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Abstract
Recent developments in network neuroscience suggest reconsidering what we thought we knew about the default mode net-
work (DMN). Although this network has always been seen as unitary and associated with the resting state, a new deconstruc-
tive line of research is pointing out that the DMN could be divided into multiple subsystems supporting different functions. 
By now, it is well known that the DMN is not only deactivated by tasks, but also involved in affective, mnestic, and social 
paradigms, among others. Nonetheless, it is starting to become clear that the array of activities in which it is involved, might 
also be extended to more extrinsic functions. The present meta-analytic study is meant to push this boundary a bit further. 
The BrainMap database was searched for all experimental paradigms activating the DMN, and their activation likelihood 
estimation maps were then computed. An additional map of task-induced deactivations was also created. A multidimensional 
scaling indicated that such maps could be arranged along an anatomo-psychological gradient, which goes from midline core 
activations, associated with the most internal functions, to that of lateral cortices, involved in more external tasks. Further 
multivariate investigations suggested that such extrinsic mode is especially related to reward, semantic, and emotional 
functions. However, an important finding was that the various activation maps were often different from the canonical rep-
resentation of the resting-state DMN, sometimes overlapping with it only in some peripheral nodes, and including external 
regions such as the insula. Altogether, our findings suggest that the intrinsic–extrinsic opposition may be better understood 
in the form of a continuous scale, rather than a dichotomy.
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Introduction

Network neuroscience has partitioned the human connec-
tome (Sporns et al. 2005) into a set of canonical networks 
(Damoiseaux et al. 2006; De Luca et al. 2006; Laird et al. 
2011; Yeo et al. 2011). Among these, the Default Mode Net-
work (DMN) is given special attention. At the time of writ-
ing, 6238 published papers were returned by the PubMed 
search “default mode network”, while only 2951 records 

for “salience network”, and 3329 for “frontoparietal net-
work”. At least in part, the interest for the DMN likely stems 
from its clinical relevance, since it is found to be altered in 
a wide range of diseases across psycho- and neuropathol-
ogy (Mohan et al. 2016; Sha et al. 2018, 2019). However, 
despite the attention received by the scientific community, 
the function of DMN remains unclear. As a matter of fact, 
its elusiveness might be what makes investigating such brain 
system so compelling.

Initially, the DMN was outlined as a network spe-
cifically related to the resting state. Its first image comes 
from a meta-analysis by Shulman et al. (1997) about the 
so-called Task-Induced Deactivations (TID), depicting the 
areas consistently deactivated during attention-demanding 
tasks. Afterwards, trying to better characterize the concept 
of deactivation (Raichle and Snyder 2007), Raichle et al. 
(2001) observed that the metabolism was mostly uniform 
across the brain during resting state. For this reason, they 
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suggested that the brain at rest was in a state of physiological 
baseline (Raichle et al. 2001; Gusnard and Raichle 2001), 
a default mode that represents a form of tonic activation for 
those regions commonly deactivated by tasks (Raichle et al. 
2001). Finally, Greicius et al. (2003) proved that such default 
mode system was indeed a network, denoted by functional 
connectivity (FC) at rest. Furthermore, the DMN functional 
signal was reported to be negatively correlated with the sig-
nal of task-positive regions at rest (Fox et al. 2005a; Uddin 
et al. 2009), as well as during a task and with the experimen-
tal model itself (Greicius and Menon 2004; Golland et al. 
2007; Lin et al. 2011; Newton et al. 2011). However, this 
rest-task distinction has soon shown its limitations, in favor 
of an internal–external characterization of different modes 
of cognition (Fransson 2005; Buckner et al. 2008; Spreng 
2012; Dixon et al. 2014).

