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Following the development in recent years of progressively accurate approximations to the
exchange-correlation functional, the use of density functional theory (DFT) methods to examine
increasingly large and complex systems has grown, in particular for solids and other condensed
matter systems. However the cost of these calculations is high, often requiring the use of specialist
HPC facilities. As such, for the purpose of large scale high-throughput screening of material proper-
ties, a hierarchy of simplified DFT methods has been proposed that allows the comparatively rapid
calculation of the electronic structure of large systems, and we have recently extended this scheme
to the solid state (sol-3c). Here, we analyze the applicability and scaling of the new sol-3c DFT
methods to molecules and crystals composed of light-elements, such as small proteins and model
DNA-helices. Furthermore, the calculation of the electronic electronic structure of large to very
large porous systems, such as metal-organic frameworks and inorganic nanoparticles, is discussed.
The new composite methods have been implemented in the CRYSTAL17 code, which e�ciently
implements hybrid functionals and enables routine application of the new methods to large scale
calculations of such materials with excellent performance even on small-scale computing resources.

PACS numbers:

I. INTRODUCTION

Density functional theory, within the Kohn-Sham for-
malism, is a computationally e�cient alternative to
wave function methods to compute ground-state prop-
erties of atoms, molecules, and solids. Nowadays, it
is the most widely used methodology for electronic
structure calculations in quantum chemistry, solid-state
physics, and materials science. The success of DFT lies
in the simplicity of the theoretical framework1,2, the
favourable scaling of the computational cost, which is
similar to Hartree-Fock3,4, and the accuracy that can
be achieved after three decades of research finding in-
creasingly good approximations to the elusive exchange-
correlation functional5. Modern density functionals im-
prove the short- to medium-range correlation by the
combination of exact constraints with various degrees of
parametrization.6–8 A substantial development in the last
decade is the incorporation of dispersion forces in the
DFT framework,9–11 which extends the applicability of
DFT to non-covalently bound molecular complexes and
solids.

Furthermore, substantial progress has been made to
e�ciently implement DFT methodologies in a variety of
program codes12–16 and testing their reproduceability in
solid state applications.17 The trade-o↵ between cost and
accuracy so allowed has been the key that has opened up
the applicability of DFT to various fields from physics
to chemistry, from biology to materials science, and from
catalysis to mineralogy. With the advent of increasingly
powerful CPUs and a huge increase in the availability

and exploitation of parallelism the amount of computa-
tional resources from commodity PC to supercomput-
ers has reached the peta-flop era18. This has allowed
DFT to be applied to large scale simulations thus push-
ing the limit from a few hundreds to many thousands of
atoms.18,19

Among di↵erent families of exchange-correlation (XC)
functionals, hybrid functionals have emerged in the last
decades as the method of choice for molecular cal-
culations, while solid-state applications are still domi-
nated by generalized gradient approximated (GGA) or
meta-GGA functionals.20 However, a certain amount of
Hartree-Fock exchange reduces the self interaction error
and thus rather generally improves the electronic struc-
ture description of finite gap materials.21–24 Indeed, it
has been empirically shown that hybrid functionals im-
prove over GGAs for many important properties like
band gaps, themochemistry, kinetics, and noncovalent
interactions.5,25,26

Recently a hierarchy of cost-e↵ective composite elec-
tronic structure methods has been proposed.27 This hi-
erarchy provides a comprehensive description of the avail-
able compromises between cost and accuracy for cal-
culations on (mainly) molecular systems of increasing
size. They are based on the pure Hartree-Fock (HF)
method or HF/DFT hybrid functionals with the tar-
get of yielding excellent structures and reasonable en-
ergetic properties. Recently, its applicability has been
extended to solid-state applications by (i) employing
exchange-correlation functionals developed for solids (i.e.
PBEsol28 and HSEsol29); (ii) reducing the amount of HF
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exchange in DFT hybrid methods for a better description
of electronic properties30–32 (e.g. 20-25%) and (iii) apply-
ing a simple recipe to make molecular basis sets suitable
for solid-state calculations. The resulting methods have
been dubbed as PBEsol0-3c and HSEsol-3c.

