production, i.e., F ::= ¬F, which represents the negation, corresponds to the NOT kernel
(or negation kernel for Boolean kernels), κ¬, which is simply the linear kernel between
the “inverse” of the input vectors, i.e., κ¬(x, z) = (1n − x)ᵀ(1n − z), where 1n is an n-
dimensional vector with all entries equal to 1.

The third and last production, i.e., F ::= F⊗ F, represents a generic binary operation
between logical formulas and/or literals. To be general with respect to the operation F⊗ F,
we need to distinguish the two operands and we cannot make any assumption about what
the operator represents. For these reasons, we will refer to the first and the second operand
with A and B, respectively. Regarding the operation ⊗, we consider a generic truth table as
in Table 1, where y⊗(a, b) is the truth value given all possible combinations of a, b ∈ {0, 1}.

Table 1. Generic truth table for the ⊗ operation.

a b y⊗(a, b)

0 0 0⊗ 0
0 1 0⊗ 1
1 0 1⊗ 0
1 1 1⊗ 1

The kernel we want to define for the operation ⊗ has exactly the form of the kernel
κA⊗B(x, z) previously described (Equation (4)): each operand is taken from (potentially)
different spaces, i.e., different formulas, and the kernel counts how many of these logical
operations are satisfied in both the input vectors.

Since we have to count the common true formulas, we need to take into account
the configurations of a and b that generate a true value for y⊗(a, b), and given those true
configurations we have to consider all the true joint configurations between the inputs.
In other words, a formula can be true for x for a certain configuration while it can be also
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true for z for another configuration. For instance, let the formula be a disjunction of degree
2, i.e., a ∨ b. Then, given a feature of the embedding space, this can be true for x because its
a-part is true, and vice versa for z. To clarify this last concept, please consider Table 2.

Table 2. Joint truth table between x and z for the operation ⊗.

ax bx az bz y⊗(ax, bx)y⊗(az, bz)

0 0 0 0 (0⊗ 0)(0⊗ 0)
0 1 0 0 (0⊗ 1)(0⊗ 0)
1 0 0 0 (1⊗ 0)(0⊗ 0)
1 1 0 0 (1⊗ 1)(0⊗ 0)
0 0 0 1 (0⊗ 0)(0⊗ 1)
...

...
...

...
...

1 1 1 1 (1⊗ 1)(1⊗ 1)

It is evident that the value of the kernel is the sum over all the possible joint configura-
tions of the common true target values between x and z. To compute this, for each row of
the Table 2 we calculate the true formulas in x and z for the configuration corresponding to
the row. For example, in the first row of the table we have to count all the common true
formulas such that the features in A and in B are false in both x and z, and this can be
computed by:

(1|A| − φA(x))ᵀ(1|A| − φA(z))(1|B| − φB(x))ᵀ(1|B| − φB(z)),

which is actually the product of the NOT kernels in the domain A and B, that is:

κ¬(φA(x), φA(z))κ¬(φB(x), φB(z)) = κ¬A(x, z)κ¬B(x, z).

Such computation can be generalized over all the possible 16 configurations, i.e., the
rows of the joint truth table, by the following formula

κA⊗B(x, z) = ∑
(ax ,bx)∈B

∑
(az ,bz)∈B

y⊗(ax, bx)y⊗(az, bz)ΨA(x, ax)
ᵀΨA(z, az)ΨB(x, ax)

ᵀΨB(z, bz) (5)

where B ≡ {(a, b) | a ∈ {0, 1}, b ∈ {0, 1}} and ΨA : {0, 1}n × {0, 1} → {0, 1}|A| is
defined as

ΨA(x, ax) = (1− ax)1|A| + (2ax − 1)φA(x) =

{
φA(x) if ax = 1
1|A| − φA(x) if ax = 0

,

and the definition is analogous for ΨB.
In its worst case, that is when the joint truth table has 1 in every configuration,

the formula has 16 non-zero terms. However, we have to underline that only a small set of
operations need the computation of the corresponding kernel via Equation (5) since we can
use logic equivalences and apply them with the Propositional kernels. The only exceptions
where the logic equivalences do not hold for the Propositional kernels is when there are
constraints in the variables. For example, in logic we can express the xor operation by
means of and, or and not, i.e., a⊕ b ↔ (a ∧ ¬b) ∨ (¬a ∧ b), but this cannot be done with
kernels since we have no way to fix the relations between the first conjunctive clause and
the second conjunctive clause. It is worth noticing that this is expected behavior since the
Propositional kernels have a feature space with all possible arrangements of the variables
in the target formula. Indeed, we can define a Propositional kernel that represents the
formula (a ∧ ¬b) ∨ (¬c ∧ d) which contains the xor-equivalent formula (when a = c and
b = d) along with all other formulas of that form. Still, the Propositional XOR kernel
can be defined but not using the definition above (see next section). In practical terms,
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this limitation should not be critical since we are unaware of which type of formulas is
needed and it makes sense to try with generic formulas than constrained ones. In all the
other cases, logic equivalences hold, e.g., the De Morgan’s laws and the double negation
rule, and this allows us to compute, for example, the implication kernel in terms of the
disjunctive Propositional kernel and the NOT kernel.

