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ABSTRACT

Model-checking of temporal logic formulae is a widely used technique for the
verification of systems. CTL" is a temporal logic that allows to consider an intermix

of both branching behaviours (like in CTL) and linear behaviours (LTL), overcoming
the limitations of LTL (that cannot express “possibility”) and CTL (cannot fully
express fairness). Nevertheless CTL* model-checkers are uncommon. This paper
presents (1) the algorithms for a fully symbolic automata-based approach for CTL",
and (2) their implementation in the open-source tool starMC, a CTL* model checker
for systems specified as Petri nets. Testing has been conducted on thousands of
formulas over almost a hundred models. The experiments show that the fully
symbolic automata-based approach of starMC can compute the set of states that
satisfy a CTL* formula for very large models (non trivial formulas for state spaces

480

larger than 10™" states are evaluated in less than a minute).

Subjects Theory and Formal Methods, Software Engineering
Keywords Model-checking, System verification, Petri nets, CTL* logic, Tools, Buchi automata

INTRODUCTION

Temporal logics like LTL (Pnueli, 1977), for linear behaviour, and CTL (Clarke ¢ Emerson,
1981), for branching behaviour, have been successfully used to specify sequential and
concurrent systems, and have been widely adopted in many industrial contexts: see, e.g.
(Eisner ¢ Fisman, 2016) or the success stories of the model checkers SPIN (Holzmann,
2004) and nuSMV (Cavada et al., 2014). Although LTL and CTL model-checking
procedures are known to be quite expensive, since they incur in the so-called “state-space
explosion” problem, the use of techniques based on decision diagrams allows, in many
cases, to solve industrial-size systems (Burch et al., 1992). In this paper we use “symbolic”
to refer to any technique based on some form of decision diagram.

CTL* (Emerson & Halpern, 1983, 1986) is a temporal logic that allows to express linear
and branching behaviours in a single property. CTL* allows to go beyond the linear/
branching dichotomy (or LTL/CTL), and it is considered a powerful specification language
for discrete events dynamic systems. CTL" is known to be strictly more expressive than
CTL and LTL. Rozier, in her 2011 survey (Rozier, 2011). Considers CTL* as an adequate
logic to overcome LTL and CTL limitations, and in that survey she observes that “the
lack of industrial model-checking tools that accept CTL* specifications is a deterrent to the
use of this logic” (Rozier, 2011, p.175, end of Sec. 3.2.3), and indeed the situation has not
changed much since then.
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CTL" properties are of practical interest, and CTL* model checking has been extensively
studied in the past. However, as pointed out in Amparore, Donatelli ¢ Galla (2020b),
very few CTL* model checkers exist today, despite its usefulness in specifying both
recurrent behaviours and possibility in the same property (something happening infinitely
often and for all behaviour, a certain event/state is reachable), or to explicitly express
fairness constraints. LTL can express both fairness constraints and recurrent behaviours,
but this is not possible in CTL. Instead, CTL can express possibility, which is not possible
in LTL.

There are different ways of verifying CTL* properties: with an ad-hoc model-checker
based on the identification and verification of LTL sub-formulae (Emerson ¢ Lei, 1987); or
through a translation from CTL* to y-calculus (Kozen, 1983), as defined in Dam (1990,
1994) and revised in Cranen, Groote ¢ Reniers (2011). y-calculus is indeed known to
subsume CTL*, but translated formula may be unintuitive to understand, and the
translation could lead to an exponential growth of the expression terms.

The Petri net (or PN for short) is a formalism well-suited for the description and the
analysis of Discrete Events Dynamic System (DEDS). They have been successfully used in a
large variety of application fields, including industrial production (Zurawski ¢ Zhou,
1995; van der Aalst, 1994), business workflow (Aalst, 1998), digital circuits synthesis and
analysis (Kondratyev et al., 1998) and system biology (Koch, 2019). This success is mainly
due to the particular mixture of ease of specification and good support for the analysis.
Analysis techniques can prove properties using only the structure of the PN, or its state
space (which is typically exponential in the size of the structure and of its initial state).

The model checking of temporal properties for Petri nets is supported by numerous
tools (Kordon et al., 2019). In the last decade the model checking of PN has seen a boost in
interest, possibly motivated by the lively Model Checking Competition (MCC) (Kordon
et al., 2019) and advances in DD-based implementation of state space exploration based on
saturation (Ciardo, Liittgen ¢ Siminiceanu, 2001).

The contribution of this paper is to clearly identify the algorithms and the steps of a fully
symbolic procedure for computing the sat-set of a CTL* formula (the set of states of a given
model that satisfy the formula). The implementation of such a procedure for systems
specified as Petri nets results in starMC, a tool that computes the sat-set of a CTL* formula
using a Biichi-based model checking algorithm. Given a CTL* formula, the algorithm
identifies the LTL sub-formulae of maximal length and uses the Spot library (Duret-Lutz,
2014; Duret-Lutz et al., 2016) to translate each of them into a Biichi automaton. The sat-set
of each LTL sub-formula is then built from the sat-set of the Eg,; G(true) on the
synchronized product of the model state space and the generated automaton. States,
transitions among states, and the synchronized products are all encoded as Decision
Diagrams, using the Meddly (Babar & Miner, 2010) library. starMC can be run as a stand-
alone tool or as part of the GreatSPN (Amparore et al., 2016) tool suite through the built-in
graphical interface (Amparore, 2014).

We could only find another Petri net tool that can deal directly with CTL*: LTSmin
(Kant et al., 2015). This tool translates CTL" into y-calculus, using the procedures defined
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in Dam (1990). The search for a CTL* model-checker was not more successful when
considering input languages other than Petri Nets.

Validation of starMC has been achieved taking advantage of the MCC benchmark
(Kordon et al., 2019) that comprises models, LTL and CTL formulae, and associated truth
values for the models’ initial state.

The benchmark has been enriched with CTL* formulae, derived from the available CTL
ones by randomly omitting path quantifiers. Sat-sets of the LTL, CTL, and CTL* formulae
have been compared against the sat-sets obtained from the CTL* module of LTSmin.
Sat-sets of CTL formulae have also been checked against the CTL model checker in the
distribution of GreatSPN.

A motivation for building starMC was teaching and training: to provide students with a
uniform environment in which to reason on, and to experiment with, LTL, CTL and CTL*
specifications. This motivation follows an earlier re-shaping of GreatSPN to support
teaching (Amparore ¢ Donatelli, 2018b). But the main motivation was to investigate a
number of open research questions: R1: it is possible to realize an efficient and fully
symbolic implementation of CTL* based on Biichi automata that can check models of
industrial interest? R2: the approach of R1 is any better than a translation to y-calculus?
R3: variable ordering techniques that exploits the PN structure, like the ones developed
in Amparore et al. (2019) for state-space exploration, can be successfully applied to
CTL* model-checking? R4: can a Biichi-based approach favour the formulation of
counterexamples and witnesses? This paper addresses R1 and R2, and uses the techniques
presented in Amparore et al. (2019) for variable ordering. An extensive comparison of
different variable order heuristics, as well as the counter-examples generation of R4, are left
for future work.

The starMC tool basic principles and structure were first presented in a (demo) paper
(Amparore, Donatelli ¢ Galla, 2020b): here we take a deeper, and at the same time broader,
view on CTL* model-checking and on its implementation in starMC. We provide distinct
logical and implementation views of the model-checker, thus separating the algorithms
from their fully symbolic implementation. The two views and the chosen level of detail,
together with a fully open-source code, are meant to ease the scientific and implementation
work needed to extend other verification engines with a CTL* model-checker, or to add to
starMC additional techniques, for example for optimization or parallelization. We have
also added a deeper investigation on previous work to precisely link the approach used
with their original sources of inspiration. This paper also introduces a user view-point on
starMC, for those interested only in using the tool. Finally, the tool validation has been
improved, including less stringent execution time limits, more models and properties, and
a deeper investigation of the obtained results.

The paper is organized as follows: “Background” introduces basic definitions and
background, “starMC: the outer view” provides an overview of starMC from an user
view-point, “starMC: the logical view” describes, at a logical level, the CTL* model-
checking procedure, followed by, in “Previous Work”, a discussion and comparison with
previous work. The DD-based implementation of the algorithms of “starMC: the logical
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(A) Petri net system NS. (B) Reachability (C) Reachability (D) Kripke model
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Figure 1 A Petri net, its RS and RG, and the corresponding Kripke model.
Full-size K&l DOT: 10.7717/peerj-cs.823/fig-1

»

view” is discussed in “starMC: The Inner View”. “Testing Results” describes the tests that
have been conducted, and “Conclusion” concludes the paper.

BACKGROUND

This section briefly recalls the PN formalism and the CTL* logic. It also introduces the
main feature of the GreatSPN tool and of the Meddly and Spot libraries.

Petri nets
A place-transition (P/T) Petri net N is defined (Murata, 1989) as atuple N = (P, T, A, W),
where P is the set of places, T is the set of transitions, A C (P x T) U (T x P) is the
set of arcs, W : A — Ny, is the arc weight function. A Petri net system is the pair
NS = (N, myy;t) where myy; : P — N is the initial marking. Markings represent states of
the system, i.e. assignments of tokens to places. A transition ¢ € T is enabled if and only if
all input places p of t contain at least W(p, t) tokens. The firing of t removes W(p, t)
from all input places p and adds W(t, p’) to each output place p’. Notation m 5 m’
indicates the firing of ¢ in marking m, which leads to marking m'. A firing sequence o
for marking m is a sequence of transitions ty, t,... for which it exists a sequence of
markings mg, my,... such that m = mgand, Vi 2 0 : m; N mi1. Accordingly, the sequence
of markings 7 = mg, m,... identifies a path of NS starting in my, with 7[i] = m;. We indicate
with 7[i-] the suffix of 7 starting in m;. We define 25/ (m) as the set of all infinite
paths starting in m. From now on we shall interchangeably use the terms “marking” and
“state”. The reachability set (RS) of a Petri net system NS is the set of all markings reachable
from myni, RS(NS) = {m | pers Minit g, m}. A reachability graph (RG) of a PN is a
tuple RG(NS) = (RS, &, miny) where: RS is the set of all markings reachable from 7y,
& = {(m,t,m') €ERSx T x RS | m,m’ € S,t € T,m — m'} is the set of state transitions.
If there is no risk of confusion, the NS indication is usually dropped and we write RS and
RG.