Related composite approaches have been used in com-
puting crystal energy landscapes of active pharmaceuti-
cal ingredients.33,34

As hardware costs have plummeted over the last few
years, it is not uncommon to have computing systems
containing up to around 80 cores, with an appropriate
amount of memory, at a cost of about 10k - 15k eu-
ros. The ready availability of such computational sys-
tems raises the question what types of calculations as de-
scribed within the above hierarchy can be performed on
such hardware, and what size of system can be addressed.
Of course to address this question properly, cost e↵ec-
tive methods and cost e↵ective hardware must be also
combined with an e�cient implementation that permits
calculations of large systems even on the limited num-
ber of cores provided by desktops, small clusters or even
small-scale cloud computing resources. To that purpose,
the methods described above have been implemented in
the CRYSTAL1712 code. CRYSTAL is characterised by
the use of an atom-centred basis sets of Gaussian-type
orbitals to expand Bloch functions35 and by an exten-
sive exploitation of the symmetry36. When compared
to plane-wave codes, the computational cost due to the
inclusion of exact exchange in the functional is small,
and as such calculations employing hybrid functionals are
competitive with those using pure XC functionals.
CRYSTAL can be run in serial and in parallel37. For the
latter, two versions are available, namely Pcrystal and
MPPcrystal. The first one is based on a replicated-data
treatment of matrices and vectors while the second one
distributes data among the processors. Details of the
implementation and scaling are reported elsewhere38–41

and we refer to those works for the discussion of the al-
gorithms employed in the implementation. In this work,
we adopted the MPP version of the code that has been
shown to e�ciently scale up to 30000 cores or more. How-
ever here, as stated above, we concentrate not on what
can be done on the highest end; rather we intend to try
and describe what can be done with the more modest but
more readily available hardware that all researchers can
access; the truth is that in many cases access to very high
end computing systems is either di�cult, or impractical,
or both.

The point is simple: anyone can now access small-scale
computing capabilities in their laboratories, without lit-
erally having state-of-the-art HPC machines at their fin-
gertips. We therefore will concentrate on examining what
systems may be solved in the 40-80 core regime, with
3.2 Gbytes of memory available per core, and will show
that solid state calculations with hybrid DFT composite
methods can be run for physical systems with more than
1000 atoms on computational systems with a relatively
small number of cores at a moderate cost in terms of

CPU time and memory.

II. COMPUTATIONAL METHODS

A. Methodologies

In this section we briefly recall the main ingredients
of the composite hybrid methods which are examined in
this work. The total energy provided can be written as42

Esol-3c

tot

= EDFT/basis

tot

+ ED3

disp

+ EgCP

BSSE

(1)

The di↵erent contributions are discussed in detail below.
EDFT/basis

tot

denotes the total energy evaluated with the
hybrid XC functional. In the present work, the theoret-
ical methods are the global hybrid PBEsol0 functional28

and the range-separated hybrid HSEsol functional29.
The two methods were chosen because they were specif-
ically devised for solids and they use 25% of exact ex-
change in the hybrid exchange functional, which has been
shown to be a good compromise.43 The basis is the re-
vised def2-mSVP for PBEsol0-3c and HSEsol-3c.44 The
DFT/basis total energy is supplemented with a damped
atom-atom two-body dispersion energy as defined in the
D3 approach:
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Here, CAB
n denotes the nth-order dispersion coe�cient

(orders = 6, 8) for each atom pair AB, RAB is their inter-
nuclear distances and sn are the order-dependent scaling
factors. The rational Becke-Johnson damping function45

has become the default in combination with D3:
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The damping function incorporates radii for atomic pairs
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and functional-specific parame-
ters a

1

and a
2

that have been refitted in the present
work for the di↵erent composite methods. In addition,
the Axilrod–Teller–Muto46,47 (ATM) three-body dipole-
dipole-dipole term is also included.
The removal of the basis set superposition error

(BSSE) due to the use of small basis sets is accomplished
through the geometrical counterpoise correction:

EgCP

BSSE

=
�

2

X

AB

V gCP

A (RAB) f
gCP

damp

(RAB) (4)