In the following we provide a couple of examples of Equation (5) for computing the
Propositional kernels.

Example 1 (Conjunction). The truth table of the conjunction has only one true output, that is
y∧(1, 1). Hence, there exists a unique term in the summation of κA∧B s.t. y∧(ax, bx) · y∧(az, bz) =
1, that is when ax = bx = az = bz = 1. This leads to the following formulation

κA∧B(x, z) = ΨA(x, 1)ᵀΨA(z, 1) · ΨB(x, 1)ᵀΨB(z, 1)

= φA(x)ᵀφA(z) · φB(x)ᵀφB(z)

= κA(x, z)κB(x, z),

which is actually the number of possible conjunctions a ∧ b that are satisfied in both x and z s.t.
a ∈ A, b ∈ B. This can be defined as the product between the number of common true formulas in
A and the number of common true formulas in B, that is the product of the kernels κA and κB.

Example 2 (Exclusive disjunction). The truth table of the exclusive disjunction has two true
outputs, that is when a and b have different truth values. So in this case, the joint truth table have
four non-zero terms:

κA⊕B(x, z) =ΨA(x, 1)ᵀΨA(z, 1) · ΨB(x, 0)ᵀΨB(z, 0)+

ΨA(x, 1)ᵀΨA(z, 0) · ΨB(x, 0)ᵀΨB(z, 1)+

ΨA(x, 0)ᵀΨA(z, 1) · ΨB(x, 1)ᵀΨB(z, 0)+

ΨA(x, 0)ᵀΨA(z, 0) · ΨB(x, 1)ᵀΨB(z, 1),

that through simple math operations is equal to

κA⊕B(x, z) =κA(x, z)κ¬B(x, z)+

(κA(x, x)− κA(x, z))(κB(z, z)− κB(x, z))+

(κA(z, z)− κA(x, z))(κB(x, x)− κB(x, z))+

κ¬A(x, z)κB(x, z),

where κ¬A and κ¬B are the NOT kernels applied on the domains A and B, respectively.

4.2. Propositional Kernels’ Definition

In this section, we will refer to κA and κB as two generic kernel functions of the type
{0, 1}n × {0, 1}n → N, such that κA(x, z) = 〈φA(x), φA(z)〉 and κB(x, z) = 〈φB(x), φB(z)〉,
where φA : {0, 1}n → {0, 1}nA and φB : {0, 1}n → {0, 1}nB .

Using the procedure shown in the previous section and simple mathematical/logical
simplification we can provide a slimmer kernel definition for all 16 possible truth tables.
Table 3 summarizes the definition of the Propositional kernels for all the unary and binary
logical operations. Note that in the table the kernels corresponding to the following
propositions are missing: > (logical true), ⊥ (logical false), b→ a, and b 6→ a. Both > and
⊥ are not included because they are defined as the constant matrix 1 and I, respectively.
While for b → a and b 6→ a it is sufficient to swap the role of A and B in the provided
definitions for a→ b and a 6→ b. Finally, both the literal and the not operator are the same
for B but in the table we report only the definition for A.
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Table 3. “Base” Propositional kernels definition.

κ Logic Op. Name κ(x, z) |κ|
κA a literal κA(x, z) nA

κ¬A ¬a not nA + κA(x, z)− κA(x, x)− κA(z, z) nA
κA∧B a ∧ b and κA(x, z)κB(x, z) nAnB
κA∨B a ∨ b or nAnB − κ(¬A)∧(¬B)(x, x)− κ(¬A)∧(¬B)(z, z) + κ(¬A)∧(¬B)(x, z) nAnB

2κA∧B(x, z) + κA∧(¬B)(x, z) + κ(¬A)∧B(x, z)+
κA⊕B a⊕ b xor −κA(x, z)(κB(x, x) + κB(z, z))− κB(x, z)(κA(x, x) + κA(z, z))+ nAnB