From the early beginning of the investigations, it was 
observed that the DMN is not deactivated by any task, as 
self-referential and emotional paradigms activated it (Gus-
nard et al. 2001). Since those observations, many further 
functions were shown to be associated with this network. 
Other than self-referential and emotional processes (Fos-
sati et al. 2003; Ochsner et al. 2004, 2005; Northoff and 
Bermpohl 2004; Northoff et al. 2006; Buckner and Carroll 
2007; Uddin et al. 2007; D’Argembeau et al. 2010; Denny 
et al. 2012; Molnar-Szakacs and Uddin 2013; Engen et al. 
2017; Satpute and Lindquist 2019; Fingelkurts et al. 2020; 
Knyazev et al. 2020), the DMN turned out to be related to 
memory and mental time-travel (Cabeza et al. 1997; Svo-
boda et al. 2006; Schacter et al. 2007, 2008; Addis et al. 
2007; Foster et al. 2012; Yang et al. 2013; Rugg and Vil-
berg 2013; Spreng et al. 2015; Kim 2016; Murphy et al. 
2018), mental simulation and scene construction (Hassabis 
and Maguire 2007; Hassabis et al. 2007; Spreng and Grady 
2010; Gerlach et al. 2011), Theory of Mind (ToM) and 
social cognition (Saxe and Kanwisher 2003; Rilling et al. 
2004; Ruby and Decety 2004; Saxe and Powell 2006; Mar 
2011; Mars et al. 2012; Spreng and Andrews-Hanna 2015; 
Amft et al. 2015; Mwilambwe-Tshilobo and Spreng 2021), 
moral judgment (Greene et al. 2001; Harrison et al. 2008; 
Pujol et al. 2008; Bzdok et al. 2012), and semantic process-
ing (Binder et al. 1999; Chiou et al. 2020; Evans et al. 2020; 
Lanzoni et al. 2020). However, most of these psychological 
functions can still be somewhat associated with the resting 
state, in the sense that these activities might be easily carried 
out during rest. In fact, the resting mind has not to be consid-
ered as idle (Raichle 2009), but it is continuously involved in 
activities collectively known as mind-wandering (Giambra 
1989; Spiers and Maguire 2006; Mason et al. 2007; Fox 
et al. 2015; Seli et al. 2016). During mind-wandering, the 
brain is expected to engage in DMN-related functions such 
as remembering the past, imagining the future, thinking 
about others, and displacing the self in imaginary situations 

(Andreasen et al. 1995; Andrews-Hanna 2012; Andrews-
Hanna et al. 2014; Christoff et al. 2016), the same func-
tions typically associated to the DMN. When some of these 
activities intrude into the execution of an attentional task as 
stimulus-independent thoughts, the task performance may 
be affected by errors (Sonuga-Barke and Castellanos 2007; 
Smallwood et al. 2008; Prado and Weissman 2011; Kam and 
Handy 2013). Likewise, expected task-related activations 
may be found disrupted, and DMN areas activated (Weiss-
man et al. 2006; Mason et al. 2007; Li et al. 2007; Eichele 
et al. 2008; Kam et al. 2011).

Still, these observations are consistent with a rest-task 
dichotomy, and do not really suggest a proactive role for 
the DMN. In contrast, it has been proposed that, during 
task, DMN-driven stimulus-oriented thoughts may possibly 
appear (Mantini and Vanduffel 2013; Sormaz et al. 2018) 
with the purpose of supporting task performance (Gilbert 
et al. 2007). As a matter of fact, the DMN has been impli-
cated in problem-solving and creativity (Kounios et al. 2006; 
Gerlach et al. 2011; Abraham et al. 2012; Ellamil et al. 2012; 
Jung et al. 2013; Benedek et al. 2014; Mayseless et al. 2015; 
Marron et al. 2018; Huo et al. 2020), suggesting that its 
activity can also be engaged in external demands. Indeed, 
DMN activations can enhance cognitive control during 
extrinsic tasks requiring internal mentation (Spreng et al. 
2014), possibly in coordination with frontoparietal control 
systems (Spreng et al. 2010; Cocchi et al. 2013; Gerlach 
et al. 2014). Furthermore, the anteromedial prefrontal cortex 
(amPFC), node of the DMN, was found to be activated in 
monitoring the external environment, contributing to faster 
reaction times (Gilbert et al. 2005, 2006). It also seems that 
the DMN is recruited in switching tasks, in the case of a 
demanding shift from a cognitive context to a different one 
(Crittenden et al. 2015). Moreover, the DMN was also found 
to be activated both in decision-making (Smith et al. 2021) 
and when subjects have to automatically apply learned rules 
(Vatansever et al. 2017).

