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Abstract: We tested the pro-angiogenic and anti-inflammatory effects of human placenta-derived
mesenchymal stromal cells (hPDMSCs)-derived conditioned media (CM) on a mouse model of
preeclampsia (PE), a severe human pregnancy-related syndrome characterized by maternal hyperten-
sion, proteinuria, endothelial damage, inflammation, often associated with fetal growth restriction
(FGR). At d11 of pregnancy, PE was induced in pregnant C57BL/6N mice by bacterial lipopolysac-
charide (LPS) intravenous injection. At d12, 300 µL of unconditioned media (control group) or 300 µL
PDMSCs-CM (CM group) were injected. Maternal systolic blood pressure was measured from 9 to
18 days of pregnancy. Urine protein content were analyzed at days 12, 13, and 17 of pregnancy. At
d19, mice were sacrificed. Number of fetuses, FGR, fetal reabsorption, and placental weight were
evaluated. Placentae were analyzed for sFlt-1, IL-6, and TNF-α gene and protein expressions. No FGR
and/or reabsorbed fetuses were delivered by PDMSCs-CM-treated PE mice, while five FGR fetuses
were found in the control group accompanied by a lower placental weight. PDMSCs-CM injection
significantly decreased maternal systolic blood pressure, proteinuria, sFlt-1, IL-6, and TNF-α levels
in PE mice. Our data indicate that hPDMSCs-CM can reverse PE-like features during pregnancy,
suggesting a therapeutic role for hPDMSCs for the treatment of preeclampsia.

Keywords: placenta-derived mesenchymal stromal cells; preeclampsia; mouse model; placenta

1. Introduction

The preeclamptic syndrome (PE), exclusive to human pregnancy, represents the main
cause of fetal–maternal mortality and morbidity worldwide [1,2]. PE generally resolves
at delivery with placenta removal, but it causes severe long-term complications for both
the mother and the fetus, such as cardiovascular and neurological disorders, diabetes, and
metabolic syndrome [3]. Despite almost three decades of intensive investigation, PE still
remains an unsolved medical need.

Indeed, preeclampsia has a major social–economic impact due to the lack of effective
therapies, except for a timely and often premature delivery. There were several unsuccessful
attempts to find a resolutive cure for PE, ranging from new drug candidates to drug
relocation. The main problem with preeclampsia is that, as a syndrome, it is multifactorial, a
destructive mix of inflammation, endothelial damage, and immunological impairment [2,4].
Key features of PE are a maternal immune maladaptation towards the fetoplacental district
with a shift towards Th1 immunity [5–7], increased placental release of proinflammatory
cytokines (e.g., Tumor Necrosis Factor-α—TNF-α; Interleukin-6–IL-6), and anti-angiogenic
factors (e.g., soluble FMS-like tyrosine kinase-1—sFlt-1) that promote aberrant placental
angiogenesis and generalized endothelial cell activation and damage [8–11]. Therefore,
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an ideal PE therapeutic approach must be able to contemporarily target all preeclamptic
culprits and not to just mitigate a single clinical symptom as hypertension or inflammation.

The human placenta has been identified as a source of mesenchymal stromal cells
(placenta-derived mesenchymal stromal cells—PDMSCs). PDMSCs could be isolated from
the chorionic villi, the amnion, and the decidua and possess an increased self-renewal
potential. Moreover, PDMSCs express stem cell markers (e.g., OCT-4, NANOG) and could
differentiate into condrogenic, adipogenic, and osteogenic lineages [12–14]. Importantly,
PDMSCs are characterized by unique immunologic and immune-regulatory properties,
thus exerting a powerful immunosuppressive effect on T-cells [15–18]. Placental MSCs have
been shown to promote angiogenic growth and to possess anti-inflammatory, anti-fibrotic,
and cytoprotective abilities mediated by both direct cell-to-cell contact and/or specific
trophic mediators more than cell differentiation [15,19].

Thus, PDMSCs may be an attractive therapeutic candidate for PE treatment. Recently,
decidual MSCs were injected in vivo in a Th1 cell-induced PE-like mouse model demon-
strating the ability to ameliorate PE-like symptoms as blood pressure and proteinuria [20].
In line with these results, an endotoxin-induced PE rat model infused with umbilical cord
blood-derived MSCs showed decreased blood pressure, proteinuria, and inflammation
relative to untreated controls [21]. Finally, commercially available placental mesenchymal
cells were administered to hypertensive TLRs-induced pregnant mice, decreasing blood
pressure, placental injury, and inflammation [22]. MSC-based therapy definitely sounds an
intriguing potential multitarget therapeutic tool for preeclampsia.