+κA(x, x)κB(z, z) + κB(x, x)κA(z, z)
κA→B a→ b implication κ(¬A)∨B(x, z) nAnB
κA↔B a↔ b equivalence κ¬(A⊕B)(x, z) nAnB
κA 6→B a 6→ b not implicat. κ¬((¬A)∨B)(x, z) = κA∧(¬B)(x, z) nAnB
κAZB a Z B nand κ¬(A∧B) nAnB
κAOB aOB nor κ¬(A∨B) nAnB

4.3. Relation with Boolean Kernels

The main difference between Boolean kernels [8] and Propositional kernels have
already been discussed, i.e., Boolean kernels have a homogeneous structure and Proposi-
tional kernels do not. This difference implies that there exists a discrepancy between the
same type of kernels of the two families. For instance, consider the simple conjunction
a ∧ b, and compare the Boolean monotone conjunctive kernel (κmC) with the propositional
AND kernel (κ∧):

κ∧(x, z) = (xᵀz)2, κmC(x, z) =
(

xᵀz
2

)
=

1
2
(xᵀz)(xᵀz− 1).

The core difference lies in the combinations of features considered by the two kernels.
On one hand, κmC only considers all the combination without repetition of the input
variables, thus excluding conjunctions like x1 ∧ x1 and counting only once the conjunction
x1 ∧ x2. On the other hand, κ∧ takes into consideration all the possible pairs of variables,
including also x1 ∧ x1 and both x1 ∧ x2 and x2 ∧ x1. Albeit Propositional kernels are
computed on “spurious” combinations, this is indeed crucial to allow the overall framework
to work and overcomes the limitations of Boolean kernels.

5. Propositional Kernels’ Composition

All the definitions provided in Table 3 can be used as building blocks to construct
kernels for any propositional formula. Specifically, we use the grammar GP to construct
the parsing tree of the target propositional formula and then we apply the kernels defined
in Table 3 in a bottom-up fashion starting from the leaves of the parsing tree up to the root.

Leaves, that correspond to the only terminal production in the grammar GP , are
always the literal kernel. Then, moving up to the tree any of the other "base" Propositional
kernels can be encountered, and the corresponding kernel is applied where the generic
domain symbols A and/or B are substituted with the domain (i.e., logical proposition)
resulting from the tree rooted in the current node. Let us explain this procedure through
an example.

Example 3 (Constructing the Propositional kernel for the proposition f = (a ∧ ¬b) ∨ ¬c).
The construction of the kernel follows the structure of the parsing tree, depicted in Figure 2, from the
leaves to the root. The leaves, as previously said, are literal kernels between the input vectors, thus it
is the linear kernel, i.e., κA(x, z) = κB(x, z) = κC(x, z) = xᵀz. Then, the NOT kernel is applied
on both b and c, κ¬B(x, z) = κ¬C(x, z) = n + xᵀz − xᵀx − zᵀz. Afterwards, the left branch
applies the AND kernel between the input a and the latent representation of the NOT kernel on b,
i.e., κA∧¬B(x, z) = (xᵀz)(n + xᵀz− xᵀx− zᵀz). Finally, the root applies the OR kernel between
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the representations of the two branches. The OR kernel is defined in terms of AND kernels applied
to the negation of the two expressions involved in the disjunction, in this case (a ∧ ¬b) and ¬c.

Let us start by computing κ¬¬C:
κ¬¬C(x, z) = κ¬(¬C)(x, z)

= n + (n + xᵀz− xᵀx− zᵀz)− (n + xᵀx− xᵀx− xᵀx)− (n + zᵀz− zᵀz− zᵀz)

= xᵀz− xᵀx− zᵀz + xᵀx + zᵀz

= xᵀz = κC(x, z).

Unsurprisingly, computing κ¬¬C, is equivalent to compute κC, that shows that the logical
double negation rule applies to Propositional kernels. Now, for computing κ¬(A∧¬B), we show that
the De Morgan’s law also holds:

κ¬(A∧¬B)(x, z) = n2 + (xᵀz)(n + xᵀz− xᵀx− zᵀz)

− (xᵀx)(n− xᵀx− xᵀx− xᵀx)

− (xᵀz)(n− zᵀz− zᵀz− zᵀz) = κ¬A∨B(x, z) = κA→B(x, z)

Finally, we put everything together, obtaining:
κ f (x, z) = n3 + κA→B(x, z)κC(x, z)− κA→B(x, x)κC(x, x)− κA→B(z, z)κC(z, z).