The critical role of DMN for task execution is highlighted 
not only by activation studies, but also by functional con-
nectivity investigations that questioned the supposed DMN 
anticorrelation with task execution and task-positive regions. 
It has been shown that nodes of the DMN are positively 
correlated with task-positive areas during acquisition and 
retrieval phases of a working memory task (Piccoli et al. 
2015), as well as during the preparation phase (Koshino 
et al. 2011, 2014). In addition, during such tasks, the con-
nectivity within the DMN was found to be correlated with 
behavioral performance (Hampson et al. 2006). Moreover, 
the sign and the strength of the correlations between DMN 
and task-positive regions remarkably varies between the 
nodes of these networks, and according to the tasks and the 
different resting-state time epochs (Chang and Glover 2010; 
Bluhm et al. 2011; Leech et al. 2011; Elton and Gao 2015; 
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Dixon et al. 2017; Denkova et al. 2019). At the subject level, 
interactions between DMN and attentional and control net-
works were found during a semantic memory retrieval task 
(Fornito et al. 2012). In sum, there is considerable evidence 
that the DMN functionality is crucial, not only for inter-
nal mind-wandering, but also for the execution of extrinsic 
activities.

Just as its role in human cognition, the anatomical and 
topological representation of the DMN has proven to be puz-
zling. From a theoretical point of view, the DMN could be 
described as a whole and unfractionated network, with hub 
nodes in the posterior cingulate cortex (PCC) and medial 
prefrontal cortex (mPFC) and more peripheral nodes in the 
medial and lateral temporal lobe, angular gyrus (AG), dorso-
lateral prefrontal cortex (dlPFC), and inferior frontal gyrus 
(IFG) (Buckner et al. 2008; Yeo et al. 2011). Nonetheless, 
it is widely acknowledged that it can be further divided into 
subnetworks (Abou-Elseoud et al. 2010; Abou Elseoud et al. 
2011; Yeo et al. 2011; Shirer et al. 2012; Ray et al. 2013). 
In this regard, Andrews-Hanna et al. (2010) reported that 
the subdivisions of such network might have different func-
tions. In particular, they identified two subsystems structured 
around a midline core: the former, formed by the PCC was 
thought to be involved in self-referential processes, and the 
latter, composed by mPFC, has considered to be related to 
future-oriented thoughts (Andrews-Hanna et al. 2010). What 
is more, the midline core itself might be a fractionated struc-
ture. In fact, by analyzing single-subject data with minimal 
spatial smoothing, Braga and colleagues (Braga and Buckner 
2017; Braga et al. 2019; DiNicola et al. 2020) have recently 
found that the DMN seems to be composed of two parallel 
and interdigitated networks, interleaved even within PCC 
and mPFC. The two subsystems were found to be related to 
different roles: one to social cognition and the other one to 
mnestic functions (DiNicola et al. 2020). Similarly, Wang 
et al. (2020) parcellated the DMN nodes into different parts, 
each one associated with a specific functional profile. Like-
wise, Gordon et al. (2020) were able to divide the individu-
als’ DMN into nine subnetworks showing differential task 
engagement. Thus, the most recent developments in the 
research of the DMN are indicating that such network, far 
from being a monolithic entity, consists of multiple systems 
with intersecting functions and anatomies (Buckner and 
DiNicola 2019).

The present study aims to delve into this matter, using a 
coordinate-based meta-analytical methodology to investigate 
the functions related to the activity of the DMN regions and 
the spatial variability associated with them. The use of a 
meta-analytical approach allows to overcome the heteroge-
neity of results, a typical issue of neuroimaging experiments 
(Botvinik-Nezer et al. 2020). After all, the DMN research 
has a long meta-analytical tradition. In fact, the first images 
of the network come from meta-analyses of TID (Shulman 

et al. 1997; Mazoyer et al. 2001), subsequently confirmed 
by an Activation Likelihood Estimation (ALE) meta-analysis 
by Laird et al. (2009). Another ALE study (Schilbach et al. 
2012) showed that the areas of TID, social cognition, and 
emotional processing converged on PCC and mPFC. Simi-
larly, an ALE meta-analysis from Spreng et al. (2009) noted 
a correspondence between autobiographical memory, spatial 
navigation, theory of mind activations, and TID. It could 
be said that these two latter studies used a meta-analytic 
approach to put forward a consistent and comprehensive 
view of DMN functions. On the contrary, the current study 
wants to highlight the functional variety of the DMN.