The di↵erence in atomic energy between a large (nearly
complete) basis set and the target basis set for each free
atom is used as a measure to generate the repulsive po-
tential V gCP

A with fitting parameters ↵, �, ⌘. All func-
tional and basis set specific parameters have been opti-
mized for each revised composite method as discussed in
Ref. 48.
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B. Computational details

The calculations have been performed with a develop-
ment version of CRYSTAL1712,37 in its massively parallel
version, using an all-electron split valence double-⇣ basis
set recently revised to deal with solid state calculations
on inorganic systems.44,48 For the numerical integration
of the exchange-correlation term a (75,974) pruned grid
was adopted, corresponding to the XLGRID keyword as
used by the CRYSTAL code. The threshold for conver-
gence of the SCF energy was set to 10�7 Ha. The Fock
matrix in the reciprocal space was diagonalized at the
central point of the first Brillouin zone (� point). Due to
the large unit cells and non-conducting density of states,
electronic structure calculations are already converged at
the �-point. The tolerances for one- and two-electron in-
tegrals calculation were set to 10�6, 10�6 for the calcu-
lation of Coulomb integrals and to 10�6, 10�6 and 10�12

for the exchange integrals.
If not otherwise specified, calculations have been car-

ried out on a small cluster composed of 4 nodes, each
equipped with 20 core Intel R� Xeon R� E5-2630 v4 proces-
sors and 3.2 GB of RAM per core, and connected through
a Gigabit Ethernet network. Inter-process communica-
tion is via the OpenMPI implementation of MPI.

C. Applicability of the presented methods

The advantage of the presented composite methods
is that they permit running calculations with state-of-
the-art hybrid functionals from small-scale to large-scale
computing resources, even though here we focus on the
former. This is non-trivial to achieve by other theoret-
ical approaches in solid state calculations (e.g. plane-
waves/pseudopotentials) for which applications are usu-
ally limited to semilocal functionals. However, several
numerical techniques have emerged that try to address
these computational bottlenecks.49–52 Here, the trade-
o↵ between accuracy and cost has been made possible
by a well balanced mixing of a small-to-medium sized
double-zeta quality basis set and semiclassical corrections
to cope with dispersion energy and to correct for the ba-
sis set superposition error, thus making them competitive
with more costly triple-zeta quality calculations.

Numerical applicability to large-scale simulations are
related to memory usage, speed-up and inter-process
communication, and we see the following advantages and
disadvantages:

(+) Low memory usage because of a smaller size of the
matrices and vectors that are usually kept in mem-
ory but can be distributed among the processors.

(+) E�cient scaling for the calculation of one- and two-
electron integrals as well as the diagonalization and
exploitation of all space group symmetries.

(+) Use of e�cient distributed memory parallel li-
braries and avoidance of I/O throughout the cal-
culation resulting in good scaling of the total cal-
culation

(-) High computational cost of individual integral eval-
uation compared to plane wave basis.

(-) Necessity to orthogonalize the basis set overlap,
which might lead to linear dependencies in dense
systems.

(-) Less clear route towards complete basis set results.

In terms of material classes, we have extended the orig-
inal composite methods substantially and can now seam-
lessly describe molecules and molecular crystals, biologi-
cal materials, oxides, nanomaterials, and layered materi-
als. However, there are a range of systems and materials,
where the presented approaches have to be used carefully.
Whenever strong correlation occurs, the high amount of
Fock exchange will be problematic and pure semi-local
functionals are known be more robust. The presented
methods might also fail for materials with vanishing band
gap (e.g. metals), where unscreened Fock exchange is not
appropriate. Here, a semi-local functional is preferred
and its evaluation in a plane-wave expansion will most
likely be more e�cient due to the delocalized nature of
the valence band. Even the London dispersion correction
is not well founded for metallic systems as it is based on
a partitioning of the response function to local (atomic)
contributions.