Algorithm 1 shows the pseudo-code of the just-described procedure. In the algorithm,
K¬ is a function with signature (KA, |A|) with KA a Propositional kernel matrix and |A|
the dimension of its feature space. Similarly, in the binary case, the functions’ signatures
are (KA, |A|, KB, |B|) with KA, KB Propositional kernel matrices and |A|, |B| the dimension
of their feature spaces. All the kernel functions return a tuple made up of a kernel matrix
and its feature space dimension.

The source code is available at https://github.com/makgyver/propositional_kernels
(accessed on 6 August 2021).

Algorithm 1: compute_kernel: compute a Propositional kernel (for a data set X)
given a propositional parsing tree.

Input:
X ∈ {0, 1}m×n: input data in a matrix form (examples on the rows);
T : (root of the) parsing tree

Output:
K: Propositional kernel;
dim: dimension of the feature space

. recursion base case: terminal node → linear kernel
1 if T is terminal then
2 return XᵀX, n

. ¬ is the only unary operation
3 if T.operator = ¬ then
4 Kt, nt ← compute_kernel(X, T.child)
5 return K¬(Kt, nt)

. handle the binary operators
6 else
7 Kl , nl ← compute_kernel(X, T.left_child)
8 Kr, nr ← compute_kernel(X, T.right_child)
9 return KT.operator(Kl , nl , Kr, nr)

10 end

https://github.com/makgyver/propositional_kernels
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Figure 2. Parsing tree for (a ∧ ¬b) ∨ ¬c.

6. Propositional Kernels’ Application

In this section, we evaluate Propositional kernels on binary classification tasks. Specif-
ically, we conducted two sets of experiments: one on artificial data sets and one on bench-
mark data sets. In the first set of experiments, we assessed the benefit of using Propositional
kernels on artificially data sets created with the following procedure:

1. Generate a binary matrix (with examples on the rows) X ∈ {0, 1}m×n where each row
represents a distinct assignment of the n binary variables (i.e., m = 2n);

2. Generate a random logical proposition f over the n variables using Algorithm 2;
3. Create the vector of labels y ∈ {0, 1}m such that yi = 1 iff f (xi) = >, 0 otherwise.

This “controlled” test aims at showing that the Propositional kernel corresponding to
the rule that generates the labels guarantees good classification performance.

Algorithm 2: generate_rule: Algorithm for generating the parsing tree of a
random propositional rule.

Input:
n : number of input features of the data set;
p ∈ (0, 1): bias factor;
η ∈ (0, 1) : decay;
t ∈ N+: tree depth (default: 0)

Output:
T: parsing tree

1 pt ← 1− pηt

2 if random(0,1) < pt then
3 f ← random_int(0, n)
4 T ← Terminal node associated with the feature f
5 if random(0,1) < 0.5 then
6 return T
7 else
8 return ¬(T) . creates a unary parent node associated to the NOT

operator
9 end

10 else
11 op← random_choice({¬,∧,∨,⊕,→,←,↔,Z,O,9,8})
12 if op = ¬ then
13 return ¬(generate_rule(n, p, η, t + 1)
14 else
15 Tl ← generate_rule(n, p, η, t + 1)
16 Tr ← generate_rule(n, p, η, t + 1)
17 return op(Tl , Tr) . creates a binary parent node associated to op
18 end
19 end

In these experiments we created the artificial data sets using Algorithm 2 with η = 0.7
and p = 0.4. We chose these values to obtain relatively short formulas that explain the
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labels. Figure 3 shows the distribution of the length (i.e., number of leaves in the parsing
tree) of the formulas over 1000 generations.

1 2 3 4 5 6 7 8 9
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length
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t

Figure 3. Distribution of the rules length (i.e., number of literals) on 1000 random Propositional
kernel generations with p = 0.4 and η = 0.7 (i.e., the values used in the experiments).

As evident from the figure, the used parametrization gives a bias towards short rules
(i.e., 2 or 3 literals), and the probability of having longer rules quickly decays. In terms of
explainability, shorter rules are easier to understand than longer and more complex ones.
For this reason, we perform this set of experiments using this rules length distribution.

Given the data set (X, y), we compared the AUC of the Propositional kernel imple-
menting the rule that generated y (called Target kernel) against 10 Propositional kernels that
implement a randomly generated rule using the same approach (with the same parameters)
described in Algorithm 2. The used kernel machine is a hard-margin SVM and n = 10
which generates a total of 1024 (=210) examples of which 30% has been held out as the
test set. We performed the comparison varying the size of the training set and the overall
procedure has been repeated 100 times. The average results over all the repetitions are
reported in Figure 4.

100 200 400 700
0.95
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0.98
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1
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U

C

Target kernel
Other kernels

Figure 4. AUC results varying the number of training examples.