Figure 1A shows a Petri net with 3 places and 4 transitions, the RS built from the initial
state myp = my, in Fig. 1B, and the corresponding RG, in Fig. 1C.

Amparore et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.823 4/39


http://dx.doi.org/10.7717/peerj-cs.823/fig-1
http://dx.doi.org/10.7717/peerj-cs.823
https://peerj.com/computer-science/

PeerJ Computer Science

(A) MDD of my | (B) Transition MxDs. (C) NSF MxD. | (D) RS MDD.
o] P2 P2 P2 P2
Pl : :
o) - n, P2 P2 P1
PO 0 P1 Pl PO
T
o 0] O] P1’ PI'
0 PO PO
[0] P0' PO’

Figure 2 Decision diagrams for the state space generation of the net in Fig. 1A.
Full-size Kl DOI: 10.7717/peerj-cs.823/fig-2

A colored Petri net is a P/T net in which tokens have identities, to allow for a parametric
and more compact description of systems. Each colored Petri net can be unfolded into a
P/T net of isomorphic RG.

Decision diagrams for state space representation
Decision Diagrams (DD) are a well-known data structure to efficiently encode functions as
well as large sets of structured data through their characteristic function. A Binary DD
(BDD) encodes a boolean function and a Multivalued DD (MDD) encodes an integer
function. A MDD can be used to encode a RS by associating each place of the net to a level
in the MDD and ensuring that each path in the MDD corresponds to a reachable state (and
vice-versa). Given the example Petri net of Fig. 1A, the MDD of the initial state m; is
depicted in Fig. 2A, and the one of RS in Fig. 2D. DD levels encode the token counts of
each Petri net place, and appear in the order P2, P1, PO (top-down). So the rightmost path
in the MDD of RS corresponds to the reachable state [m(P2) = 1, m(P1) = 0, m(P0) = 0], or
[1, 0, 0] for short. The depicted MDDs are fully-reduced (when all edges out of a node
lead to the same down node, the node is removed and by-passed), so the leftmost path of
this MDD encodes both [0, 0, 0] (no token in any place) and [0, 0, 1] (one token in P0).
A DD encoding a relation function is called matrix diagrams (MxD). These kind of DDs
are used in starMC to represent transitions among states due to the firing of Petri net
transitions. An MxD has twice the levels of an MDD, and each pair of levels (also called
the unprimed and primed levels for a variable) encodes the before/after relations of a
variable (i.e. a place of a Petri net or a location of an automaton). Each of the four MxDs in
Fig. 2B encodes the transformation performed by a single transition of the example net
while the MxD in Fig. 2D is the Next-State-Function (NSF), the union of all the single
transition MxDs. The depicted MxD are identity-reduced, i.e. skipping a level pair
means that the encoded before-after relation is the identity. The image of this MxD applied
to an MDD encoding a state m returns an MDD with all states that can be reached from m
by the firing of a single transition. Its fixed point application results in the MDD of the
RS. In practice the more efficient saturation technique (Ciardo, Liittgen ¢ Siminiceanu,
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2001), also based on the NSF, is usually preferred. Note that usually the MxD of the RG is
never built and stored, as any info in the RG can be retrieved through the DDs of NSF and
RS.

In Fig. 2 places are allocated to MDD (and MxD) levels in alphabetical order. It is
well known that the DD variable order (the order in which variables are assigned to levels)
may greatly influence the size of the resulting DD. The interested reader may find in
Amparore, Donatelli ¢ Ciardo (2020a) a recent study on various variable order heuristics
that have been successfully applied to encode state spaces of Petri nets.

The temporal logic CTL*
CTL* (Emerson ¢ Halpern, 1983, 1986) is a temporal logic in which path operators can be
quantified or not, and it therefore allows to freely mix linear and branching reasoning. It
subsumes the linear logic LTL (Pnueli, 1977) and the branching logic CTL (Clarke ¢
Emerson, 1981), that are known to have a different expressive power, although with
non-empty intersection.

Definition 1 (CTL" syntax). CTL" formulae are the formulae ¥V inductively defined by:

Ui=a| VAV |-V |Ep| AP

Pu=V[dNP[-¢|XD|PUSP

where a € AP and AP is a set of atomic propositions. The rules U and ¢ define state and path
formulae, respectively.

Note that in principle just one type of quantification is needed, as A¢ = —E— ¢.

The BNF grammar of CTL* is ambiguous, as boolean expressions appear both as state and
path formulae. For instance, the expression a, A a,, with a,, a, € AP, is both a state formula
(rule ¥ A ) and a path formula (rule ¢ A ¢ where ¢ w ¥ and ¥ ~ a).

The satisfaction relation for a CTL* formula is given over a Kripke model M = (S, E, L)
with an associated set AP of atomic propositions, where S is a finite and non-empty set of
states, E : S — 25 is the total successor function, L : S — 24 is a labelling function,
and L(s) is the set of atomic propositions that holds in s. The set of paths starting in s,
P35 (s) is defined as for Petri nets. It is straightforward to map a reachability graph into a
Kripke model.

Definition 2 (Kripke model of an RG). The Kripke model of a reachability graph
RG = (RS, &, mipy) is the Kripke model M(RG) = (RS, &", L), with &' = & U{(m,m) : V
deadlock states m € RS} being the stuttering of &, and L a labelling function defined over
the markings.

Stuttering of deadlock states ensures that the paths in the RG are infinite, as required by
a Kripke model. Figure 1D shows the Kripke model derived from the RG in Fig. 1C
when considering a set of atomic propositions AP = {f: (#P1 > 0 or #P2 > 0)} and the
labelling function depicted next to the states. The two states s; and s4 are stuttered, since
they correspond to the deadlock markings m; and m,.
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Definition 3 (CTL" semantics). The satisfaction relation of CTL* state formulae is

defined by:
skEa iff a € L(s)
sEU AT, iff (s ¥)and (s E ¥,)
sE v iff nots = ¥

sE A iff 7w ¢, forallme 25(s)

while the satisfaction relation of path formulae for a path 7 is:

T iff n[0] E ¥

T AP, iff (m |= ¢y) and (7 = ¢,)
T E ¢ iff notmw = ¢
nE X iff n[l---] E ¢

mE ¢ Ud, iff B =0:(afj--] E don
(Vo <k<j:zlk--] [ 1))

A CTL* formula in which all path operators are prefixed by a quantifier is also a CTL
formula. To express the relation between CTL* and LTL it is convenient to introduce the
following definitions:

Definition 4 (LTL formula). An LTL formula ¢ is inductively defined by:

pu=aloNe| -9 |Xe|eUe

It is usually assumed that path formulae over a Kripke model are “implicitly universally
quantified”. To avoid any confusion we assume that the quantifier is explicitly indicated.
Definition 5 (Quantified LTL formula). Given an LTL formula ¢ a quantified LTL

formulae V is defined by ¥ :: = Eg | Ag

The GreatSPN tool
GreatSPN (Amparore et al., 2016; Amparore ¢» Donatelli, 2018b) is a collection of Petri
nets tools that are integrated in a common framework, with a unified graphical user
interface (Amparore, 2014). Initially developed for performance evaluation of stochastic
Petri nets, the tool was enriched over the years with algorithms for qualitative analysis.
From the graphical interface it is possible to draw a Petri net (colored or P/T), to
compose Petri nets, to play the token game to familiarize with the net behaviour, and to
verify the model using techniques specific to Petri nets (structural properties like P- and
T-semiflows) or to check standard Petri net properties (like absence of deadlocks,
boundedness and liveness) as well as CTL properties. The state space exploration
algorithm and the CTL model-checker are fully symbolic, built using the MDD library
Meddly (Babar ¢» Miner, 2010), and a large set of heuristics for variable ordering
(Amparore, Donatelli ¢» Ciardo, 2020a) that exploit the net structure. Qualitative
verification can be integrated by a stochastic verification, as GreatSPN includes a
model-checker (Amparore ¢ Donatelli, 2018a) for the stochastic logic CSL™ (Donatelli,
Haddad & Sproston, 2009), and the computation of standard performance indices based on
efficient analytical solutions of Markov chains and Markov Regenerative Processes, as

Amparore et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.823 7/39


http://dx.doi.org/10.7717/peerj-cs.823
https://peerj.com/computer-science/

PeerJ Computer Science

well as simulation. The tool is open source and it is available from GitHub (https://github.
com/greatspn/SOURCES).

The supporting libraries: meddly and spot

Spot 2.0 (Duret-Lutz et al., 2016) is a framework which provides, among other features, a
wide range of tools to manipulate automata over infinite words and to translate them
from LTL propositions. The framework has been maintained for decades and can be
considered the state-of-the-art of LTL-to-Biichi translation. Our model checker uses the
Spot library to construct a Generalized Biichi Automaton with state-based acceptance
(SGBA) from each LTL formula encountered during the verification process. We chose to
use the Hanoi-Omega Automata (HOA) format (Babiak et al., 2015) to represent such
automata. The HOA format is a text-based encoding which supports various derivation of
w-automata. Spot can be downloaded from its home page (https://gitlab.Irde.epita.fr/
spotandspot.Irde.epita.fr).

Meddly (Babar ¢ Miner, 2010), Multi-terminal and Edge-valued Decision Diagram
LibrarY, is an open-source library (https://github.com/asminer/meddly) for decision
diagrams, developed at Iowa State University. It supports the construction and
manipulation of various kinds of decision diagrams: Binary and Multivalued decision
diagrams, matrix diagrams (MxD) and edge-valued DDs, including a built-in function to
support efficient state-space construction based on saturation.

STARMC: THE OUTER VIEW

This section describes how to use the tool for checking CTL* properties. We do so through
an example, adapted from (Emerson ¢ Halpern, 1986) and meant to underline the
differences between LTL, CTL, and CTL*, and the advantage of being able to specify
and verify CTL* properties. These differences are sometimes subtle and it is indeed
convenient to be able to express properties in the three logics in the same tool (and actually
from the same window).

The starMC tool accepts a CTL* syntax (Amparore, Donatelli ¢ Galla, 2020b) that is
more expressive than the minimal one in Definition 1, as it includes more boolean
connectors, and the path operators F (in the Future, for some state in the path) and G
(globally, for all states in the path). Since CTL* formulae are written in textual mode in the
tool, the symbols: &&, ||, |, ,>=, <=, == are used for A, V, -, >, <, =, leading to:

U= AP | U && T | U || U | 10| Ep | Ad
bu=Vp&&d|d || |9 |XP|Fp|Gp|pU

AP is the grammar element for atomic propositions, which are formulated over the Petri
net elements. AP are defined as boolean expressions over the enabling of transitions and
the marking of the places.