To make these assessments, we performed a Paradigm 
Analysis (Lancaster et al. 2012), capitalizing on the Brain-
Map database and on its taxonomy of behavioral ontolo-
gies (Fox and Lancaster 2002; Fox et al. 2005b; Laird et al. 
2005). This allowed us to identify the task categories signifi-
cantly associated with the network in a data-driven fashion. 
Activation coordinates of such paradigms were then obtained 
from the same database, and used to perform an ALE meta-
analysis for each one of them. As indicated by Raichle et al. 
(2001), TID correspond to rest tonic activations, and it has 
been suggested that the rest should be seen just as another 
active state (Buckner et al. 2013). Thus, a TID ALE map 
was calculated to represent the DMN configuration during 
resting state. This also constitutes a replication of Laird et al. 
(2009) with a larger database and updated algorithms. The 
resulting set of maps underwent a series of analyses, namely, 
Multidimensional Scaling (MDS), Principal Component 
Analysis (PCA), and Independent Component Analysis 
(ICA). These were to explain the DMN task-based variabil-
ity in the form of axes along which the network arranges 
itself to meet external demands. We expected that differ-
ent operative domains related to the DMN would recruit 
distinctive sets of areas, including some regions typically 
assigned to other resting-state networks (RSNs). Given the 
wide range of functions implicated with the mPFC (Delgado 
et al. 2016; Schneider and Koenigs 2017; Hiser and Koenigs 
2018; Lieberman et al. 2019; Toro-Serey et al. 2020), we 
anticipated that this region would express a large variability 
in its activations, possibly organized in a rostral-caudal arc 
revolving around the callosal genu (Amodio and Frith 2006). 
The PCC might show some internal differentiation as well 
(Leech et al. 2011).

Methods

Paradigm Analysis

The Paradigm Analysis (Lancaster et al. 2012), as imple-
mented in the dedicated plugin for Mango (http:// ric. 
uthsc sa. edu/ mango/) (Lancaster et al. 2010, 2011), was 

http://ric.uthscsa.edu/mango/
http://ric.uthscsa.edu/mango/
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performed to get the profile of involvement of the DMN 
with different fMRI paradigms. The BrainMap database 
is coded with an articulated cognitive, anatomic and 
operational taxonomy (Fox et al. 2005b). In particular, 
each experimental contrast is characterized by the domain 
of the task utilized. A complete list of paradigms with 
detailed definitions can be found at: http:// www. brain map. 
org/ taxon omy/ parad igms. html. Given a region of interest 
(ROI), the Paradigm Analysis leverages on the BrainMap 
database to test if executing a task significantly activates 
that area, versus a null model of spatial uniformity of that 
paradigm’s activations. The output of the technique is a 
series of z-scores for each paradigm, whose significance 
is set above the Bonferroni-corrected threshold of z = 3.3. 
A paradigm being significant in a ROI does not mean that 
it activates only that area and not the rest of the brain, but 
that there is a density of activation higher than chance 
within the mask. Thus, we are not looking for the tasks 
activating specifically the DMN, but simply the task acti-
vating the DMN more than chance, while other RSNs 
might be activated as well.

Of note, numerous and different functional parcella-
tions of the human brain exist, and there are no methodo-
logical criteria or gold standard to prefer one to the others 
(Eickhoff et al. 2015; Arslan et al. 2018). Therefore, to 
maximize the representativity of our results, three different 
masks of the DMN obtained with different methodologies 
were fed to the Paradigm Analysis. The paradigms that 
were found significantly associated with at least two out 
of these three masks, were taken in consideration in the 
subsequent analyses. The first ROI was extracted from the 
seven Network parcellation by Yeo et al. (2011), which 
was produced with a clustering algorithm. The second one 
was derived from the ICA by Shirer et al. (2012), merging 
the originally split ventral and dorsal components of the 
DMN. Lastly, we selected the DMN from the CAREN 5 
atlas by Doucet et al. (2019), which was obtained by the 
consensus between six different parcellations. Since the 
Paradigm Analysis tool works in Talairach space, the three 
masks were registered to Talairach using FLIRT (Jenkin-
son et al. 2002).