The plots show that the target kernel can achieve AUC > 0.99 with only 100 examples
(i.e., ∼10% of the all data set), and it achieves almost perfect classification accuracy with
200 examples. The performance of the other Propositional kernels remains on average a 3%
behind, and never achieves perfect classification despite using all the training examples.
These results show that using a Propositional kernel implementing the rule governing the
labeling ensure high classification accuracy.

However, in real classification problems, we do not know beforehand if and which
rule over the input variables produces the labels. Thus, we propose a simple yet efficient
heuristic to select an appropriate Propositional kernel while avoiding performing an
extensive validation. Given its combinatorial nature, we cannot systematically generate all
possible Propositional kernels. Moreover, assuming that we can select a subset of possible
good Propositional kernels, performing validation over all such kernels could be very
demanding especially on large-scale data sets.
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Thus, our proposal is based on two desiderata:

1. we are interested in generating kernels that can be helpful to interpret the solution of
a kernel machine;

2. we want to avoid to perform an extensive and time-consuming validation.

To cope with our first goal, we generate kernels using the same procedure used in the
previous set of experiments, i.e., kernel-based on rules generated by Algorithm 2 with the
same parameters. In this way, we may enforce a bias toward formulas of shorter length for
ensuring decent explainability. Nonetheless, by acting on p and η we can also compute
very complex formulas if we do not care much about explainability. On one hand, by acting
on the value of p, is possible to shift the peak of the distribution towards longer (p→ 1) or
shorter (p → 0) rules (Figure 5). On the other hand, by changing η is possible to change
the range of the degree. High values of η decrease the range, while smaller values (η → 0)
would allow having rules with hundreds of literals (Figure 5).
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Figure 5. Distribution of the rules length on 1000 randomly generated Propositional kernels varying p ∈ {0.2, 0.4, 0.6} and
η ∈ {0.1, . . . , 0.9}. Higher values of p are not included because the generative procedure becomes too slow.

Moreover, Algorithm 2 can be substituted with any other procedure that randomly
generates rules that are then used to compute the kernels. The kernel generation procedure
should be designed to leverage any a-priori knowledge about the data set at hand. However,
in these experiments, we assume no prior knowledge about the data sets, and the provided
bias aims at providing (potentially) effective but easy to explain rules.

To avoid the validation procedure, we suggest selecting, from the pool of generated
kernels, the one that minimizes the radius-margin ratio [29–32], that is the ratio between
the radius of the minimum enclosing ball that contains all the training examples and
the margin observed on training data. A similar strategy has been previously employed
in [30,32]. The intuition is that by minimizing the radius-margin ratio we aim at selecting
a representation with a large margin and small radius that we can expect to achieve a
tighter generalization error bound which can lead to better performance. To validate this
procedure, we performed a set of experiments on 10 categorical benchmark data sets which
details are reported in Table 4.

In these experiments, we used a soft-margin SVM. We validated the hyper-parameter
C in the set {10−5, . . . , 104} using nested 5-fold cross-validation, and all kernels have been
normalized, that is, given a kernel matrix K we computed its normalized version K̃ as

K̃ =
K√
ddᵀ

,

where d is a n-dimensional vector containing the diagonal of K.
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Table 4. Datasets information: name, number of instances, number of features, classes distribution
and number of active variables (ones) in every example (i.e., ‖x‖1).

Dataset #Instances #Features Distribution (%) ‖x‖1

dna 2000 180 47/53 47
house-votes 232 32 47/53 16

kr-vs-kp 3196 73 52/48 36
monks 432 17 33/67 6

primary-tumor 339 34 42/58 15
promoters 106 228 50/50 57

soybean 266 97 55/45 35
spect 267 45 79/21 22

splice 3175 240 48/52 60
tic-tac-toe 958 27 65/35 9

Given a data set, we randomly generated 30 Propositional kernels and for each of
them, we trained a soft-margin SVM. In Figure 6, we show, for each data set, the achieved
AUC w.r.t. the radius-margin ratio of each of the 30 kernels. As a reference, we also indicate
with a red dotted line the performance of the linear kernel as well as the performance (blue
dotted line) of the best performing Boolean Kernel according to [8]. We tested all monotone
and non-monotone Boolean kernels (i.e., disjunctive, conjunctive, CNF and DNF) up to
degree 5 for both the conjunctive and the disjunctive clauses. The best Boolean kernel is
selected according to the AUC on the test set.