AP ::= true | false | deadlock | initial | en(T') | © <1 ©
© u=n| #p| bounds(P) | —© | © 0O
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For simplicity we have used a P/T model,
so the model is not parametric in the
number of processes. To draw a para-
metric model, colored Petri nets can be
used from the same interface, and a P/T
model can be obtained by automatic
unfolding.
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Figure 3 A screenshot of the GreatSPN interface when drawing the Petri net model for the Mutual
Exclusion Problem. Full-size 4] DOT: 10.7717/peerj-cs.823/fig-3

wheren € N,pe P, PP CP, T' C T, € {==, <, <=, >, >=} is a comparison operator,
and o € {+, —, *, /} is an arithmetic operator. The state formula deadlock evaluates to true for
all states that do not enable any transition; initial is true in the initial state of the system; en
(T) is satisfied in all states enabling at least one transition t € T'; #p evaluates to the
cardinality of place p in the current marking; bounds(P’) is the maximum sum of

token counts of all places in P’ in every reachable marking.

Figure 3 is a screen-shot of the GreatSPN GUI while editing a Petri net model. The
model represents the abstract behaviour for a mutual exclusion algorithm in which two
processes' may either stay out of the critical section at will (place NonCS; and self-loop
with transition StayNonCS;) or may receive an interrupt (firing of transiton recIRQ;)
to then proceed to request access to the mutually exclusive resource (place TryCS;).

The relevance of this example to CTL* is pointed out very clearly in the work (Emerson
¢ Halpern, 1986) of Emerson and Halpern, that proposes the following verification
steps. If we want to specify that the mutual exclusion system should have both behaviours
(either process i never tries to access, or at a certain point it will try to access), we may write
the quantified LTL formula:

Propl : A(G(#NotCS; == 1) || (F #TryCS; == 1))

The model does indeed satisfy the specification of Propl. Note that the formula is
satisfied also if no process is allowed to stay forever in place #NotCS;, given that on all
paths it is possible to try to access the critical section. If we want instead to be more specific
and add the more stringent requirement that both behaviours should be present (even if on
different paths), we can write:

Prop2 : EG(#NotCS; == 1) && EF(#TryCS; == 1) && A(G(#NotCS;==1) || (F#TryCS,;==1))
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Measures:

Pos: Measure:
1° =W, | AGEF #InCS1==1) o = false (0/3) Compute
2° =W, | AGEF #InCS2==1) & = true(3/3) Compute
3° @E, | (G#NonCSl==1) || (F#TryCSl==1) & = true Compute
4° @5, | G#NonCS2==1) || (F #TryCS2==1) & = true Compute
5 [EE). | EG#NonCS1==1) && EF#TryCS1==1) && A((G#NonCS1==1) || (F #TryCS1==1)) & = false(0/3) Compute
6° [EE. | EG#NonCS2==1) && EF(#TryCS2==1) && A((G #NonCS2==1) || (F #TryCS2==1)) & = true(1/3) Compute
7° B0, | Tool statistics. View... Compute
8° @C5W . | Plot of the Decision Diagram graph View... Compute

View log... Compute All

Figure 4 A screenshot of the interface that allows to insert queries for the starMC model checker.
Full-size K&l DOT: 10.7717/peerj-cs.823/fig-4

Prop2 is not an LTL formula, and no equivalent LTL formula exists, as proved in
Emerson & Halpern (1986). Prop2 is not a CTL formula either since the third term has no
equivalent CTL. Prop2 is also true, but if we modify the net model to include a singular
behaviour for process 1, so that it never receives an interrupt (modelled by removing
transition recIRQ;) then for process 2 both properties are true, but for process 1 Propl
holds while Prop2 does not. So Propl (an LTL formula) is not able to discriminate (and
therefore to specify) the modified behaviour.

starMC is available both as a command line tool or from inside the GUI. Figure 4 shows
a screenshot of the query interface of the GreatSPN GUI when checking the above
propositions for the modified mutual exclusion model. The model checker receives a list of
queries to be verified, with their language type (LTL, CTL, CTL*) explicitly specified.
LTL formulae are implicitly quantified as “forall paths”. The queries tagged as STAT
and DD provide statistics and a pdf graphical representation of the DD of the RS. The
queries tagged CTL are checked with the standard CTL model checker of GreatSPN
(Amparore, Beccuti ¢ Donatelli, 2014), while the queries tagged as LTL and CTL* are
checked with starMC. Once a query is computed, the GUI shows if it holds in the initial
state (true/false), as well as the cardinality of the sat-set (together with the RS size). For the
modified mutual exclusion model being examined, |RS| = 3.

Indeed Propl is true for both processes, while Prop2 is false for the first process and true
for the second one, showing the higher discriminating power of CTL*.

STARMC: THE LOGICAL VIEW

Background: LTL model checking

It is well-known, as in Vardi (1995) or Baier ¢» Katoen (2008, p. 429), that for every LTL
formula Ag it is possible to generate a Generalized Biichi Automaton that accepts all and
only the paths that satisfy ¢, so we shall define them next.
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Algorithm 1 Check LTL iy, |= A as: Vi € 25 (Minit): 7t|= ¢.
1: procedure cHECKVLTL(M, ¢)

P'c g

o/ « translate @’ into a Generalized Biichi Automaton

M < BA of the Kripke model M(RG)

2
3
4
5: M @ of < synchronized product of .# and o/
6 if (M ® /) is empty then return true

7 else return false

8 end if

9

end procedure

Definition 6 (GBA). A Generalized Biichi Automaton (GBA) is a tuple o/ = (Q, AP, 9,
Qo, F ), where Q is a finite set of locations, AP is a set of atomic proposition labels,

0 C Q x AP x Q is a total transition relation, Qy C Q is the set of initial locations, and
F ={F; | F; C Q}._, is the set of accepting sets of locations.

A GBA in which there is a single accepting set (|# | = 1) is called a Biichi automaton
(BA tout-court).

The language ¥ (.</) of a GBA .o/ is the set of infinite words on AP recognized by a run
of .o/ that visits infinitely often at least one location in each F; € 7.

The standard automata-theoretic approach for model checking LTL formulae over a
Kripke model M, following the schema of Vardi & Wolper (1986, 1994) is outlined in
Algorithm 1, that checks if the quantified LTL formula A¢ is satisfied for all paths 7
starting in the initial state m,. To do so it builds the GBA .o of =¢ (line 3), the BA .# of the
Kripke model M (line 4), and the synchronized product GBA .# & .o/ (line 5), whose
language is the intersection of the languages of M and .. If this language is empty, no path
7 satisfies —¢ and therefore ¢ holds on all paths = € 25; (m).

When dealing with Petri nets, the model to be checked is a stuttered RG, which is
translated into the Kripke model M(RG) according to Definition 2. The corresponding
automaton ./ is then built (line 4). Note that Biichi automata recognize words over edges,
while Kripke models define a language of sequence of states (and associated atomic
propositions). The transformation takes as accepting set # = {RS} and moves the
labelling function of a state to all the incoming arcs, which requires a translation, based on
Vardi & Wolper (1986), for the initial state (that has no incoming arc) that consists in
adding a fictitious initial state s, leading to the following definition.

Definition 7 (BA of a Kripke model). The Biichi automaton # = (Q, AP, d,Qo, F) of
a Kripke model M = (S, E, L), with L : S — 2%, for the initial states Sy C S, is defined as
follows: Q = S U {spe}, With spre € S; Qo = {Spre}s Vs, s'€ Q\ sy (s, 8", 1) € § iff (s,5') € E and
[ =L(s'); Vs'€ So, 8(sprer s'» D € 8 iff L = L(s'); F = {S}.

Figure 5A shows the Biichi automaton built for the Kripke model in Fig. 1D, for S, = s;.
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(A) BA of M when Sy={s}. (B) (G)BA of =(G—p) (C) (G)BA of M®A
B true
N B

o)

with F = {{ql}}

with F = {{spre, 51,82, 83, 541 } F={{(s2:q), (51, ), (s3,q), (54, q1)}}

Figure 5 The Biichi automata built by the LTL model checking procedure in Algorithm 1.
Full-size Kal DOL: 10.7717/peerj-cs.823/fig-5

We now define a simplified synchronized product of Biichi automata, for the case in
which one automaton is a GBA and the other is a BA derived from a Kripke model
(therefore with a single acceptance set that includes all states).

Definition 8 (Synchronized product GBA .# ® /). Given a BA
M= (QM AP, 5M,Q3’I,95M = {QM}) and GBA o/ = (Q*, AP, 5A,Q€,97'Q/), their
synchronized product is the GBA M & o/ = (Q,AP,0,Qo, F) where

Q=Q" x Q"

Q = Q' x Qf

F ={F}., :Vq" € Ff‘,VqM ceQ":(¢*,q") €F

6=CQxAPxQ: (g}, q"),a,(q q")) € iff
(4/ a,q') € 5" and (¢}, a, ") € 6"

It is known (e.g. Baier & Katoen, 2008, p. 156) that if .o/ = o/, ® .&/,, then L (A) =
Lot 1) N L(oL,). The Biichi automaton for the LTL formula —~® with ® = G =  is shown
in Fig. 5B; its synchronized product with the Biichi automaton in Fig. 5A is shown in
Fig. 5C. The product BA has always a single initial state (s,., go). The set of accepting
subsets Z for the example is # = {F, }, with F; = {(s, q;), Vs € RS}. Since, indeed,
there is an infinite path that starts in (s, qo) and that visits infinitely often at least
one state in Fy, then & (.# ® /) is not empty and therefore the initial state of the net does
not satisfy the LTL formula G — . Note that the initial state of the net is the successor of
the initial state of ./ ® .o7.

From LTL to Sat3LTL

A limitation of Algorithm 1 is that it only computes if the initial state m;y; satisfies the
formula A¢. For CTL*, we shall need instead the entire sat-set. Moreover, we switch to
existentially-quantified LTL formulae, since they are easy to compute in symbolic form,
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Algorithm 2 Sat-set of a quantified LTL formula Eeg.