Nevertheless, it could be hazardous to hypothesize a cell therapy for such a sensitive
and delicate environment as human pregnancy for both ethical and biosafety reasons. No
long-term studies on MSCs oncogenic potentials are available, and data about MSCs ability
to invade maternal organs are contrasting [21,23–27].

Since mesenchymal stromal cells exerts their beneficial effects mainly through the
release of trophic mediators, in the present study we tested the hypothesis that PDM-
SCs’ conditioned media (CM) could be used as an effective, ethical, and safe therapeutic
approach for preeclampsia. Therefore, we evaluated the effects of PDMSCs-CM adminis-
tration on maternal blood pressure, proteinuria, fetal outcome, and placental expression of
sFlt-1, TNF-α, and IL-6 in an LPS-induced mouse model of preeclampsia.

2. Results
2.1. PDMSCs Presented Proper Mesenchymal Stromal Cell Profile

PDMSCs used for CM preparation presented proper mesenchymal stromal phenotype
as assessed by flow cytometry. As previously published, cells were positive for CD105,
CD166, CD90, and CD73, and negative for HLA-II, CD34 and CD45 (hematopoietic mark-
ers), and CD133 and CD31 (endothelial progenitor markers). PDMSCs were also negative
for B cells, neutrophils, and macrophages markers CD20 and CD14 and for trophoblast
and epithelial marker CD326, thus excluding any type of contamination [19,28]. RT-PCR
detected the expression of typical stemness markers Oct-4 and Nanog in all PDMSCs cell
lines [19,28].

2.2. Characteristics of the Study Population

Female pregnant mice from both control and CM group did not display significant dif-
ferences in body weight after LPS injection and treatment with unconditioned/conditioned
media (CM = median 27.4 g; controls: median 26.3 g). Mice from the control group showed
adverse pregnancy outcomes, including fetal absorption (n = 5) and significant lower
placental weight (p < 0.01), compared with PDMSCs-CM group (Table 1). Moreover, one
case of miscarriage was observed in the control group. No significant differences were
observed in fetal weight (Table 1).
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Table 1. Effect of PDMSCs-CM treatment on clinical and biochemical parameters of mice in PDMSCs-
CM and control groups.

PDMSCs-CM (n = 5) Control (n = 5) p-Value

Number of fetuses 41 24 p < 0.01
Fetal reabsorption 0 5 p = 0.02

Fetal weight, grams
(median and range)

0.82
(0.62–1.26)

0.75
(0.59–0.99) ns

Placental weight, grams
(median and range)

0.12
(0.07–0.25)

0.09
(0.05–0.14) p < 0.01

Hematocrit (%) 11.1 10.8 ns
RBC 7.2 7.08 ns
WBC 1.1 1.2 ns

Plt 330 135 ns
Htc (%) 10.4 10.3 ns

Hb 10.1 9.9 ns
ALT (mg/dL) 39.7 39.7 ns
AST (mg/dL) 247.7 263.7 ns
Urea (mg/dL) 35.2 34.2 ns

Creatinine (mg/dL) 0.07 0.07 ns
Significant main effect of PDMSCs-CM treatment on number of fetus, fetal reabsorption, and placental weight.
Data are expressed as means ± SEM. ns: not significant.

RBC (red blood cells) and WBC (white blood cells) count, Htc (hematocrit), and
hemoglobin concentration did not change between groups but there was a trend of decrease
in Plt (platelets) count in control relative to CM-treated mice (Table 1).

2.3. PDMSCs Conditioned Media Ameliorated Maternal Hypertension and Proteinuria in
LPS-Induced PE Mouse Model

We first investigated whether LPS injection was able to induce maternal hyperten-
sion. Average maternal basal SBP at days 9–11 was 93.3 ± 1.3 mmHg and it significantly
increased to 101.3 ± 1.4 mmHg at day 12 (p = 0.04), 24 h after LPS injection (Figure 1B).
We next examined the effect of plain media or PDMSCs-CM injection in LPS-induced
hypertensive pregnant mice. In control mice (LPS + plain media), maternal SBP continued
to increase at day 13 (104.4 ± 1.9) and day 18 (113 ± 2.3), while in CM pregnant females
(LPS + PDMSCs-CM), SBP significantly decreased at days 13 (95.6 ± 0.63 mmHg, p < 0.01),
15 (95.7 ± 1.2 mmHg, p < 0.01), 16 (95.7 ± 2.1 mmHg, p = 0.03), and 18 (101.2 ± 2.3 mmHg,
p < 0.01) relative to control mice (Figure 1B).