From the plots, and from the correlation analysis reported in Table 5 it is evident that
the minimal radius-margin ratio represents a good, although not perfect, heuristic. There
are three cases in which the correlation between low radius-margin ratio and high AUC is
not statistically significant, namely for house-votes, spect and splice. However, in these
data sets, it seems that almost all of the randomly generated Propositional kernels have
a similar performance which makes the heuristic not useful but still not harmful. There
are also two data sets (monks and primary-tumor) in which the negative correlation is
weakly significant, yet the kernel with the lowest radius-margin ratio is competitive: best
performance in monks and ∼0.5% inferior to the best AUC in primary-tumor.

Table 5. Pearson correlation coefficient (with associated p-value) between the radius-margin ratio
and the AUC of the generated Propositional kernels. Negative correlation means that lower values of
radius-margin ratio are correlated to higher AUC values. The column “Significance” indicates with a
4 star-based notation the significance of the results, where * ≡ p ∈ [0.1, 0.01), ** ≡ p ∈ [0.01, 0.001),
*** ≡ p ∈ [0.001, 0.0001), and **** ≡ p ≤ 0.0001.

Dataset Pearson p-Value Significance

splice 0.195 3.19 × 10−1 -
soybean −0.931 8.74 × 10−14 ****

tic-tac-toe −0.852 8.90 × 10−9 ****
promoters 0.4634 9.92 × 10−3 **

house-votes-84 0.2483 1.94 × 10−1 -
dna −0.7401 6.75 × 10−6 ****

spect 0.1265 5.05 × 10−1 -
kr-vs-kp −0.6239 3.89 × 10−4 ***

primary-tumor −0.2896 1.00 × 10−1 *
monks-1 −0.3008 1.00 × 10−1 *

In almost all data sets the linear kernel performs badly with respect to the Propositional
kernels. Nonetheless, on both spect and house-votes the linear kernel performs decently.
In particular, on spect the generated Propositional kernels seem to be sub-optimal and the
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best performance is achieved by Boolean kernels. We argue that in this specific data set
kernels with low complexity (e.g., low spectral-ratio [31]) tend to perform better. Indeed,
the tested Boolean kernels implement simple combinations of disjunctions and conjunctions,
while Propositional kernels are generally more complex given the wider range of operations
that they can implement. This is further supported by the good performance of the
linear kernel.

Despite the just mentioned exception, Propositional kernels achieve the highest AUCs
in all other data sets exceeding 98% of AUC in all but primary-tumor. This particular
classification task seems to be more difficult than the others and this is further underlined
by the poor performance of both the linear and the best Boolean kernel.
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Figure 6. AUC score and reached ratio for each considered data set. In general, high AUC values correspond to small ratio.
The red dotted line indicates the performance of the linear kernel, while the blue dotted line is the highest AUC achieved by
a Boolean kernel on the test set. The color of the dots indicate the relative performance w.r.t. the others, namely red is the
highest, blue the lowest.
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It is also noteworthy that in all data sets, except primary-tumor, promoters and
soybean, the radius-margin ratio achieved by the linear kernel was out of scale w.r.t. to the
ones in the plots. This is due to the fact that such data sets are not linearly separable.

7. Conclusions and Future Work

We proposed a novel family of kernels, dubbed Propositional kernels, for categorical
data. The Propositional kernel framework improves upon Boolean kernels, overcoming
their expressiveness’ limitations. We show how Propositional kernels can be built and
composed providing the python source code. An extensive empirical evaluation on artificial
and benchmark categorical data sets demonstrates the effectiveness of this new family
of kernels.

The natural follow-up of this work is to use Propositional kernels to explain the
decision of an SVM. Given their expressivity richness, Propositional kernels may allow
generating shorter and in general more accurate rules than Boolean kernels. Another
direction that might be explored is to use Multiple Kernel Learning (MKL) combining
different Propositional kernels. This would allow combining a set of Propositional kernels
leaving to the MKL approach the task of selecting (i.e., weighting) the most relevant kernels
for the task at hand.
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1. Došilović, F.K.; Brčić, M.; Hlupić, N. Explainable artificial intelligence: A survey. In Proceedings of the International Convention

on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018;
pp. 210–215.

2. Hall, P.; Gill, N.; Schmidt, N. Proposed Guidelines for the Responsible Use of Explainable Machine Learning. In Proceedings of
the NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy,
Vancouver, Canada, 8–14 December 2019.

3. Jeyakumar, J.V.; Noor, J.; Cheng, Y.H.; Garcia, L.; Srivastava, M. How Can I Explain This to You? An Empirical Study of Deep
Neural Network Explanation Methods. Available online: https://www.semanticscholar.org/paper/How-Can-I-Explain-This-to-
You-An-Empirical-Study-of-Jeyakumar-Noor/3f9474022c113b087cb0ccb65ddea05672e22745 (accessed on 7 August 2021).