1: procedure SATILTL(M, ¢)

2 o/ «GBAofg

3: M < BA of Kripke model M(RG), with S, = RS
4: M ® o/ < synchronized product of .# with .o7.
5: Z 1is the set of the acceptance sets of . # ® .o/
6: Zy  succ(QyS | 549

7: M(AM & o) is the Kripke model of # & .o/

8: switch type(.o/) do

9: case weak:

10: AS < SatCTL(M(.4 ® /), EF EG F,)

11: case terminal:

12: AS ¢ SATCTL(M(/ ® </), EF Fy)

13: case otherwise

14: AS ¢ SATEpAairGIM(AM ® of), true, fair = F):

15: return map (AS N Z,) over RS

16: end procedure

noting that a state (s |=A¢) = (s |=—E —¢). In this section we describe the extension of
Algorithm 1 for sat-set computation as SATILTL(M, ¢).

A remarkable result of Clarke, Grumberg & Hamaguchi (1997), Theorem 2, p. 54)
shows that LTL model checking can be actually performed using a fair CTL model checker,
not on the Kripke structure .# but on the product GBA .# ® .o/. In particular, only a
single CTL operator, Eg,;;G true, is needed to check arbitrary LTL formulae.

We briefly recall the definitions of CTL fairness. A fairness condition F is a subset of
states that must be visited infinitely often. A path © € 25, (s) satisfies a fairness condition F
if the states of F appear infinitely often on 7. A fairness set F is a set of fairness condition
F, that must all be met together. A path 7 is a fair path w.r.t. 7 ift & statisfies all
fairness conditions of .7 . A state s satisfies the fair CTL formula E¢ w.r.t. fairness set 7 iff
(1) it satisfies the CTL formula E¢, and (2) In € 25/ (s) that is a fair path w.r.t. Z.

A state s satisfies a quantified LTL formula Eg if in the product GBA .# ® .o/ there is a
path from s, g, that visits infinitely often the states in the acceptance sets 7, i.e. the
same definition of the fairness condition acceptance in fair CTL. Thus if we consider the
GBA as a Kripke structure, finding the states that satisfy Eg becomes equivalent to finding
the locations that originate fair paths, i.e. finding the states on the equivalent Kripke
structure that satisfy Eg,;;G true w.r.t. the fairness set #. The definition of SATILTL(M, ¢)
that performs LTL model checking using fair CTL is described in Algorithm 2.

The procedure first translates the path formula ¢ into a GBA .o/ (line 2), it then
builds the BA .# of the input model M (line 3), described by its RG. Note that, since
the goal is the sat-set computation, we need to consider all states as possible initial states,
by taking Sy = RS in definition 7. Figures 6A and 6B show the BA .# built from the RG of
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(A) BA M when S;,=RS.

(D) Kripke model M{M®A)

with F = {{spse, 51, 82,83, 84} }

By (GRA Afr F={{(s1,q1), (s2,m), (s5,q1), (54, 01)}} | Zo = {(s1, @) (s2,1), (s3, @), (54,91)}

the LTL formula F3 ~ F same as in (C)
-8 true AS = checkEg, G(M(M®A), true, F) =
‘ ‘ = {(Spre> 90): (81, 90), (52, a1) (51, 91): (83,01, (84, 01)}
@ a ASNZy = {(s1, @), (s52,9). (84, ¢1)}
with F = {{q:}} Sat3LTL(NS, F3) = map(AS N Zy) over RS = {mq,ma, my}

Figure 6 The Biichi automata built by Algorithm 2 for the sat-set computation of ELTL formulae.
Full-size K&l DOT: 10.7717/peerj-cs.823/fig-6

the net of the previous example, and the BA .o/ for the formula Ff. The algorithm then
builds (line 4) the GBA .# ® .o/, as in Definition 8. The .# ® ./ automaton is then
translated into the Kripke model M(.# ® .o/) (line 6 and 7). This translation is trivial
due to the particular structure of .# ® .27, since all arcs that enter a state carry the same
set of atomic propositions, that can then be associated to the state itself. The sat-set of
the CTL formula Eg,;, G true for M(.# ® /) is then computed (lines 8 to 14), which is then
mapped back to the states of the initial model (the RS of the Petri net) in line 15.

The .# ® .o/ of the example is shown in Fig. 6C: there is a single initial state (s, go)
and the accepting set is # = {F,}, where F, = {(s,q,), Vs € RS}, therefore, in this case,
M @ of is a BA. The Kripke model M(.# ® .o/) of the synchronized product .# ® .o/ is
shown in Fig. 6D, together with all the sets computed by Algorithm 2.

Some aspects of this procedure need a deeper explanation, in particular the three
different ways of computing the sat-set (lines 8-14) and the Z, construction and its use
(lines 6 and 15).

[Lines 8-14] This part computes the set of states that originate an infinite path accepted
by the .# ® .o/ BA. Line 14 is the general case: the results in Burch et al. (1992) and Clarke,
Grumberg & Hamaguchi (1997) show how to compute the sat-set through the model-
checking of the fair CTL formula Eg,;, G(true, fair = & ) on M & .</. The procedure for the
sat-set computation of Eg,;, G(true, fair = %) for a Kripke model is reported in Algorithm
3. Line 10 and 12 correspond to two specific cases, as it was shown (Bloem, Ravi &
Somenzi, 1999) that if # ® .o/ is a weak or terminal BA, the computation of Eg,;; G true can
be simplified.

A BA is weak if (1) it is possible to find a partition {Q;} of its set of locations Q so that
each Q; is either contained in the accepting set or it is disjoint from it and (2) the {Q;} are
partially ordered s.t. the transitions of the automaton never move from Q; to Q; unless
Q; < Q;. In this case the only way for a path to visit infinitely often a state of the accepting
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Algorithm 3 Emerson-Lei algorithm for Eg,;,Gy on Kripke model M and fairness constraints 7.
1: procedure SATErArG(M, v, F)

S « Sat(y)

repeat

§<«S

2

3

4

5: for each F; € 7 : do

6 Y < SATCTL(M, E (S U (F; N S)))
7 S <« §n SatCTL(M, EX Y))
8 end for

9:  until S = § // Repeat until fixed point is reached.

10: return S

11: end procedure

set F, is to eventually be confined inside one Q; C F}, and an accepting run is a witness for
the CTL formula EF EG F,. A terminal BA is a weak BA in which the {Q;} are maximal
elements in the partial order. In this case an accepting run is a witness for the CTL
formula EF F,. The time complexity for model checking the two CTL formulae is linear in
the size of the model, while the cost for the general case in line 14 is instead quadratic. Note
that Algorithm 2 tests the weak and terminal condition on .27, and not on the (usually)
much larger .# ® .o/, as it was proven in Bloem, Ravi ¢ Somenzi (1999) that if .o/ is weak
(terminal) so is .# ® .o/. When this is the case the simplified procedure obviously applies
also to M(4 & <7), as we do.

[Lines 6 and 15]. Z, computed in line 6 is the set of immediate successor of the
initial state(s) of the .# @ .. This step is needed because of the fictitious s,,. state
introduced in .# by the translation of Definition 7. The map operation in line 15 maps
pairs (s;, g;) onto the marking of s;.

The sat-set of the EFp for the Petri net system of the example is also listed in Fig. 6D.
Note that (s3, q;) |= EfirG true, as there is indeed an infinite loop on the (s3, q;) state,
which is an accepting state. But s; corresponds to the Petri net marking m;, a deadlock
state that does not satisfies f3, so certainly s; J=EFf3. Indeed (s3, q1) ¢ Z, since the witness
path of Eg,;;G true for (s;, q;) corresponds to a path in the automata of the formula that
does not start from the initial location gp.

The work in Emerson & Lei (1987) gives a symbolic algorithm (known as Emerson-Lei
algorithm) for model checking fair CTL properties, while (Burch et al., 1992) provides
its fixed point characterization. Its time complexity is quadratic in the size of the
automaton being checked. Algorithm 3 is an high-level view of the this fixed point
characterization for the sat-set computation of Eg,;; Gy formulae for a Kripke model M,
with a set of fairness constraints 7. In the algorithm, the call to SATCTL(M, ®) returns the
sat-set of the CTL formula @ (without fairness constraints) on the Kripke model M. The
Until and next path operators at line 6 and 7 use sets instead of atomic propositions or
state formulae, for simplicity.
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Algorithm 4 CTL* model-checking algorithm.
1: procedure SATCTL*(M, ¥)

2: switch ¥ do

3 case a € AP: return {s € " | s |= a}

4 case ¥V, A ¥,

5: return SATCTL*(¥,) N SATCTL*(¥,)
6 case —¥: return $* \ SATCTL*(¥)

7 case E¢: return SATILTL(M, REWRITE()))
8:

end procedure

CTL* model-checking procedure

To understand the CTL* model checking procedure of starMC, we have to explain how a
single CTL* formula is divided into multiple quantified LTL formulae that can be
checked using SATILTL only. It may be worth starting from an example. Let’s consider the
CTL* formula

U = EFGE(aU(AXp))
where o, f§ are atomic propositions, and define the following (sub-)formulae:

U, = AXp U, = E(aU(AXp))
V3 = E(aUay, ) U, = EFGay,

Let Sat(\V) be the sat-set of W. Assume that we have a model checking procedure
SATLTL(Y) that computes Sat(\V) if ¥ is a quantified LTL formula. Similarly, assume that a
procedure SATCTL(Y) computes Sat(¥) if ¥ is a CTL formula. Formulae ¥, and W5 can be
considered as both quantified LTL and CTL formulae, while ¥, is not LTL, and ¥, is
not CTL. If we assume that a¥; is an atomic proposition that holds in state s iff s |= ¥;, then
we can compute Sat(¥) using only SATLTL on the sequence of formulae: ¥}, W5 and ¥,,.
Vice-versa, Sat(¥) cannot be computed using only SATCTL, since SATCTL(Y,) allows to
rewrite ¥ into ¥, which is an LTL formula for which it is well-known that no equivalent
CTL one exists. According to Emerson ¢ Lei (1987), the idea of substitution was already
present in Emerson & Sistla (1984) and it was later used in Visser ¢» Barringer (2000).

Algorithm 4 is the logical view of the CTL* model-checking procedure implemented in
starMC. The algorithm follows the ideas in Emerson ¢ Lei (1987), and builds a CTL*
model-checker based on SATILTL. It contains one case per type of state formula (by
definition a CTL* formula is a state formula). The only non-trivial case of Algorithm 4
is Eg in line 7: if ¢ is an LTL path formula, SATILTL can be directly applied to the formula,
if instead ¢ contains additional quantifications, we first have to rewrite ¢ as an LTL
path formula (by substituting quantified sub-formulae with newly created atomic
propositions). Both cases are treated in a unified manner through the call of SAT3ILTL
(RewriTE(¢@)). Each formula identified for the substitution is a Maximal Proper Quantified
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Sub-formula (MPQS). A MPQS is defined in terms of the so-called Maximal Proper State
Sub-formula (MPSS); see (Baier ¢ Katoen, 2008), def.6.86.