Activation likelihood estimation and fail‑safe 
analysis

To trace the studies related to the 8 significant paradigms 
identified by such consensus approach (see Sect. 3.1), the 
software Sleuth has then been used to search the BrainMap 
functional database (Fox and Lancaster 2002; Fox et al. 
2005b; Laird et al. 2005). For each one of the paradigms 
individuated with the method detailed above, the queries 
were composed as follows:

[Experiment Context is Normal Mapping] AND 
[Experiment Activation is Activations Only] AND 
[Experiment Paradigm Class is …]

where the latter field was completed with the given par-
adigm. Furthermore, to obtain the TID, we replicated the 
search used by Laird et al. (Laird et al. 2009):

[Experiment Context is Normal Mapping] AND 
[Experiment Activation is Deactivations Only] AND 
[Experiment Control is Low Level]

Coordinates were exported by Sleuth in Talairach space. 
To minimize within group effects and ensure independence 
between the observations (Turkeltaub et al. 2012; Müller 
et al. 2018), the experimental contrasts calculated on the 
same group of subjects were merged in a single set of foci, 
using the pertaining option in the tool.

Each one of the resulting lists of coordinates was then fed 
to GingerALE 3.0.2 (Turkeltaub et al. 2002; Eickhoff et al. 
2009) to calculate its ALE map. A family wise error (FWE) 
correction for multiple comparisons was adopted (Eickhoff 
et al. 2012), with cluster-level inference of p < 0.05 and a 
cluster-forming threshold of p < 0.001.

To take into account the file-drawer effect, a Fail-Safe 
procedure was implemented (Acar et al. 2018). The file-
drawer problem, also known as publication bias, hypoth-
esizes the existence of unpublished null results that would 
reduce the representativity of a meta-analysis (Rosenthal 
1979). The Fail-Safe algorithm (https:// github. com/ Neuro 
Stat/ Gener ateNu ll) proposed by Acar et al. (2018) gener-
ates a given number of experiments having random foci, to 
be added to the dataset to be tested. The purpose of these 
random experiments, which do not corroborate our findings, 
is to simulate unpublished results. The number of foci and 
subjects of those experiments were such to match the distri-
bution they had in the original data. Samartsidis et al. (2020) 
estimated that the file-drawer effect of the BrainMap data-
base amounts to 6%. Thus, we decided to perform a series 
of Fail-Safe analyses adding the 6% and the 60% of random 
experiments to each dataset, so as to evaluate the robustness 
of our results. The outputs were two series of maps showing 
the activations that were still significant after the injection 
of the specified level of noise.

Data reduction techniques

The subsequent analyses were carried out in Python, using 
the NiBabel 3.2.1 package (Brett et al. 2020) to access the 
NIfTI file format, the NumPy library (Harris et al. 2020) to 
calculate the Pearson correlation coefficients and scikit-learn 
0.24.1 (Pedregosa et al. 2011) to compute MDS, PCA and 
ICA. The Bartlett’s test and the Kaiser–Meyer–Olkin index 
were calculated with FactorAnalyzer (https:// factor- analy 

http://www.brainmap.org/taxonomy/paradigms.html
http://www.brainmap.org/taxonomy/paradigms.html
https://github.com/NeuroStat/GenerateNull
https://github.com/NeuroStat/GenerateNull
https://factor-analyzer.readthedocs.io/en/latest/index.html
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zer. readt hedocs. io/ en/ latest/ index. html). Matplotlib (Hunter 
2007) was used for visualizations.