On day 12, after LPS injection and before CM or plain media injection, mean mice
urine protein concentration was 0.19 ± 0.04 µg/µL. In LPS pregnant females treated by
plain media, proteinuria showed a trend of decrease from day 13 to 17 relative to day
12, even though it was not significant and less dramatic compared to CM-treated mice
(Figure 1C). Proteinuria decreased on d13 (0.12 ± 0.04, p > 0.05), d15 (0.04 ± 0.02, p = 0.016),
and d17 (0.06 ± 0.02, p = 0.045) relative to day 12 CM mice (Figure 1C).

Finally, in order to investigate the effects of plain media or PDMSCs-CM infusion on
liver and renal functions in LPS-induced hypertensive pregnant mice, we tested serum
levels of selected parameters. On day 19, no differences were found in CM group rela-
tive to control in AST (aspartate aminotransferase) (39.75 ± 7.31 mg/dL versus 39.75 ± 5.17,
p > 0.05) and ALT (alanine transaminase) (247.75± 62.88 mg/dL versus 263.75 ± 34.47 mg/dL,
p > 0.05) levels, used as markers of liver functionality, nor in creatinine (0.0175 ± 0.01 mg/dL
versus 0.07 ± 0.01 mg/dL, p > 0.05) and urea levels (35.25 ± 5.72 versus 34.25 ± 2.28 mg/dL,
p > 0.05), used as markers of kidney function.
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Figure 1. Effects of PDMSCs-CM treatment on maternal parameters during days 11 to 18 of gestation.
(A) Study design. Blood pressure (B) and proteinuria (C) in LPS-induced PE mouse model injected
with PDMSCs-CM or plain media.

2.4. Placental sFlt-1, TNF-α, and IL-6 Expression Were Inhibited by PDMSCs-CM in PE Mice

In order to determine if PDMSCs-CM treatment was effective also at the placental level,
we evaluated placental expression of sFlt-1, TNF-α, and IL-6, key hallmarks of preeclampsia,
in CM and control mice. We found a significant reduction of mRNA expression for the three
molecular targets investigated, namely sFlt-1 (5.5-fold decrease, p = 0.04), TNF-α (6.2-fold
decrease, p = 0.03), and IL-6 (5-fold decrease, p = 0.03) in CM mice compared to controls
(Figure 2A). Decreased sFlt-1 (p = 0.013, 1.29-fold decrease) and IL-6 (p = 0.034, 1.14-fold
decrease) expression in the placentae of CM mice, compared to controls, was confirmed
also at the protein level (Figure 2B). No significant differences in TNF-α protein level were
found in CM compared to control placentae (Figure 2B).
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Figure 2. Effects of PDMSCs-CM treatment on placental sFlt-1, TNF-α, and IL-6 expression. Gene
(A) and protein (B) sFlt-1, TNF-α, and IL-6 expression in placentae from LPS-induced PE mouse
model injected with PDMSCs-CM or plain media. Statistical significance (*) has been considered as
p < 0.05.

3. Discussion

Although the etiology of preeclampsia is still elusive, recent evidence has demon-
strated that MSCs of different origins, when directly infused in animal models, are able to
ameliorate PE-like symptoms, thus suggesting their potential role as therapeutic agents [20,21,24].
Nevertheless, systemic administration of living cells implies significant biosafety and ethical
issues that must be considered when designing therapies for such a sensitive environment
as pregnancy. Intravenously injected GFP-labeled umbilical cord MSCs were detected in
the renal parenchyma and placenta of PE pregnant rats and in fetal kidneys, liver, lungs,
and heart [21]. Moreover, locally administered cells often die before they significantly
contribute to the healing response due to poor diffusion of nutrients and oxygen [29].
Alternative approaches are therefore mandatory.

The conditioned media obtained from MSCs consist of biologically active molecules
whose function is to simultaneously modulate key biological mechanisms such as in-
flammation and immune response, angiogenesis, cell proliferation, apoptosis, and senes-
cence [19,30–33]. Therefore, MSCs-derived CM can be investigated as an alternative ap-
proach to cell therapy.