Definition 9 (Maximal Proper State Sub-formula). State formula
VW is a MPSS of p whenever W is a sub-formula of p that differs from p and that is not
contained in any other proper state sub-formula of p.

Let MPSS(p) be the set of all maximal proper state sub-formula of p.

Example (from (Baier ¢ Katoen, 2008)). If p = E¢ and

¢ = X(AGEFa) \ FGE(Xa A Gb)

then MPSS(¢) = {AGEFa, E(Xa A Gb)}. Back to the initial example, MPSS(V) = {¥,}
and MPSS(\I/z) = {\Ill}
Let’s consider this second example:

U = EFGE(aU (2 A AXB))
v
~ 3

v,

than U, is a MPSS of ¥, and V3 is a MPSS of ¥,. In our model-checking procedure
we consider instead a refinement of the MPSS definition, that we call Maximal Proper
Quantified Sub-formula (MPQS). The motivations for introducing MPQS with respect to
previous work and MPSS is given in “MPSS vs. MPQS”.

Definition 10 (MPQS). A Maximal Proper Quantified Sub-formula (MPQS)
W of a formula p is a MPSS of p which is a quantified state formula, i.e. either ¥ =
E¢p or U = A¢.

The MPQS decomposition maximises the length of path formulae whenever possible.
The MPQS decomposition of the example CTL* formula is:

U = EFGE(aU(a A AXB))
——

U3

-

U,

The state sub-formula ¥, cannot be a MPQS of ¥, since ¥, is not a quantified state
formula.

REWRITE is the procedure to identify MPQS; its logical view is described in Algorithm 5,
which is based on the syntactical recognition of the input formula p. Operators and atomic
propositions are left unchanged (lines 3-9), when p = E¢ (line 10) the formula p is
rewritten as the atomic proposition a, and to appropriately assign a,, the sat-set of p is
computed through the indirect recursive call to SATCTL *(p).

PREVIOUS WORK

While the main sources of inspiration for the CTL* model checking procedure presented
in “StarMC: The Logical View” have already been introduced, in this section we discuss
and compare with previous work with a broader view. We shall first discuss the different
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Algorithm 5 Identification and replacement of MPQSs.

1: procedure REWRITE(p)

2 switch p do

3 case p; A py:

4 return REWRITE(p;) “A” REWRITE(p,)

5: case —p: return “—” REWRITE(p)

6 case Xp: return “X” REWRITE(p)

7 case p; U py:

8 return REWRITE(p;) “U” REWRITE(p;)
9 case a € AP: return “a”

10: case E¢:

11: Il p = E¢ is a MPQS. Replace p with an AP a,..
12: AP < AP U{new a,}

13: Sat < SatCTL*(p)

14: for each s € Sat do

15: L(s) < L(s) U {a,}

16: end for

17: return “a,”

18: end procedure

approaches to CTL* model-checking and report on past and existing CTL* model-
checkers. Since the CTL* model-checking procedure of starMC is based on LTL model-
checking, we also provide a summary of the main approaches to LTL model-checking.

CTL* model-checking approaches

CTL* model checking procedures can be distinguished depending on whether they are
conducted on the model itself or on an extended model (as in case of the synchronized
product).

Model-checking the model itself

An example of this approach is when the CTL* formula is first translated into y-calculus
and then the p-calculus model-checking procedure is applied. This can be just a
straightforward implementation of the fixed-point definition of the full y-calculus or the
more efficient algorithm proposed in Emerson ¢ Lei (1986) for u,-calculus, based on the
observation that the formula translated from CTL" belong to the u, fragment of the
p-calculus. The efficacy of symbolic techniques for model checking of u-calculus was
shown in Burch et al. (1992). In this approach the whole CTL* formula is translated into a
single p-calculus property: this translation is exponential in the size of the formula (Bhat ¢
Cleaveland, 1996). A linear translation from of CTL* to first order y-calculus, a form

of u-calculus with data, is proposed in Cranen, Groote ¢ Reniers (2011). Note that, in this
case, a CTL* formula may not produce a single first-order y-calculus expression.
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Model-checking an extended model

The model is extended to incorporate the formula information. The extended model is
therefore constructed ad-hoc for each formula being checked. This approach may be
further refined according to how the formula structure is encoded/exploited.

1. Recursive descendent approaches based on formula substitution. As in the original
papers by Emerson ¢ Lei (1985, p. 90) and Emerson ¢ Lei (1987), sub-formulae are
identified and substituted, thus reducing the sat-set computation for CTL* to a sequence
of sat-set computations for LTL. The complexity of this CTL* model-checking
procedure is of the same order as that of LTL. It is well-known (Baier ¢» Katoen,
2008) that for CTL", as for LTL, the model-checking problem is PSPACE-complete, with
a cost linear in the size of the system and exponential in the size of the formula (because
of the Tableau or the Biichi automaton construction).

2. Hesitating alternating tree automata (HAA). A different approach is presented in
Visser & Barringer (2000), where CTL* formulae are translated into HAA. It is
mentioned that to build the HAA for the CTL* formula, when an 3¢ sub-formula is
encountered it is necessary to build the Biichi automata that accepts all infinite words
recognized by ¢. The synchronized product of the HAA of the formula with the
Kripke model is again an HAA, and checking that the original formula is satisfied on the
Kripke model corresponds to checking that the language of the synchronized product
HAA is empty. Also this approach is based on the idea of MPSS (or MPQS) substitution
with a label. Although described in a different manner, it seems that the approach
based on HAA shares many similarities with the approach described in “StarMC:

The Logical View”. It basically does in an implicit manner what the SATCTL* in
Algorithm 4 does in an explicit one. In the same paper the authors also propose a model
checking procedure based on games, where the objective is to find a winning strategy for
the non-emptiness game on the synchronized product of the Kripke model and the
HAA of the formula (Theorem 2 in Visser ¢ Barringer (2000)).

Sat-set computation for E;,;;G ¥

The work in Emerson ¢ Lei (1986), already mentioned for its contribution in proving that
po-calculus can be efficiently model-checked, also provides a succinct translation from
fair-CTL to y,-calculus, paving the way to efficient model checking of fair-CTL, in
particular for the sat-set computation of Ef,;; GY. The algorithm is provided in an abstract
form, regardless of the specific data structures choice. It is readily suitable for a symbolic
implementation, which is what we have used for starMC.

A different symbolic solution for the computation of a fair cycle is provided by the
OWCTY algorithm (Cernd ¢ Peldnek, 2003), which does not compute sat-sets but aims at
building counter-examples as quickly as possible. A comparison of the two approaches for
LTL model checking can be found in Duret-Lutz et al. (2011).
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Sat-set computation for ELTL

Buchi-based model checking of LTL of a formula @ is defined in Vardi & Wolper (1986), as
recalled in “StarMC: The Logical View”. The paper in Burch et al. (1992) shows a symbolic
model checking procedure for LTL. It is based on an implicit tableau construction and
on its symbolic representation. It is then shown that the sat-set of an LTL formula can be
reduced to the fair CTL symbolic model-checking for the y-calculus expansion of EG true,
under appropriate fairness constraints.

A later work (Clarke, Grumberg ¢ Hamaguchi, 1997) encodes the tableau of the LTL
formula along with the model variables in a single SMV (Clarke et al., 1996) model, and
explicitly reduces the LTL model checking to a fair-CTL formula, using the existing
and unmodified CTL model checker of SMV. Model checking fair CTL is based on the
Emerson-Lei algorithm (Emerson ¢ Lei, 1986). This procedure, together with its
implementation in BDD is well explained in the survey paper by Rozier (2011). The survey
also cover many other related topics, including a comparison of the expressiveness of LTL,
CTL and CTL* both in theory and in practical applications.

starMC exploits the Buchi-based approach in Vardi ¢» Wolper (1986), that makes the
synchronized product of the Biichi automaton and the model, and uses the algorithm in
Emerson & Lei (1986) for the detection of the accepting runs and the consequent
construction of the set of states that satisfy the formula. The library Spot (Duret-Lutz,
2014; Duret-Lutz et al., 2016) provides different, efficient, ways to build a Biichi automaton
from an LTL formula. The generated automaton may have state-based or transition-based
acceptance. This latter choice, based on the translation defined in Couvreur (1999),
implemented in Spot using decision diagrams, is usually the most efficient. starMC
nevertheless uses state-based automata, since it allows an easier re-use of the SATCTL
module of GreatSPN.

A number of possible optimizations have been presented in the literature for LTL
model-checking. For example in Duret-Lutz et al. (2011) a modified algorithm called
Self-Loop Aggregation Product (SLAP) is proposed, where instead of building a
synchronized product in an extended space (model and automaton), the joint state is kept
into separate aggregates. Accepting runs are then searched only in those aggregates that
may contain cyclic runs over the accepting states. For the time being starMC does not
include this kind of algorithmic optimization, although a certain attention has been taken
to avoid inefficiencies in the symbolic implementation.

We do not review here the numerous techniques for the on-the-fly model-checking of
LTL, since these techniques concentrate on establishing the truth value of a formula in
the initial state, while the SATILTL procedure needed for CTL* model checking requires
the construction of the sat-sets of the LTL sub-formulae.

CTL* model checkers

According to a relatively old paper (Barringer et al., 2002) there was a CTL* model-checker
available in the Rainbow verification system (Barringer et al., 2002): the tool is not available
any longer and we could find no published details on how the model checker was built,

only that it was based on HAA. Previous papers by the same authors evaluated whether
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it was the case to enhance the tool SPIN with CTL* (Visser ¢ Barringer, 1998; Visser ¢
Barringer, 2000), but apparently it was never done and/or reported in the literature.

There is an implementation of y-calculus for the nuXmv tool (Cavada et al., 2014),
which, according to its website, could lead to a CTL* model-checker but, for the
time being, only CTL" formulae that are either LTL or CTL are actually processed.