III. RESULTS AND DISCUSSION

A. Benchmarks and scaling

We first analyze the e�ciency of the sol-3c composite
methods for several benchmark systems with increasing
size from 100 atoms to 3000 atoms, For this, we consider
the wall-clock time for an SCF and gradient (both atomic
and cell component) calculation on 40 and 80 cores using
MPPcrystal. The selected systems are listed in Table
IIIA and show a variety of periodicities ranging from 1D
through 2D to 3D, and also molecules and clusters (0D).
We focused our attention on:

(i) Biologically relevant systems such as the small pro-
tein of Crambin and its crystalline anhydrous struc-
ture, the triple helix of collagen and 1D mod-
els of DNA made of an infinite-chain of Adenine-
Thymine (AT) and Cytosine-Guanine (CG) homo-
polynucleotides.

(ii) The external and inner surfaces of amorphous sil-
ica through 2D and 3D models, respectively, with
adsorbed drug molecules.

(iii) A supercell 3D-model of the mineral forsterite along
with a corresponding nanoparticle (0D-model).

Bartolomeo Civalleri




4

TABLE I: HSEsol-3c wall-clock time (sec.) required for SCF and gradients calculation performed on 40 and 80 cores IntelR�

XeonR� E5-2630 v4 for several systems. Data are gathered with respect to the periodicity of the system and sorted by increasing
number of basis functions.

system PBC Nop Nat NAO S40 S80 T40 (Ncyc) T80 (Ncyc) G40 G80
a

Crambin53 0D 1 642 5553 370 234 5801 (16) 4044 (16) 974 469

Forsterite54 0D 1 812 13224 1871 1260 29195 (14) 19424 (14) 8004 3752

Collagen55 1D 7 245 2128 24 29 401 (12) 426 (12) 74 42

poly(C)-poly(G) 1D 11 715 7359 157 219 2155 (14) 3749 (15) 176 92

poly(A)-poly(T) 1D 11 726 7381 153 249 2359 (15) 3816 (15) 179 96

silica4556 2D 1 111 1457 64 37 683 (10) 464 (10) 310 161

ASP@silica4556 2D 1 132 1668 74 73 907 (12) 677 (12) 349 181

IBU@silica4556 2D 1 144 1718 71 47 884 (11) 659 (11) 379 196

NIT@silica4557 2D 1 143 1794 77 56 998 (12) 747 (12) 403 208

CTZ@silica45 2D 1 237 2693 139 88 1982 (13) 1362 (13) 683 352

TPM58 3D 24 856 6184 31 - 487 (15) - 324 -

MCM-4159 3D 1 579 7785 878 449 7027 (12) 5740 (12) 3706 1885

IBU@MCM-4159 3D 1 612 8046 561 439 7361 (12) 5863 (12) 3905 1983

7IBU@MCM-4159 3D 1 810 9612 794 605 10232 (12) 8143 (12) 5473 2753

Crambin53 3D 2 1536 12702 913 777 12530 (13) 11346 (13) 6353 3256

Forsteriteb 3D 2 1008 16416 2272 1573 28149 (11) 19934 (11) 15693 7970

MIL-100 (Al)60 3D 16 2788 37128 - 2965 - 59846 (16) - 1763

a Nop is the number of symmetry operators, Nat is the total num-
ber of atoms, NAO is the total number of atomic orbitals, Ncyc is
the total number of SCF cycles, SN , TN , and GN are the single
SCF, total SCF, and gradient time, respectively, computed on N
CPU cores.
b 4x3x3 supercell is used.

(iv) Several Metal-Organic Frameworks (MOFs) with
increasing number of atoms including the so-called
giant-MOF MIL-100.

Notably, this set covers systems that span molecular crys-
tals and inorganic solids, dense phases and microporous
materials, thus showing the wide applicability of the com-
posite methods, along with the code, to model solid-state
properties. Most of the benchmark systems have been
studied previously, however, the use of 512-1024 cores or
more on Tier-0 HPC centers was mandatory (PRACE
project)61–63.

The wall-clock times for a full SCF procedure (single
SCF cycle and total SCF with the number of SCF cycles)
and the calculation of both atomic and cell gradients with
HSEsol-3c are reported in Table IIIA. For sake of con-
ciseness, in the following we mostly refer to calculations
with the HSEsol-3c method, while results for the global
hybrid PBEsol-3c are gathered in the supplementary in-
formation.