To start with, the 9 ALE maps (8 paradigms and the 
TID) were vectorized using a Talairach standard as brain 
mask with 2  mm3 voxel size (https:// www. brain map. org/ ale/ 
colin_ tlrc_ 2x2x2. nii. gz), to obtain a voxels × maps matrix. 
To perform the MDS, a Pearson’s correlation matrix was 
derived first. Then, the distance measure dij between the 
element i and j of the dissimilarity matrix was calculated 
as dij = 1—rij where r is their Pearson’s correlation, as in 
Kriegeskorte et al. (2008). Such distance matrix was then 
fed to the scikit-learn MDS algorithm. The MDS attempts to 
reproduce the distances of the input matrix in an Euclidean 
space of reduced dimensionality that preserves the original 
dissimilarities as closely as possible. To avoid random rota-
tions of the solutions, the iterative MDS algorithms were 
initialized using PCA scores as starting condition (Bécavin 
et al. 2011). We calculated the solutions with 2 and 3 dimen-
sions, calculating the standardized stress S (Kruskal 1964) to 
evaluate the goodness-of-fit of the two solutions. The stress 
was computed implementing the code proposed at: https:// 
github. com/ scikit- learn/ scikit- learn/ pull/ 10168.

The voxels × 9 maps matrix was again used as input for 
PCA to obtain both the principal component (PC) loadings 
(map coefficients for each component) and scores (voxel pro-
jections on the component). The scores were then plotted on 
the Talairach standard to obtain PC maps. Finally, the same 
voxels × maps matrix was fed to the scikit-learn FastICA 
algorithm (Hyvärinen and Oja 1997; Hyvarinen 1999). In 
doing so, we obtained the voxel scores on each independent 
component (IC) to be plotted in Talairach space to obtain 
the corresponding voxel-wise maps, as well as each map’s 
coefficient, or loading, on each component.

Comparison with the resting‑state principal 
gradients

To further characterize our results, we compared our IC 
maps with those of the first and third principal gradients 
(PG) by Margulies et al. (2016). Since our maps were not 
restricted to the cortex, we chose to work with PG whole-
brain volumes, downloaded from https:// neuro vault. org/ colle 
ctions/ 1598/ and converted to Talairach space with FLIRT. 
PG1 is known to be related to cortical hierarchy, and PG3 
is taken here as another dimension of associativity. To con-
firm this, we performed a meta-analysis similar to that used 
by Margulies et al. (see Supplementary Materials for more 
details).

A first comparison was made correlating the ICs with 
the PGs, using the same mask as above (see Data reduc-
tion techniques) to exclude non-brain voxels from the com-
putation. In addition, for a given IC and PG, we extracted 
the PG values corresponding to the positive part of the IC, 

and compared them to the remaining PG values with a two-
sample t test (H0: PGIC ≤ PG¬IC). Lastly, we portrayed the 
heteromodality of our ICs as the percentage of their posi-
tive part overlapping with the positive voxels of the given 
PG. The same analyses were performed for the ALE and PC 
maps as well.

Results

Paradigm Analyses and activation likelihood 
estimations

The Paradigm Analysis results obtained for the three selected 
DMN masks (Yeo et al. 2011; Shirer et al. 2012; Doucet 
et al. 2019) are presented in Table 1. These tasks were found 
to activate the respective DMN ROIs significantly more 
than by chance, that is, the activations for a given task were 
found within the DMN more frequently than those expected 
if they were distributed randomly in the brain. The three 
DMN masks are shown in Supplementary Fig. S1. Eight 
paradigms were found to be significant for at least two out 
of the 3 DMN masks: ToM, Semantic Monitor/Discrimina-
tion, Episodic Recall, Emotion Induction, Self-Reflection, 
Deception, Imagined Object/Scenes, and Reward. Most 
of these paradigms are related to social, mnestic, or other 
internal mentation functions typically associated with the 
DMN (Buckner et al. 2008). To the best of our knowledge, 
deception tasks were not previously related to the network, 
although the social nature of such paradigms likely justi-
fies this result. Similarly, we are not aware of many explicit 
links between reward functions and DMN in the literature 
(Lopez-Persem et al. 2020; Martins et al. 2021), albeit there 
is strong evidence to associate the mPFC to such mecha-
nisms (Xue et al. 2009; Schneider and Koenigs 2017; Hiser 
and Koenigs 2018; Lieberman et al. 2019). Interestingly, 
reasoning and problem-solving paradigms had a significant 
effect on the CAREN mask (Doucet et al. 2019), suggest-
ing that the DMN might then play a role outside of what is 
considered internal mentation in the strictest sense.