The LTSmin tool (Kant et al., 2015) includes a CTL* model checker. It allows to model
check a Petri net by translating the CTL* formula to be checked into an equivalent
p-calculus one, using the procedures defined in Dam (1990). A model checker of y-calculus
for Petri nets is available also in TINA (Berthomieu, Ribet ¢» Vernadat, 2004), but no
translator from CTL* to u-calculus is provided.

MPSS vs. MPQS

In the literature there have been slightly different definitions of the CTL* sub-formulae to
be substituted and, although they are all correct and adequate for CTL* model-checking
based on SATILTL, different definitions may lead to a different number and/or to a
different structure of the Biichi automata being built. The work in Emerson ¢ Lei (1987)
does not contain a definition in strict sense of the formulae to be substituted, but it states
that, for each formula E¢, where ¢ is a path formula, then the set of formulae to be
substituted by atomic propositions are the “top-level proper existential sub-formulae Eg; of
¢ that are not sub-formulae of any other sub-formula Er of E¢, where Er is different
from E¢ and from Eg;”. The Egq; are therefore the largest quantified sub-formulae of the
formula ¢.

In later times the substitution of formulae with atomic propositions was based on the
definition of MPSS (Visser ¢~ Barringer, 2000), which is equivalent to the one given by
def.6.86 in Baier ¢ Katoen (2008), reported in this paper as Definition 9. The definition
of MPSS encounters two problems when deriving an algorithm, it may re-label more
formulae than strictly necessary, and it may result in a non-deterministic algorithm since
the CTL* grammar is ambiguous. Indeed in the considered example:

U = EFGE(aU (a A AXP))
——

U3
————
v,

v,

Since y, is both a state and a path formula due to the ambiguity of the CTL* language,
there are two evaluation strategies:

1. Evaluate ¥, as E (aUay,);
2. Evaluate ¥, as E (aU(a A avs));

Both strategies are correct, but they are not equivalent. The former strategy is based on
the identification of MPSS sub-formulae. While correct, it inhibits possible reductions and
optimizations for Biichi Automata generation, since the label ay, clearly carries less
information than the (a A ay;) formula. This example also shows that MPSS are different
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from “top-level proper existential sub-formulae” which are at the base of the CTL*
model checking algorithm in Emerson ¢ Lei (1987) and that we have formally defined as
MPQS in Definition 10. The MPQS decomposition of the example CTL* formula is:

U = EFGE(aU(u Ai{i_ﬁ))

\E

v,

The state sub-formula y, cannot be a MPQS of ¥y, since ¥, is not a quantified state
formula.

STARMC: THE INNER VIEW

This section provides an insight on the implementation of starMC, which consists in a
DD-based implementation on the algorithms of “StarMC: The Logical View”. The
implementation relies on the Meddly and Spot libraries, and on the symbolic CTL model
checker already available in GreatSPN.

In starMC DDs are used to encode all data structures, but for the BA of the (sub-)
formulae, that are instead represented in explicit form. Petri net state spaces, Kripke
models and Biichi automata are all expressed in DD forms using the MxD of the NSF and
the MDD of the states (when needed). Most computations of the model checker work
with DDs that encode “potential” states. Potential states are a superset of RS that arise
because the NSF, which is built before the RS, may include the firing of transitions also
from states that are not reachable for the given initial marking. Algorithms (like state space
generation) that work forward, from the initial marking onward, never generate
unreachable states, but this is not the case in the implementation of some path operators,
that works backwards (e.g. the neXt). Working on potential states is a standard choice for
DD-based model-checkers, and intersections with the RS are done only when strictly
needed.

CTL* model checking

Implementation of SATCTL* and REWRITE

We do not provide a detailed implementation view of Algorithm 4 for the sat-set
computation for CTL*, but we simply identify the data structures used. SATALTL returns
an MDD, RS in line 6 is an MDD and the set operations in line 5 and 6 are also
implemented as MDD operations. The value returned by REwRrITE (¢) is an LTL expression
following Definition 4. An implementation choice worth noticing is whether $* in line 3
and 6 of the algorithm refers to the MDD of the actual RS or of the set of potential states
(PS). This part is common to the CTL model-checker of GreatSPN, for which the default
choice is to manipulate potential states. Intersection with reachable states is done only for
negation (line 6) (set difference from RS) and for the sat-set of true, for which RS is used.
Atomic propositions (line 3) are also defined on the PS.
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Algorithm 6 Synchronous product construction between .# = (RSM NSFM) and .« =
<Q7AP7 57 Q07 ?7>

1: procedure BuiLpSyncuProbuct(M, o)
// Build the MDD of the initial states.
Zo < MDD()

for each location g, € Qo: do

2

3

4

5: for each edge e = go-> ¢ in &: do
6 Zo < Zo U AddLoc(Sat™(a), q)
7 end for

8 end for

9 // Build the Next State Function MxD

10:  NSF < MxD()

11: for each edge e = g ¢’ in &: do

12: nsf ¢ < AddLocX(NSF™ n (PS™ x Sat"(a)), q, ')
13: NSF <« NSF U nsf*
14: end for

15: /] Sz: array of MDDs, one entry per accept. set F; € 7

16: for each accepting set F; € #: do

17: MDDy, — U{edgeForVar(q) | for each q € F;}
18: S#[i] — {MDD,}
19: end for

20: return (Zy, NSF, Sz )

21: end procedure

Implementation of .// © </ construction

The generation of the decision diagrams that encode the .# ® .o/ automaton is
summarized in Algorithm 6. The MDD (MxD) of .# ® .o/ is defined to have n + 1 (2n + 2
resp.) levels: one level each for the n places of the net and one for the location of .o7. We
indicate with (m, q) a joint state of .# ® .o/, where m is a model state and ¢ is an
automaton location.

The algorithm builds the MDD and the MxD of .# ® .o/ taking as input a graph
description of the formula automaton .o/ and the MxD for the NSF of .#. There is no
MDD for the initial states of .# since all states are considered as initial ones. The algorithm
implements at the same time the translation of .# into a Biichi automaton (Definition 7)
and the .# ® .o/ construction (Definition 8). The algorithm directly builds the Kripke
model, without passing through the .# © .o/ BA as described in “StarMC: The Logical
View”. The DD representation of the .# ® .o/ automaton of Algorithm 6 consists of three
elements: MxD NSF for the ¢ function; an array Sz of MDDs of the accepting sets; and the
MDD for the set Z, of states as defined by Algorithm 2.
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Figure 7 (A-G) A Biichi automaton of a CTL* formula and the DDs generated by its evaluation for
the net in Fig. 1A. Full-size K&l DOT: 10.7717/peerj-cs.823/fig-7

Figures 7B-7G shows the DDs built by Algorithm 6 for the net of Fig. 1A and for the
formula expressed by the Biichi automaton in Fig. 7A. These DDs represent the symbolic
encoding of the information (models and sat-sets) of Fig. 6.

Construction of Z, (lines 4-8)

If qo is an initial state of .o/ with an outgoing arc (qo > ¢q') then Z, should include all states
(s,q') for all states s that satisfy a (s € Sat(a)). The function AddLoc(d, q) takes a MDD d
and sets the location level to g. Figure 7B shows the MDD of Z,.

Construction of the NSF (lines 9-14)

The MxD for NSF is built by modifying the MxD NSF" of the input model ./ to
include only “appropriate states” of .# and to add the locations of .. For each edge

q > ¢ of </ a new MxD is created (line 12), by modifying the NSF of .# to reach
only Sat"(a) markings (the states of . that satisfies a), and at the same time by moving
the GBA location from g to q'. Function AddLocX(v, g, q') takes a MxD v and adds a
relation g — ¢ for the first primed and unprimed levels (automata locations). The
transition relation § of .# ® .o/ is encoded as a NSF from the union of all the edge MxDs
(line 13). Figure 7C shows the MxD of the NSF of the .# ® .o/ of the example.

Identification of the array of accepting subsets S (lines 15-19)

The set S is simply implemented by the array S of MDDs, one entry per F;. According
to Definition 8, each accepting subsets F; is the Cartesian product of F# the i-th subset of
final locations of .o/ with all the states of .#. The Cartesian product F; can be realized
by adding one level on top of an MDD v that encodes the states of .#. The node of this top
level has a down-arrow to v for each location g € F£. A more efficient solution is actually
implemented in Algorithm 6, based on the observation that we can consider “potential”
states of .# by considering any combinations of tokens in any place. The corresponding
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Algorithm 7 Implementation view of SATILTL.

1: procedure SATILTL(M, ¢)
o/ < translate ¢ into a Biichi Automaton
(Zo, NSF, S#) < BuiLpSyncHPrODUCT(M, .<7)
S « Saturate(Z,, NSF)
K = (S, NSF ) is a Kripke model
AS <« MDD()
switch type(.o/) do
case weak:

AS < SATCTL(K, EF EG(S#[1]))

—
e

case terminal:

AS < SaTCTL(K, EF(S#[1]))

—_— =
N =

case otherwise:
AS <« SATEpAIRG(K, true, fair = Sz ):
Sat(3¢) < RemLoc(AS N Zy)

—_— =

15: return Sat(3¢p)

16: end procedure

MDD, in fully reduced form, is very compact: it has n + 1 levels, the node of the top level
carries the F/ elements, all other levels are skipped. This MDD can be built by taking (line
17) the union of MDDs created by the Meddly function edgeForVar(q, n + 1), which
creates a fully reduced MDD in which level n + 1 is set to g and all other levels are skipped.
In the automaton of the example # = {F, }, with F; = {g,}, therefore Sz is an array

with a single element, the MDD that combines the value 1 (encoding of q;) for the location
level with any combination of tokens in all places. The MDD is depicted, in fully reduced
form, in Fig. 7D.

Implementation of SAT3LTL

SATILTL computes the set of states of M that satisfy the quantified LTL formula E¢.
Algorithm 7 provides an implementation view of Algorithm 2. Line 2 is a call to Spot for
formula ¢, that builds a Biichi automaton in textual HOA form. The DDs of .# ® .o/
are built by the call in line 3. The set of reachable states S in .# ® .o/ is then generated in
line 4 using saturation (Ciardo, Liittgen ¢ Siminiceanu, 2001).

Figure 7A is the automaton built by Spot for the formula Ff, to be evaluated for the
net in Fig. 2A, with 8 = (#P1 > 0 or #P2 > 0)}. Figures 7B-7D are the three DDs returned by
the call of BurLpSyncuPropuCT in line 3, while Fig. 7E is the result of the Saturation
procedure on 4 ® ..