4. Shi, H.; Fu, W.; Li, B.; Shao, K.; Yang, D. Intelligent Fault Identification for Rolling Bearings Fusing Average Refined Composite
Multiscale Dispersion Entropy-Assisted Feature Extraction and SVM with Multi-Strategy Enhanced Swarm Optimization. Entropy
2021, 23, 527. [CrossRef] [PubMed]

5. Massaroppe, L.; Baccalá, L.A. Kernel Methods for Nonlinear Connectivity Detection. Entropy 2019, 21, 610. [CrossRef] [PubMed]
6. Martino, A.; Rizzi, A. (Hyper)graph Kernels over Simplicial Complexes. Entropy 2020, 22, 1155. [CrossRef] [PubMed]
7. Barakat, N.; Bradley, A.P. Rule extraction from support vector machines: A review. Neurocomputing 2010, 74, 178–190. [CrossRef]
8. Polato, M.; Lauriola, I.; Aiolli, F. A Novel Boolean Kernels Family for Categorical Data. Entropy 2018, 20, 444. [CrossRef]

[PubMed]
9. Polato, M.; Aiolli, F. Boolean kernels for rule based interpretation of support vector machines. Neurocomputing 2019, 342, 113–124.

[CrossRef]
10. Polato, M. Definition and Learning of Logic-Based Kernels for Categorical Data, and Application to Collaborative Filtering.

Ph.D. Thesis, University of Padova, Padova, Italy, 2018.
11. Sadohara, K. Learning of Boolean Functions Using Support Vector Machines. In Proceedings of the International Conference on

Algorithmic Learning Theory (ALT), Washington DC, USA, 25–28 November 2001; pp. 106–118.
12. Kimeldorf, G.S.; Wahba, G. Some Results on Tchebycheffian Spline Functions. J. Math. Anal. Appl. 1971, 33, 82–95. [CrossRef]
13. Hofmann, T.; Schölkopf, B.; Smola, A.J. Kernel methods in machine learning. Ann. Stat. 2008, 36, 1171–1220. [CrossRef]
14. Watkins, C. Kernels from Matching Operations; Technical Report; Royal Holloway, University of London: London, UK, 1999.

https://www.semanticscholar.org/paper/How-Can-I-Explain-This-to-You-An-Empirical-Study-of-Jeyakumar-Noor/3f9474022c113b087cb0ccb65ddea05672e22745
https://www.semanticscholar.org/paper/How-Can-I-Explain-This-to-You-An-Empirical-Study-of-Jeyakumar-Noor/3f9474022c113b087cb0ccb65ddea05672e22745
http://doi.org/10.3390/e23050527
http://www.ncbi.nlm.nih.gov/pubmed/33923036
http://dx.doi.org/10.3390/e21060610
http://www.ncbi.nlm.nih.gov/pubmed/33267324
http://dx.doi.org/10.3390/e22101155
http://www.ncbi.nlm.nih.gov/pubmed/33286924
http://dx.doi.org/10.1016/j.neucom.2010.02.016
http://dx.doi.org/10.3390/e20060444
http://www.ncbi.nlm.nih.gov/pubmed/33265534
http://dx.doi.org/10.1016/j.neucom.2018.11.094
http://dx.doi.org/10.1016/0022-247X(71)90184-3
http://dx.doi.org/10.1214/009053607000000677


Entropy 2021, 23, 1020 18 of 18

15. Khardon, R.; Roth, D.; Servedio, R. Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms; Technical
Report; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2001.

16. Sadohara, K. On a Capacity Control Using Boolean Kernels for the Learning of Boolean Functions. In Proceedings of the
International Conference on Data Mining (ICDM), Maebashi, Japan, 9–12 December 2002; pp. 410–417.

17. Zhang, Y.; Li, Z.; Kang, M.; Yan, J. Improving the classification performance of boolean kernels by applying Occam’s razor.
In Proceedings of the International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS),
Singapore, 15–18 December 2003.

18. Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: New York, NY, USA, 2004.
19. Kusunoki, Y.; Tanino, T. Boolean kernels and clustering with pairwise constraints. In Proceedings of the International Conference

on Granular Computing (GrC), Chongqing, China, 26–29 May 2014; pp. 141–146.
20. Kowalczyk, A.; Smola, A.J.; Williamson, R.C. Kernel Machines and Boolean Functions. Available online: https:

//www.semanticscholar.org/paper/Kernel-Machines-and-Boolean-Functions-Kowalczyk-Smola/ea1244e3a362ab880e9
f04b9ec9b9946f387b8bd (accessed on 7 August 2021).