Timings in Table IIIA show that all examined systems
up to 1500 atoms (or 16000 atomic orbitals) are a↵ord-
able on 40 cores while for the largest one (i.e. MIL-100)
the calculation is possible only on 80 cores because of
the memory requirements due to the size of the matri-
ces and screening tables used by the code. Actually, the
distributed-data version of the code allows for an e�cient

partitioning of the matrices over the cores so that usu-
ally it is enough to increase the number of cores to bypass
memory limits, as is seen here by the success of the code
on 80 cores, but its failure on 40. This largest system
also gives some indication of the maximum size that may
be studied on the computational resources that we are
considering here, and it can be seen we could reach al-
most 2800 atoms (32000 AOs) by using 80 cores. Further
improvements in MPPcrystal are currently being imple-
mented, in particular the use of OpenMP, which should
push this limit further.

Results show a satisfactory scaling of the wall-clock
time when passing from 40 to 80 cores for most of the
examined systems. While, on average, the cost of a sin-
gle SCF cycle and the total SCF process decreases ad-
equately with an e�ciency of 55-70%, the speed-up for
nuclear and cell gradients is overall excellent (e�ciency
> 90%). This is due to the very good scalability of the
one- and two-electron integrals. In contrast, the compu-
tational cost of the SCF cycle depends on both integral
evaluation and diagonalization of the Kohn-Sham (KS)
matrix with the performance of latter being critically in-
fluenced by communication among processors. Here we
are using Gigabit Ethernet for the inter-node communi-
cation. This is hardly the most e�cient fabric, and the
relatively good scaling despite this is gratifying. For a
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few systems the wall-clock time for the SCF process does
not scale at all. They all have a rather high space group
symmetry, which CRYSTAL e↵ectively exploits, thus re-
ducing the time to evaluate the integrals to a negligible
time when compared to the diagonalisation. The result-
ing KS matrices are relatively small and we thus cannot
benefit from an increasing number of cores. Here, the
replicated-data version of the code (Pcrystal), which ex-
ploits this symmetry in reciprocal space and does not
attempt to distribute the small matrices, would be more
e�cient than the distributed-data one (MPPcrystal).

For the two largest systems, i.e. Crambin (1536 atoms,
40 CPU cores) and MIL-100 (2788 atoms, 80 CPU cores)
the computational time for SCF and gradient calcula-
tions are 5 h and 17 h, respectively. This implies that full
geometry relaxations are feasible within weeks.

1. Metal Organic Frameworks

To show the weak and strong scaling of the code
when using sol-3c composite methods, we refer to the
class of hybrid organic-inorganic microporous materials
known as Metal-organic frameworks64,65. They are com-
posed of an inorganic cluster (or a metal) and an or-
ganic linker that self-assemble in a three dimensional,
microporous, crystalline structure. They have a wide
range of potential applications including gas storage66

and separation67, drug delivery68, (photo)catalysis69,
sensing70 and optoelectronics71. The modular structure,
which permits one to vary and combine the two di↵er-
ent secondary building blocks, imparts to MOFs an ex-
traordinary chemical versatility such that a multitude of
frameworks with di↵erent chemical composition, topol-
ogy and size have been synthesized so far72. Therefore,
they are ideal to illustrate the method scaling with sys-
tem size.

FIG. 1: HSEsol-3c single SCF scaled time for the MOF dataset.
Data are plotted against the number of atomic orbitals. The plot
includes results for both high symmetry (cubic) and the corre-
sponding symmetry-lowered MOFs, coloring indicates the number
of symmetry operators.