Note that in the .# ® .o/ construction of Algorithm 6 all informations on edge labelling
is lost, since it is now irrelevant, and, to find the set of accepting states (AS) of the
formulae in lines 9, 11, and 13, we can consider (S, NSF) as a Kripke model (line 5). Lines 7
to 13 follow the same logic of Algorithm 2.
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As for Algorithm 2 the computed AS set is not the accepting set of the original formula:
the operations in line 14 build the MDD intersection of the MDDs of AS and Z, and
applies to the resulting MDD the RemLoc function, that removes the DD level that stores
the location index, thus obtaining an MDD that encodes the reachable states of the Petri
net model that satisty E¢.

The MDD of the AS set for the example is given in Fig. 7F. It has been computed by the
call to the CTL model-checker in line 11, since .27 is a terminal automaton. Note that
DD represents AS in the potential state space. Moreover not all the accepting states in AS
are in the sat-set of Eg, either because they are not reachable (are in PR\RS) or because
they are not “aligned” with the initial conditions of .«Z, otherwise said, they have to
belong to Z,. The result of the intersection and RemLoc operations in line 14 is shown in
Fig. 7G, that encodes the 3 satisfying markings (all markings of RS except the one
where all places have zero tokens). Note that .# & .o states (go, 1, 1, 0) and (g, 0, 0, 0), are
in the DD of the AS but nor (1, 1, 0) nor (0, 0, 0) are in the DD of Sat(EFp). The first
one is a state which is not in the RS of .# ® .o/, the second one is not in Z,. Both are
removed by the intersection in line 14.

Implementation of Ei,;;G

The logical view for the sat-set computation of Eg,;;G given in Algorithm 3 is quite close to
its DD-based implementation. The Eg,;;G is called by Algorithm 7 on a Kripke model
encoded with an MxD for its NSF, a MDD for its states, and an array of MDD:s for the set
of fairness constraints #. All DDs are for n + 1 variables, the n places of the Petri net
model and the location of the automaton of the formula. The SATCTL calls in line 6 and 7
of Algorithm 3 have been implemented with the pre-existing DD-based CTL model
checker of GreatSPN, modified so as to treat n + 1 levels. The intersections in lines 6 and 7
are straightforward MDD intersections.

TESTING RESULTS

We have tested the correctness of the results and the performance of the tool. All tests were
performed using the publicly available (mcc.lip6.fr/2019/archives/2019-mcc-models.tar.
gz) MCC2019 benchmark (Kordon et al., 2019). The MCC2019 benchmark includes 1,018
model instances, that are parametric variations (in structure or in the initial marking) of 94
distinct colored and P/T models. There are both academic (e.g. Philosophers, Kanban,
Erathostenes, etc.) as well as relevant industrial models (ARM processor cache,
biochemical networks, UML models, CAN bus models, etc.). For each model instance
different properties are defined: basic Petri net properties (like cardinality of the state
space, absence of deadlock, boundedness and liveness), 32 LTL properties and 32 CTL
properties, for a total of about 60 k LTL and CTL formulae. The benchmark includes all
known formula evaluations (truth value in the initial marking), making MCC data a
valuable benchmark for (Petri net) tools. The tests use Spot version 2.9.6, the latest
Meddly (tag 7a31ca8 on gitHub), LTSmin version 3.0.2. and GreatSPN (tag 4439bde).
The semantics of LTL and CTL is defined over infinite paths, but Petri net models
with deadlocks also feature finite paths. For MCC, CTL is directly defined on RG and not
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Figure 8 Distribution of the state space size of the 434 model instances built by starMC in less than
60 s. Full-size K&l DOT: 10.7717/peerj-cs.823/fig-8

on Kripke structures, hence the successor function may not be total. In that case, the CTL
semantics is axiomatically defined (Lichtenstein, Pnueli ¢ Zuck, 1985) for the set S; of

deadlock states as: EX S; = @, and EG S; = S;. LTL and CTL* properties are interpreted
considering a proper Kripke structure (i.e. stuttered) built on the RG according to Def. 2.

The benchmark does not include any CTL* property for the MCC models (and for
any other models we could find). Therefore we have algorithmically generated a set of
CTL* formulae from the MCC CTLCardinality queries by randomly deleting path
quantifiers with a probability of 70%. The top-most quantifiers are always kept, in order
to preserve consistency with the CTL* grammar. The sat-set cardinalities of the LTL and
CTL formulae are also missing in the benchmark. We have therefore conducted the
comparison tests on the cardinalities of the produced sat-sets by checking consistency
between multiple tools.

Resource setting. All experiments have been performed on dedicated cpu cores (Intel
Xeon CPU E5-2630 v3 at 2.40 GHz) with a limit of 2 GB of memory and a 60 s timeout for
state space generation and another 60 s to check each formula. Variable orders were
pre-computed using the state-of-the-art heuristic of Amparore, Donatelli & Ciardo
(2020a).

Examined models. Within the 60 s limit, starMC is able to build the RS of 434 model
instances, from 77 different models. This set includes many very large model instancess,
both in terms of places and transitions (up to thousands) and number of states. Figure 8
shows a chart of the distribution of the sizes of the 434 model instances. Two of these
instances have a state space of the order of 10*”8, one in the order of 10°*® (numbers
not even representable in a double precision floating point). The 67 model instances with
more than 10°" states (the two rightmost columns in Fig. 8) correspond to 29 different
models.

Analysis’ objectives. The characteristics that have been tested are:

CT: Correct Truth value of the formula for the initial state
CC: Correct Cardinality of the sat-set of the formula

PE: PErformance (execution times)
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Table 1 Summary of the experiments with starMC and RGMeDD, on 13,664 CTL queries.

Characteristics Value Characteristics Value
No. of queries 13,664 Same Time both 317
starMC terminates 10,223 Both timed-out 2,447
RGMeDD terminates 10,740 Only RGMeDD timed-out 476
Both terminate 9,747 Only starMC timed-out 993
starMC faster 938 starMC timeout and RGMeDD out of memory 1
RGMeDD faster 8,492 Mismatches in sat-set cardinality 0

CT test based on MCC results

starMC results are checked against the available truth values for CTL and LTL properties.
For each instance we computed the result for 32 CTL and 32 LTL properties, for a total
of 27,776 queries (434 * 64) queries. With the test resource limitations, starMC was able to
terminate about 80% of the queries. All unanswered queries did not finish in the time
bound. None of the query evaluation generated a not-enough-memory error. For 7 of these
434 models, the query format was corrupted due to bad namings. These 7 models were
thus dropped. We found no mismatch w.r.t. the MCC published values for the remaining
427 models.

To get a better accuracy we need to verify more precise information like the sat-set
cardinalities (the CC test), as in the next steps, but before proceeding to sat-set
computation we have investigated the possible overhead caused by the (exponential) size of
the Biichi automata. We have computed the size of the Biichi automata for about 14 k LTL
queries. The largest automata produced by Spot has 70 locations and 356 edges. The
average number of locations (edges) is 3.95 (7.7). This correspond to a maximum and
average number of path operators equal to 12 and 4.7 respectively. Note that starMC may
build more than one Biichi automata per formula when model-checking CTL and CTL*
formulae, due to nesting.

CC and PE tests based on RGMeDD

This test compares the results of starMC and RGMeDD on CTL formulae. RGMeDD is the
CTL model checker (Amparore, Beccuti & Donatelli, 2014) of GreatSPN, based on the
standard recursive sat-set computation of CTL. The test therefore compares two different
approaches to CTL model checking: a standard fixed point implementation (RGMeDD), and
an automata-based implementation (starMC). Both tools use the same library for

DD manipulation, moreover the same variable orders have been used. The benchmark is
again on 427 instances, for a total of 13,664 CTL queries (427 * 32).

Table 1 summarizes the behaviour of the two tools, while the plots in Fig. 9 report
the execution times in linear form Fig. 9A and log form Fig. 9B: dots below the diagonal are
queries for which RGMeDD is faster than starMC and vice-versa. Executions that have timed
out are marked as TO.
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Figure 9 (A-B) Execution times of starMC vs. RGMeDD, on 13,664 CTL queries.
Full-size 4] DOT: 10.7717/peerj-cs.823/fig-9

RGMeDD completes 10,740 queries (79%) from 427 different model instances, while
starMC completes 10,223 queries (75%) from 399 different model instances. All the 9,747
queries completed by both tools (71%) produced sat-sets of equal cardinality (CC test).

We have also analyzed the different behaviour in terms of solved queries and model
instances, with RGMeDD being able to solve more queries but especially for more diverse
instances.

Moreover, on the queries completed by both tools (blue dots in the plot), RGMeDD was
faster than starMC on 87% of the queries, slower on the 10% and equal time (up to
millisec) on 3%. There are a number of cases in which the execution times are rather
different (values close to only the x or the y axis). This result for the PE test is
somehow unexpected: considering that the same DD library is used, and the same variable
orders, the differences are possibly due to the different model-checking approaches,
and we actually expected the standard CTL procedure of RGMeDD to be more efficient in
almost all practical cases. Factors that could make starMC faster than RGMeDD are the
optimization of the formula done by Spot when building the Biichi automaton and a
different use of the potential state space in the two implementations.

Tests based on LTSmin

The last tool assessment is based on a comparison with LTSmin (Kant et al., 2015): CC and
PE are assessed for LTL, CTL and CTL* formulae. LTSmin is run using the pins2lts-sym
interface with the —ctlstar option, which first converts the input formula into y-calculus
and then applies the y-calculus model-checker of LTSmin. It is worth noting that this
translation may incur an exponential cost since LTSmin uses the translation described in
Dam (1990), which is in theory less efficient than using Biichi automata. LTSmin is also
based on decision diagrams, provided by the multi-core library Sylvan (van Dijk ¢ van de
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Table 2 Summary of the experiments with starMC and LTSmin on CTL and LTL queries.