MSCs have been successfully isolated from a variety of tissues, including adipose
tissue, pancreas, and umbilical cord blood [34–36]. In the present study, we used physio-
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logical MSCs derived from placental chorionic villi because of their immunosuppressive,
pro-angiogenic, anti-inflammatory, and cytoprotective activities potentially useful against
the aberrant placentation typical of PE [19,31,35,37–39]. In our previous works we found
that PDMSCs-CM is able to modulate in vitro the expression of inflammatory cytokines, an-
giogenic factors, senescence markers, and cell cycle modulators in the placental villi [19,31].

Herein, we performed intravenous PDMSCs-CM administration to investigate the
paracrine effects of placental mesenchymal cells in an LPS-induced mouse model of PE. LPS
was chosen to mimic PE symptoms since it induces generalized endothelial dysfunction
via the activation of inflammatory pathways [40]. In accordance with previous reports,
in our model, LPS exposure led to gestational hypertension and proteinuria [24,41,42], as
observed in PE pregnancies. Importantly, we demonstrated that systemic administration
of PDMSC-CM, and not of living cells, significantly reduced LPS-induced gestational
hypertension and proteinuria.

In line with our data, other groups reported the efficacy of MSCs in reducing hy-
pertension in vivo [22,24,43]. It was suggested that the mechanism by which MSCs may
ameliorate hypertension is through the modulation of endothelium-derived factors that
control vasodilatation, vasoconstriction, and microvascular density increase [44]. In two-
kidney, one-clip rats, MSCs minimized hypertension at least in part by interfering with
sympathetic nerve activity leading to reduction of sympathetic activity in the cardiovascular
system [45].

As mentioned above, our results were obtained by injecting PDMSCs conditioned
media and not living cells, thus opening the door to less invasive, more ethical, and safe
therapeutic approaches for preeclampsia. PDMSCs-CM composition is complex and it
includes free proteins, small molecules, and extracellular vesicles which can be further di-
vided into apoptotic bodies, microparticles, and exosomes [46,47]. We previously published
PDMSCs-CM partial characterization performed by cytokine array technology [19], demon-
strating the presence of cytokines and chemokines in the conditioned media. In particular,
we described Interleukin 8 (IL-8), Osteopontin, Tissue Inhibitor of Metalloproteinases-
2 (TIMP-2), Neutrophil Activating Peptide 2 (NAP-2), Monocyte Chemotactic Protein-1
(MCP-1), Osteoprotegerin, Transforming Growth Factor-b2 (TGF-b2), Interferon-inducible
protein-10 (IP-10), GRO, Vascular Endothelial Growth Factor (VEGF), Placental Growth
Factor (PlGF) and Interleukin 10 (IL-10) as components of physiological PDMSCs-CM [19].
Despite that some of these molecules were classified as proinflammatory and Th1 medi-
ators increased in PDMSCs and maternal blood from PE patients, they are also pivotal
for physiological embryo implantation, placentation, and maternal–placental vascular
remodeling [48–50]. For example, IL-8 is able to specifically counteract inflammation at the
endothelial level [51], while TIMP-2 and IL-10 are powerful anti-inflammatory molecules,
suggesting a multifactorial action directed against the exacerbated inflammation typical of
PE. Moreover, since VEGF/sFlt-1 unbalance is widely accepted as the main trigger for the
endothelial dysfunction, leading to hypertension in preeclampsia [52–54], we hypothesize
that PDMSCs-CM counteracted endothelial dysfunction in our LPS-induced PE model via
pro-angiogenic VEGF modulation and anti-angiogenic sFlt-1 inhibition. This hypothesis is
in line with our previous findings showing that PDMSCs-CM promoted placental VEGF
accumulation and sFlt-1 downregulation in physiological human villous explants [19].

Next, we described that PDMSCs-CM administration induced a significant reduction
in LPS-induced urinary protein excretion. Similar effects were observed when human
placental expanded (PLX-PAD) mesenchymal-like cells were injected in two models of
innate immunity-induced PE, thus confirming PDMSCs potential to reduce PE-associated
proteinuria [22]. Chatterjee et al. suggested that the release of paracrine factors led to
the observed decrease in oxidative stress, angiogenesis, inflammation, and endothelial
dysfunction, without the need of cell–cell contact. Since endothelial damage underlies many
PE manifestations, including proteinuria [55], our data are in line with the above mentioned
results, confirming the ability of human PDMSCs to counteract vascular dysfunction
throughout the release of trophic mediators, as VEGF that it is able to stimulate endothelial
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repair and reduce circulating sFlt-1 levels. In our model, LPS-induced proteinuria slowly
decreased with advancing gestation also in animals infused with plain media, even if to a
significantly lesser extent relative to CM animals. This effect is likely due to spontaneous
LPS clearance and consequent inflammation remission.