Single-point energy and gradient calculations have
been performed with sol-3c composite methods on HFsol-

3c48 optimized geometries for a data set containing 21
MOFs with unit cells of increasing size and di↵erent
symmetry (i.e. space groups). The full list of exam-
ined MOFs is reported as supporting information along
with timings for the di↵erent calculation steps. Figure 1
shows the scaled time for a single SCF cycle (i.e. the
wall-clock time of an SCF cycle multiplied by the number
of symmetry operations and normalized to the number
atoms) as plotted against the number of basis functions.
Scaled computation times scale linearly with the number
of atomic orbitals for systems with the same, or similar,
number of symmetry operators. The slope of the data de-
creases when the symmetry reduces. A closer inspection
of Figure 1 shows that three regimes can be highlighted
for highly symmetric MOFs (cubic space groups (SG)),
medium-symmetry frameworks (tetragonal and hexago-
nal SG) and low-symmetry systems (orthorhombic, mon-
oclinic and triclinic SG). This means that the relative
cost of the calculation decreases when the system be-
comes larger and the symmetry reduces.
This is not unexpected because MPPcrystal turns out
to be more e�cient for low-symmetry and large-size sys-
tems, and indeed it was designed a priori for this partic-
ular use case. For high-symmetry and small-size systems
the replicated data version of the code is probably more
e�cient due to a better exploitation of the symmetry in
the diagonalization of the Kohn-Sham matrix.
Overall, cost-e↵ective sol-3c methods show a good weak
scaling behaviour with the size of the system.

2. MPPcrystal scaling for MIL-100 (Al)

To demonstrate how sol-3c composite methods can
be e�ciently used even on a larger number of cores, we
consider the MOF MIL-100(Al), which contains a 2788-
atom primitive unit cell with a tetragonal space group
(16 symmetry operators) and 37128 basis functions.
Calculations were performed on an increasing number of
processors up to 288 on ARCHER, whose compute nodes
contain two 2.7 GHz, 12-core Intel R� Xeon R� E5-2697
v2 (Ivy Bridge) series processors, and 2.7 GByte per
core. Each of the cores in these processors can support 2
hardware threads (Hyperthreads). Within the node, the
two processors are connected by two Intel R� QuickPath
Interconnect (QPI) links.

Figure 2 documents the speedup of the code up to 288
cores relative to the timings on 48 cores for the HSEsol-
3c composite method, but the cost of the calculation is
rather similar for the PBEsol0 -3c one (see the supporting
information). It can be clearly seen that for the di↵erent
steps of a single SCF cycle (i.e. integrals evaluation and
KS matrix diagonalization) and atomic gradient calcu-
lation the scaling is fairly good with an e�ciency that
is as high as 65-70% for integrals and atomic gradients
calculation that are related to each other as previously
discussed, and around 60% for the diagonalization and
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FIG. 2: HSEsol-3c wall-clock time speed-up (tn/t48, with n the
number of cores) for integrals calculation, Kohn-Sham matrix di-
agonalization, single SCF and gradients calculation performed on
increasing numbers of cores. Linear scaling is reported as dotted
blue line.

in turn for the single SCF cycle whose e�ciency mostly
depends on the diagonalization step. On 288 cores, the
wall-clock time for the whole SCF and atomic gradients
with HSEsol-3c is just 1h15m and opens the possibility
to extend calculations to geometry relaxation and other
properties.

B. Applications

Given the satisfactory results for benchmarks and scal-
ing as discussed in the previous section, we focus now
on two applications. First, we extend calculations on
DNA 1D models to show how structure, energetics, and
electronic properties change between adenine-thymine
(AT) and guanine-cytosine (GC) homo-polynucleotides.
The second application encompasses the realm of drug-
delivery and drug interaction with the external and in-
ternal surface of amorphous silica (2D and 3D periodic
models) to compare computed interaction energies with
data obtained in previous works.

1. Biological Systems

Complex biological systems are among the most impor-
tant targets for large scale DFT simulations. Herein, we
report the results obtained with sol-3c composite meth-
ods on poly(A)-poly(T) and poly(G)-poly(C) model sys-
tems containing both eleven basis pairs in the unit cell
(i.e. a full helix). The A-form double-helix structure
for the two homo-polynucleotides was completely relaxed
with both HSEsol-3c and PBEsol0-3c and are shown in
Figure 3(a) and 3(d). Relevant results of the present cal-
culations are gathered in Table II.
The optimized lattice parameters computed for both

systems and methods show that the CG infinite chain is
slightly less compact than poly(A)-poly(T).73 The lattice
parameters for CG and AT infinite chains and, in partic-

ular the base stacking distances (i.e. 3.18 Åfor poly(A)-
poly(T) and 3.33 Åfor poly(G)-poly(C), are consistent
with average value of 3.2 from experimental data.73