Characteristics Value Characteristics Value
No. of queries 3,936 (123*32) Same Time both 1
starMC terminates 2,990 Both timed-out 895
LTSmin terminates 1,758 Only LTSmin timed-out 1,277
Both terminates 1,708 Only starMC timed-out 50
starMC faster 485 Mismatches in sat-set cardinality 7
LTSmin faster 1,222

Pol, 2017). To make a meaningful comparison, for each model instance we have enforced
the use of the same variable order for the two tools. We have initially checked that both
tools, when given the same variable order, produce exactly the same DD in output.
Thus the choice of the variable order does not penalize one tool or the other, as long as it is
the same for both tools. We give LTSmin the same time constraints as the other tools, i.e.
60 s to generate the state space, and 60 s to translate the formula in y-calculus and
perform the model checking. Since we have experienced inconsistencies of the LTSmin tool
when dealing with models with deadlocks, we have considered deadlock-free models only.
Moreover, only P/T models have been included in the analysis, since LTSmin does not
treat colored models, leaving 222 model instances from 29 distinct models. For what
concerns the type of queries, only LTL/CTL/CTL" queries of the “Cardinality” category
have been checked, since LTSmin cannot express atomic propositions based on the
enabling of transitions. We did not consider model instances for which none of the

two tools was able to compute the state space, leaving 123 model instances from 28
different models. Of the 123 models, LTSmin builds the state space of 86 and starMC of
116. In all tests, LTSmin ran on four cores (to allow it to exploit the parallelism of the
Sylvan library) and starMC on a single one, similar to the settings used for the MCC
competition.

The first test (CC and PE for LTL and CTL formulae) compares the sat-set cardinalities
and the execution times for LTL and CTL formulae, while the second test (CC and PE
for CTL* formulae) extends the analysis to CTL* formulae, the final target of the whole
testing procedure.

CC and PE for LTL and CTL formulae

We computed the sat-sets generated by starMC and LTSmin (running in —ctlstar mode) on
LTL and CTL formulae on the 123 model instances selected as explained above, with 16
CTL formulae and 16 LTL ones for each model instance. The objective is to check the
performance of the two model checkers (PE) and, for all queries solved by both tools,
check that the same sat-sets’ cardinalities are computed (CC). The results are summarized
in Table 2, while a comparison of the execution times in log and linear form (as for the
previous experiment) is reported in Fig. 10.

PE results: in the 60 s limits, starMC solves 50% more queries than LTSmin, although,
in the subset of queries solved by both, LTSmin is faster than starMC on 2 out of 3 queries.
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Figure 10 (A-B) Execution times of starMC vs. LTSmin on CTL and LTL queries.
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Table 3 Summary of the experiments with starMC and LTSmin on CTL* queries.

Characteristics Value Characteristics Value
No. of queries 1,968 (123*16) LTSmin faster 536
starMC terminates 1,442 Both timed-out 505
LTSmin terminates 775 Only LTSmin timed-out 688
Both terminates 754 Only starMC timed-out 21
starMC faster 218 Mismatches in sat-set cardinality 10

CC results: of the 1,708 queries computed by both tools, we have a mismatch in the
cardinalities of the sat-sets of 7 formulae (from different model instances). These are all
LTL formulae. All results computed by starMC are consistent with the MCC known
truth values. Since truth values of MCC are assigned according to majority of the output of
the tools that participate in the competition, they may not be 100% reliable. We have
therefore computed the sat-sets of the sub-formulae, which indicate that LTSmin is
computing the wrong sat-sets, most likely due to a wrong translation to y-calculus. For
example, the sat-set of the formula named LTLCardinality-08 for the model BART-PT-002
has a structure “XFGFa”, where a is an atomic proposition and the formula is implicitly
quantified for all paths. LTSmin reports that the formula has an empty sat-set,
although the sat-set of the formula “FGFa” is equal to the full state space, which
clearly indicates contradictory results. The translation in y-calculus of the former query
leads to a recursive formula with 7 ¢ and 18 v fixed point operators, and it is not trivial to
assess whether there is an error in the translation of the formula into u-calculus or in
the model-checking procedure. This behaviour has been reported to the LTSmin
developers.
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* There is a query of a model (named FMS-
PT-00020 in MCC) for which the two
sat-sets differ for a “small” portion: for
LTSmin the sat-set is the whole RS, for
starMC is a strict subset of RS (with a
difference of 10* states out of the 10"
states in RS). Due to the complexity of
model and formula we had to build a
reduced model (applying standard Petri
net reduction rules) with only 32 states,
and a reduced formula, for which the two
sat-sets differ by four states. In this case it
was possible to check by hand that the 4
should not be in the sat-set, as computed
by starMC.
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Figure 11 (A-B) Execution times of starMC vs. LTSmin on CTL* queries.
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CC and PE for CTL* formulae

The tests of “CC and PE for LTL and CTL formulae” are here repeated for the set of
generated CTL* formulae. The results are summarized in Table 3, while a comparison of
the execution times in log and linear form (as for the previous experiments) is reported in
Fig. 11.

PE: in the 60 s limits, starMC solves the highest number of queries (73%), almost twice
those solved by LTSmin. In the subset of queries solved by both, LTSmin is faster than
starMC on almost 4 out of 5 queries.

CC: of the 753 queries computed by both tools, we have a mismatch in the cardinalities
of the sat-sets of 10 formulae (from different model instances). We have checked these
formulae one by one, by computing the sat-set of sub-formulae, when meaningful and
useful. In all but one case, the two tools differ radically: the sat-set being the whole state
space for one and the empty set for the other, or vice-versa. In these cases it was not
difficult to check that LTSmin is computing results that are inconsistent with the
sat-sets of the sub-formulae computed by the tool itself. For the remaining case a special
procedure was put in place that indicates that it is likely that LTSmin is computing the
wrong result’.

CONCLUSION

starMC is a CTL* model-checker that computes the set of reachable states that satify a
CTL* formula. To the best of our knowledge it is the only available CTL* model-checker
based on Biichi automata for Petri nets, and also the only available CTL* model-checker
that does not require a translation into y-calculus.
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starMC provides CTL* and LTL model-checking capabilities to the GreatSPN tool,
improving the existing CTL model-checker. starMC is fully integrated into the GreatSPN
GUL

The implementation leverages two libraries: Spot for the translation from LTL
sub-formulae to Biichi automata, and Meddly for decision diagram manipulation. The tool
also includes the existing CTL model-checker of GreatSPN, modified to verify .# ® .o/
structures.

Although many of the ideas behind the construction of starMC have been around for
decades, there was not, as far as we know, a fully developed description on the algorithms
for a (symbolic) implementation of a CTL* model-checker, that we consider to be a
significant contribution of this paper. The availability of such a tool is also very important:
for educational purposes both in university and in industries, and for application in real-
life contexts. The testing section has shown that, even on reduced resources (2 GB of
memory and execution time with a 60 s time-out) starMC can model-check very large state

480

spaces (we reached 10™°" states) for formulae with equivalent Biichi automata of more than

70 locations and 350 edges.

Petri nets only?

starMC has been developed for Petri nets, either in GreatSPN format or in the PNML
standard format. Although having a model-checker fully integrated into a specification and
verification tool is an advantage for the user, it may hamper its reuse in the research
community. There are indeed tools like LTSmin that try to be as general as possible, by
providing a (formalism agnostic) intermediate language. starMC exploits Petri nets to
collect useful information: computation of place bounds (so the user does not have to
identify them beforehand) and heuristics for variable orders, which are based on
P-semiflows (a structural property of the Petri net). Both issues relates to performance
and do not hamper the application of the results presented in this paper to other
formalisms for DEDS; nevertheless the tool is not currently structured for direct reuse as a
stand-alone multi formalism model-checker.

Tool’s limitations

starMC builds the whole state space beforehand even for properties that could be proved
by inspection of a part of the state space (no on-the-fly verification), and it does not build
counter-examples.

Answer to research questions

(R1): our testing campaign has shown that it is possible to realize an efficient and fully
symbolic implementation of the computation of sat-sets of LTL and CTL* properties based
on Biichi automata. (R2): the experiments conducted in the testing phase indicate that
starMC can solve (significantly) more formulae than LTSmin, although, on the

formulae solved by both tools, LTSmin is generally faster. (R3): an extensive comparison of
different variable order heuristics has not been conducted yet, but the size of the system
that we were able to solve show that, indeed, the variable order heuristic used, that was
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the best one for state-space exploration, as reported in Amparore et al. (2019), is at least
adequate for CTL* model-checking. (R4): the construction of counter-examples and
witnesses has not been addressed in this paper.

Current and future work

starMC builds the whole state space beforehand even for properties that could be
proved by inspection of a part of the state space (no on-the-fly verification). We are
working on a model-checker that keeps the NSF in implicit form: the MxD of the NSF is
substituted by a function that performs the firing of the Petri net transitions by directly
manipulating the MDD of the state space being built. With a NSF in implicit form

it is possible to implement an on-the-fly approach, in which the state space is built
incrementally up to the point where the property can be (dis-)proven. The results could
be extended to CTL* following the work in Bhat, Cleaveland & Grumberg (1995),

that develops an on-the-fly procedure for LTL and then extends it to CTL".

No model-checker is fully useful if it does not produce meaningful counter-examples.
GreatSPN already produces CTL counter-examples or witnesses for the initial state.
Extending the current approach to CTL* may require a definite shift in the approach, for
example by looking into the creation of evidence for y-calculus (Cranen, Luttik ¢
Willemse, 2015), while keeping an eye on the efficiency of the construction, as in Jiang ¢
Ciardo (2018).

Although CTL* allows to express fairness constraints in the formula, we plan to develop
also a model checker for the fair variant of CTL. Although this may seem a straightforward
task, considering the already existing implementation of Eg,;;G v, further analysis is
needed to understand the most adequate form of fairness, in particular if we want to
consider not only fairness based on visited states (and therefore among enabled actions),
but also fairness of taken actions, to include, for example, the “Fairness running” clause of
the NuSMV tool (Cavada et al., 2014).

The example in “CTL* Model-checking Procedure” points out that a CTL* model-
checker could be realized based on a mixture of SATILTL and SatCTL. Beyond the
theoretical differences in complexity, the construction of such a CTL* model-checker
requires more experiments to understand if there is a practical advantage in doing so. Our
comparison in “CC and PE Tests Based on RGMeDD” points out that it could be so.

Availability

e A virtual machine, with the reproducible benchmark (scripts, models, tools,
instructions) is available as a Zenodo permalink. The provided benchmark can be run
either in quick or in full mode, which will take about 30 minutes/10 days, respectively, to
complete. Instructions are provided inside the VM, available at: https://zenodo.org/
record/5752419 with the name starMC-benchmark.ova.

e A second virtual machine with the starMC tool pre-installed can also be found at the
same link, with the name starMC.ova.
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o The source code of GreatSPN is available at https://github.com/greatspn/SOURCES.
e The benchmark data is available at https://github.com/amparore/starMC-benchmark.
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