Moreover, we reported that LPS followed by plain media infusion in pregnant mice
induced reduction in fetuses’ number, fetal absorption, and decrease in fetal and placental
weight, thus mimicking placenta development anomalies typical of PE. Similar results
were reported by Rivera et al., showing that a 100 µg/kg day LPS for 7 days in pregnant
rats significantly reduced fetal size and increased fetal demise [56]. In stark contrast,
we demonstrated that PDMSCs-CM treatment resulted in a higher number of fetuses,
increased fetal–placental weight, and no fetal absorption. These outcomes are likely due to
decreased endothelial damage and placental inflammation as demonstrated by placental
sFlt-1, TNF-a, and IL-6 downregulation, reduced maternal blood pressure and proteinuria
derived from improved placental functionality, and fetal nutritional status as previously
suggested [43,57]. Importantly, we specifically investigated TNF-α, Il-6, and sFlt-1 because
they are key players in PE pathogenesis [58] and severe endothelial dysfunction [54,59].

To investigate the impact of PDMSCs-CM on liver and renal functions, serum AST-
ALT and creatinine–urea levels were monitored. It was previously described that after
MSCs injection (e.g., bone marrow MSC, hematopoietic stem cells, umbilical cords MSC,
amniotic fluid MSCs), AST, ALT, creatinine, and urea were normalized to physiological
levels restoring compromised liver and kidneys activities [60–62]. In our model, AST, ALT,
creatinine, and urea serum levels were not modified by LPS injection nor by PDMSCs-
CM/plain media infusion, in line with data reported by Oludare and colleagues that
described no significant differences in liver enzymes’ levels in LPS mice compared to
controls [63]. Importantly, our results demonstrated that PDMSCs-CM did not affect liver
and kidney functionalities, thus excluding adverse effects.

In conclusion, our findings demonstrated that human PDMSCs-CM administration
significantly ameliorated PE-like symptoms and improved fetal–placental outcomes in
pregnant LPS mice. Our data strongly suggested that PDMSCs-CM acted through the
restoration of endothelial function and the suppression of the proinflammatory cascade,
thus contrasting systemic and placental injury. A limitation of our study was that we have
not yet completed PDMSCs conditioned media characterization; therefore, we could not
indicate its exact mechanism of action. Due to CM complexity, different pathways were
most likely promoted and/or suppressed by PDMSCs trophic mediators, thus explaining
the multitarget therapeutic activity demonstrated by our results. Indeed, PDMSCs-CM-
based therapy could be considered a promising tool due to its ability to simultaneously
target different drivers of the preeclamptic syndrome. This approach could minimize the
biological variability, biosafety, and ethical issues of cell-based therapies, thus leading
to the development of a safe and ethical cell-free strategy against preeclampsia. Further
investigations are required.

4. Materials and Methods
4.1. PDMSCs Conditioned Media Preparation

PDMSCs-CM was prepared as previously described [19,31]. Briefly, placentae from
healthy women with a singleton physiological pregnancy were collected immediately
after delivery. Physiological pregnancy was defined as term normotensive pregnancy
and no signs of preeclampsia or FGR. Exclusion criteria were congenital malformations,
chromosomal abnormalities (in number and/or structure), maternal and/or intrauterine
infections, cardiovascular diseases, metabolic syndrome, diabetes, and immunological
disorders.

PDMSCs were isolated by enzymatic digestion and gradient as previously de-
scribed [19,28,31]. PDMSCs were next resuspended in Dulbecco’s Modified Minimum
Essential Medium (DMEM, Gibco, Life Technologies, Monza, Italy) supplemented with
10% fetal bovine serum (FBS Australian origin, Life Technologies, Monza, Italy) and



Int. J. Mol. Sci. 2022, 23, 1674 8 of 12

maintained at 37 ◦C and 5% CO2. At every passage, physiological PDMSCs were charac-
terized by flow cytometry for the expression of the following antigens: HLA-I, HLA-DR,
CD105, C166, CD90, CD34, CD73, CD133, CD20, CD326, CD31, CD45, and CD14 (Mil-
tenyi Biotech, Bologna, Italy). PDMSCs were analyzed by semiquantitative PCR to assess
gene expression levels of stem cell markers Oct-4 and Nanog. Primers were designed as
previously described [19].