The energetics and electronic properties of the two
double-strands have also been studied for the fully re-
laxed structures. We have calculated the interaction en-
ergy between the two strands in the frozen double-strand
geometry (E

int

) as well as the deformation energy upon
relaxation (E

def

), which describes the increase in intra-
molecular energy when the double-strand is formed. Re-
sults are also presented in Table II. As expected from
Watson-Crick base pairing, the CG homo-polynucleotide
shows a larger interaction energy than the AT one. The
presence of an additional hydrogen bond between C and
G bases makes the inter-strand interaction stronger and
this likely leads to a slightly weaker base stacking that
causes the longer lattice parameter with respect to the
AT homo-polynucleotide. Notably, the energy di↵erence
between GC and AT double-strands agrees with the ex-
perimental evidence that CG sequences tends to assume
an A-form DNA conformation while for AT sequences the
B-form is favoured74.
The electrostatic potential mapped on top of an elec-

tron density isosurface as shown in Figure 3(c) and 3(f)
illustrates that negative regions (in red) are dominated
by phosphate groups while small positive spots (in blue)
are located around the hydrogen atoms that neutralize
the whole structure. As expected the hydrophilic region
is outside the double-strand while the electrostatic po-
tential inside the minor and major groove is controlled
by the nucleic bases for both systems.
Electronic and dielectric properties of DNA have

become of relevance for DNA-based nanowires and
nanodevices75. The band gap ranges from 3.04 eV for
poly(G)-poly(C) system to 4.07 eV for poly(A)-poly(T)
as computed with the HSEsol-3c level method while the
PBEsol0-3c method gives slightly larger results, see Ta-
ble II. For the GC infinite chain, the predicted band
gap is larger and likely more reliable than the one com-
puted with the PBE functional.76 as expected for hybrid
functionals30–32. Band structure and density-of-states for
both methods can be found in the Supporting Informa-

TABLE II: Computed PBEsol0-3 and HSEsol-3c properties
of the poly(A)-poly(T) and poly(G)-poly(C) double-strand.

cell parameter band gap Eint Edef

[Å] [eV] [kcal/mol] [kcal/mol]

poly(A)-poly(T)

PBEsol0-3c 34.98 4.79 -21.9 -7.5

HSEsol-3c 34.92 4.07 -22.3 -7.7

poly(G)-poly(C)

PBEsol0-3c 36.63 3.73 -41.5 -11.9

HSEsol-3c 37.08 3.04 -41.9 -12.1



7

(a)poly(A)-poly(T) (b)poly(A)-poly(T) (c)poly(A)-poly(T)

(d)poly(G)-poly(C) (e)poly(G)-poly(C) (f)poly(G)-poly(C)

FIG. 3: HSEsol-3c optimized structure of poly(A)-poly(T) and poly(G)-poly(C) DNA 1D models (a, d), highest occupied (green and
orange) and lowest unoccupied (yellow and purple) crystal orbitals (b ,e), electrostatic potential mapped on an electron density isosurface
(positive regions in blue and negative regions in red) (c, f). Color code for atoms: O in red, C in grey, H in white, N in blue, and P in
orange .

tion. The topmost valence band for poly(G)-poly(C) is
associated with the ⇡-like highest occupied crystalline or-
bitals (HOCO) of the purine bases, while the bottom of
the conduction bands (i.e. the lowest unoccupied crys-
talline orbitals (LUCO)) is mostly localized around the
pyrimidine bases, as shown in Fig. 3(e) and 3(b).