21. Khardon, R.; Servedio, R.A. Maximum Margin Algorithms with Boolean Kernels. Available online: https://www.jmlr.org/papers/
volume6/khardon05a/khardon05a.pdf (accessed on 7 August 2021).

22. Cui, K.; Han, F.; Wang, P. Research on Face Recognition Based on Boolean Kernel SVM. In Proceedings of the International
Conference on Natural Computation (ICNC), Jinan, China, 25–27 August 2008; Volume 2, pp. 148–152.

23. Cui, K.; Du, Y. Application of Boolean Kernel Function SVM in Face Recognition. In Proceedings of the International Conference
on Networks Security, Wireless Communications and Trusted Computing (NSWCTC), Wuhan, China, 25–26 August 2009;
Volume 1, pp. 619–622.

24. Liu, S.; Cui, K. Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering. Mod. Appl. Sci. 2009, 3, 27–31
[CrossRef]

25. Cui, K.; Du, Y. Short-Term Load Forecasting Based on the BKF-SVM. In Proceedings of the International Conference on
Networks Security, Wireless Communications and Trusted Computing (NSWCTC), Wuhan, China, 25–26 August 2009; Volume 2,
pp. 528–531.

26. Polato, M.; Aiolli, F. Boolean kernels for collaborative filtering in top-N item recommendation. Neurocomputing 2018, 286, 214–225.
[CrossRef]

27. Polato, M.; Aiolli, F. Kernel based collaborative filtering for very large scale top-N item recommendation. In Proceedings of
the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges,
Belgium, 27–29 April 2016; pp. 11–16.

28. Ben-Ari, M. Mathematical Logic for Computer Science, 3rd ed.; Springer Publishing Company, Incorporated: London, UK. 2012.
29. Chung, K.M.; Kao, W.C.; Sun, T.; Wang, L.L.; Lin, C.J. Radius margin bounds for support vector machines with the RBF kernel.

In Proceedings of the International Conference on Neural Information Processing (ICONIP), Singapore, 18–22 November 2002;
Volume 2, pp. 893–897.

30. Do, H.; Kalousis, A. Convex Formulations of Radius-Margin Based Support Vector Machines. In Proceedings of the International
Conference on Machine Learning (ICML), Atlanta, GA, USA, 16–21 June 2013; pp. 169–177.

31. Donini, M.; Aiolli, F. Learning deep kernels in the space of dot product polynomials. Mach. Learn. 2017, 106, 1245–1269.
[CrossRef]

32. Lauriola, I.; Polato, M.; Aiolli, F. Radius-Margin Ratio Optimization for Dot-Product Boolean Kernel Learning. Available
online: https://www.researchgate.net/publication/318468451_Radius-Margin_Ratio_Optimization_for_Dot-Product_Boolean_
Kernel_Learning (accessed on 7 August 2021).

https://www.semanticscholar.org/paper/Kernel-Machines-and-Boolean-Functions-Kowalczyk-Smola/ea1244e3a362ab880e9f04b9ec9b9946f387b8bd
https://www.semanticscholar.org/paper/Kernel-Machines-and-Boolean-Functions-Kowalczyk-Smola/ea1244e3a362ab880e9f04b9ec9b9946f387b8bd
https://www.semanticscholar.org/paper/Kernel-Machines-and-Boolean-Functions-Kowalczyk-Smola/ea1244e3a362ab880e9f04b9ec9b9946f387b8bd
https://www.jmlr.org/papers/volume6/khardon05a/khardon05a.pdf
https://www.jmlr.org/papers/volume6/khardon05a/khardon05a.pdf
http://dx.doi.org/10.5539/mas.v3n10p27
http://dx.doi.org/10.1016/j.neucom.2018.01.057
http://dx.doi.org/10.1007/s10994-016-5590-8
https://www.researchgate.net/publication/318468451_Radius-Margin_Ratio_Optimization_for_Dot-Product_Boolean_Kernel_Learning
https://www.researchgate.net/publication/318468451_Radius-Margin_Ratio_Optimization_for_Dot-Product_Boolean_Kernel_Learning

	Introduction
	Related Work
	Boolean Kernels for Categorical Data
	Limitations of the Boolean Kernels

	Propositional Kernels
	Construction of a Propositional Kernel
	Propositional Kernels' Definition
	Relation with Boolean Kernels

	Propositional Kernels' Composition
	Propositional Kernels' Application
	Conclusions and Future Work
	References