At passage three of culture, after obtaining a pure PDMSCs population, cells were
plated and expanded in 1264 cm2 EasyFill cell factories (Carlo Erba, Cornaredo (MI), Italy)
at a concentration of 3 × 106 cells. When cells reached confluency, media was removed and
replaced by 400 mL of DMEM LG without FBS. After 48 h of culture, CM was collected,
filtered, and stored at −20 ◦C until use.

4.2. Preeclamptic Mouse Model Preparation and PDMSCs-CM Treatment

The preeclamptic mouse model was prepared following a modified protocol from
Wang et al. [57]. Briefly, C57BL/6NCrl virgin mice females (n = 30) and males (n = 10) at
4 weeks of age were purchased from Charles River Laboratories (Calco (LC), Italy). All
mice were maintained on a 12 h/12 h dark and light cycle with relative humidity of 50–70%
at 18–22 ◦C. Tap water and standard laboratory pelleted formula were provided.

Female mice were mated with males at 9 weeks of age and plug discovery was
considered as day 0 of pregnancy. Female mice lacking copulation plugs (n = 20) were
returned to the breeding colony. At day 11 of pregnancy, all pregnant females (n = 10)
were removed from breeding cages and received intravenous tail injection of 1 µg/kg LPS
solution in order to induce inflammation-mediated endothelial damage and hypertension.
At day 12, after blood pressure measurements, mice were randomized into two groups
as follows: (1) animals that received a single intravenous tail injection of 300 µL of plain
unconditioned media (control group, n = 5); (2) animals that received a single intravenous
tail injection of 300 µL PDMSCs-CM (CM group, n = 5) (Figure 1A). LPS was purchased
from Sigma Aldrich (Milan, Italy). PDMSCs-CM was prepared as described above.

Maternal systolic blood pressure (SBP) was monitored by tail cuff plethysmography
by using BP-2000 Series II Blood Pressure Analysis System, 2 channels mouse platform
(Visitech Systems, Napa Pl, Apex, United States) from day 9 to 18 of pregnancy. Urine
samples were collected at days 12, 13, and 17 of pregnancy and analyzed for protein content
by Bradford assay (Sigma Aldrich, Milan, Italy). Mice were sacrificed by cervical dislocation
at day 19 of pregnancy and uteri were removed. Maternal blood samples were taken from
mice carotid and collected in heparin tubes to determine the following hematological
parameters: RBC count, WBC count, Plt count, Htc, and Hb. All analyses were performed
using a veterinary hematology analyzer. Serum was separated and used for measuring ALT,
AST, urea, and creatinine. Placental weights, number of fetuses, and fetal weights were
recorded. Placentae were collected and stored at −80 ◦C until the next molecular analysis.

4.3. RNA Isolation and Real-Time PCR

Total RNA was isolated from PDMSCs-CM-treated and untreated PE placentae using
TRIzol reagent (Life Technologies, Invitrogen, Monza, Italy) according to manufacturer
instructions. Genomic DNA contamination was removed by DNAse I digestion before
RT-PCR. CDNA was generated from 5 µg of total RNA using a random hexamers approach
and RevertAid H Minus First Strand cDNA Synthesis kit (Life Technologies, Monza, Italy).

Gene expressions levels of sFlt-1, TNF-α, and IL-6 were determined by real-time
PCR using specific TaqMan primers and probes (Life Technologies, Monza, Italy). MRNA
levels were normalized using endogenous 18 s as internal reference (Life Technologies,
Monza, Italy). Relative expression and fold change were calculated according to Livak and
Schmittgen [64].
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4.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Total proteins were isolated from PDMSCs-CM-treated and untreated PE placentae
using 1X radio immunoprecipitation assay (RIPA) buffer. Quantitative measurement of
sFlt-1 (R&D System, Milan, Italy), TNF-α (RayBiotech, Prodotti Gianni, Milan, Italy), and
IL-6 (Abcam, Milan, Italy) placental levels were determined using commercially available
competitive ELISA kits according to manufacturer’s instruction.

4.5. Statistical Analysis

All data are represented as mean ± standard error (SE). For comparison of data
between multiple groups, one-way analysis of variance (ANOVA) with post hoc Dunnett’s
test was used. For comparison between two groups, Mann–Whitney U-test was used as
appropriate. Fisher’s exact test was used for small sample sizes. Statistical analysis was
carried out using SPSS Version 23 statistical software, and significance was accepted at
p < 0.05.
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