2. Amorphous silica surfaces

Silica-based materials such as amorphous silica have
relevant applications in many fields as solid phase
in chromatography, support in catalysis and also as
excipient and drug-delivery carrier in pharmaceutical
formulations. Its usage is mainly related to peculiar
surface properties in that surface Si-OH groups (silanols)
act as adsorption centres via the formation of H-bonds
with the functional groups of the adsorbed molecules.
Recently, the adsorption of di↵erent drugs (i.e. aspirin,
clotrimazole and ibuprofen) at the external surface of
amorphous silica and the confinement in silica-based
mesoporous materials (e.g. MCM-41) has been investi-
gated. Realistic 2D and 3D models were devised in order
to take into account the complexity of the disordered
structure.
Here, we apply sol-3c methods to predict the interaction
energy between several drugs and the amorphous silica
substrate. The 2D model, dubbed silica4577,78 corre-
sponds to a fully hydroxylated silica surface while the
3D model is a long-range ordered model of the MCM-41
mesoporous silica79. We performed a single point
SCF calculation with PBEsol0-3c and HSEsol-3c on
optimized geometries taken from Ref.56,59 and compared
the results with previous works to assess the accuracy

TABLE III: Interaction energy of several drugs with silica45
and MCM-41, respectively. Single point PBEsol0-3c and
HSEsol-3c calculations have been performed on optimized
structures taken from Ref. 56,59. All values are in kJ/mol.

aASP@ bCTZ@ cIBU@ cIBU@ c7IBU@

silica45 silica45 silica45 MCM-41 MCM-41

PBEsol0-3c -101.7 -129.8 -116.5 -121.6 -127.4

HSEsol-3c -106.5 -130.2 -120.0 -126.0 -130.3

PBE-D56 -112.1 - -118.0 - -

B3LYP-D*56,59 - d-78.4 -94.3 -99.5 -105.6

a Aspirin
b Clotrimazole
c Ibuprofen with one or seven seven molecules in the pore
d Binding of -134.1 kJ/mol reported earlier.56

of composite methods. It is worth noting that Ugliengo
and co-workers run calculations on Tier 0 HPC machines
while here we used just 80 cores. Computed sol-3c
interaction energies are reported in Table III.

Both PBEsol0-3c and HSEsol-3c provide results in
agreement with PBE-D and B3LYP-D* data from
Ref.56,59. Composite methods slightly overestimate the
interaction energy between drug and substrate with re-
spect to B3LYP-D* results. However, the relative bind-
ings (e.g. for the three IBU adsorptions) are preserved
and results are computed with substantially reduced
computational overhead compared to the original studies.

Bartolomeo Civalleri
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IV. SUMMARY AND CONCLUSIONS

In this work we have shown how cost-e↵ective quantum
chemical methods tailored for solid-state calculations can
be used to treat large-scale systems on small-scale com-
puting resources.

We have addressed the following points:

1) Do we need a HPC machine?
We have selected systems for which calculations were
previously run on supercomputing facilities and required
hundreds, if not thousands, of cores. Using the sol-3c
composite methods 40, cores may be enough for system
up to 1500 atoms.

2) Which is the largest system we can deal with when
using 80 cores?
We have shown that for a set of Metal-Organic frame-
works of increasing size that we can run calculations
for systems up to about 3000 atoms. A fairly good
scaling has been observed and low-symmetry and large
systems are e�ciently treated using the MPP version of
CRYSTAL.

3) Do sol-3c hybrid methods scale with more than 80
cores?
We have shown an excellent strong scaling up to 288
cores for the giant MOF MIL-100. In perspective, sol-3c
methods do scale to larger HPC facilities, and these
facilities can potentially be applied to investigate even
larger systems.

Finally, we have demonstrated that the new com-
posite methods can be applied to systems of scientific
interest. The application to DNA-like 1D-model chains

demonstrates how structure, energetics and electronic
properties of AT and CG homo-polynucleotides can
be computed at a quantum mechanical level. In a
second application sol-3c methods have been employed
to investigate drug-delivery with amorphous silica
surface for both 2D (external surface) and 3D (internal
surface) models. Results for interaction energies are in
good agreement to previous theoretical data that were
previously obtained on Tier-0 HPC machines.

In conclusion, the combination of hybrid DFT compos-
ite methods with their implementation in the CRYSTAL
code allowed us to quickly and e�ciently tackle large sys-
tems up to thousands of atoms, providing accurate results
with a comparatively modest hardware requirement.
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