Details about the results from Sleuth searches for the 
eight queries associated with each significant paradigm 
are presented in Table 2 and in the Prisma Flow chart in 
Supplementary Fig. S2. We point out that we found a lim-
ited number of experiments for the Self-Reflection condi-
tion. According to Eickhoff and colleagues (Eickhoff et al. 
2016; Müller et al. 2018), at least 17 experiments should 
be gathered to perform a statistically sound ALE. Although 
the query returned 28 experiments, 7 sets of foci remained 
after merging them according to groups of subjects (Müller 
et al. 2018). To rule out possible bias induced by the inclu-
sion of this underpowered domain, the subsequent analyses 
were repeated with and without the related ALE map. Since 

https://factor-analyzer.readthedocs.io/en/latest/index.html
https://www.brainmap.org/ale/colin_tlrc_2x2x2.nii.gz
https://www.brainmap.org/ale/colin_tlrc_2x2x2.nii.gz
https://github.com/scikit-learn/scikit-learn/pull/10168
https://github.com/scikit-learn/scikit-learn/pull/10168
https://neurovault.org/collections/1598/
https://neurovault.org/collections/1598/
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excluding this condition did not significantly influence their 
outcomes, we decided to keep it in the dataset.

We also computed a TID meta-analysis, representing rest. 
The ALE results are presented in Fig. 1. The TID ALE map 
replicates the one by Laird et al. (2009), with the exception 
of the mPFC cluster, that we found in a more dorsal position.

As for the other maps, Episodic Recall activates the 
left insula along with DMN areas. Imagining objects and 
scenes activate the left hemisphere in the precuneus, lateral 

prefrontal cortex (lPFC) including IFG, and supplementary 
motor area (SMA). Deception tasks activate the bilateral 
insula, other than AG and SMA, in accordance to Farah et al. 
(2014). Semantic monitoring and discrimination activate the 
left lPFC including IFG, but also the SMA, the left lateral 
and medial temporal lobe, and the PCC. This map is very 
similar to a recent ALE about semantic control (Jackson 
2021), with the exception of PCC, which is a novel result. 
Reward activates the basal ganglia (BG), the thalamus, the 
whole mPFC, and the bilateral insula. ToM activates the 
temporal and temporoparietal cortices along with PCC and 
dorsomedial PFC (dmPFC), especially on the left. Inducing 
emotion activates the left insula and the bilateral occipito-
temporal cortices, along with typical DMN nodes. The Self-
Reflection map involves PCC, the right SMA, and an occipi-
tal cluster in the fusiform gyrus. The maps obtained by the 
Fail-safe analyses, presented in Supplementary Fig. S3 and 
S4, show that our ALE maps remain substantially unchanged 
when accounting for the file-drawer effect.

In summary, few maps matched the prototypical represen-
tation of the DMN. Some of them showed either weak acti-
vation or no activation at all in the midline core, and a strong 
expression of lateral areas of the network such as AG, IFG, 
and middle temporal gyrus. In addition, the insula and SMA/
dorsal ACC, hubs of the salience network (SN), were often 
present. Figure 2 shows the proportions of voxels of each 
ALE map falling within each one of the RSNs of the three 
functional parcellations. The overlap between the ALE maps 
of the main analysis and the three DMN masks is shown in 
Supplementary Fig. S5. The Jaccard indices between the 
main analysis ALE maps and the various RSN reported by 
Shirer et al. Yeo et al. and Doucet et al. are presented in Sup-
plementary Table S1 and Fig. S6.

Table 1  BrainMap paradigms found to be significantly associ-
ated with the DMN masks obtained by the 7 networks atlas by Yeo 
et  al. (2011), the Independent Component Analysis by Shirer et  al. 

(2012), and the CAREN atlas by Doucet et al. (2019). The paradigms 
excluded from further analysis are written in italics

Yeo et al Shirer et al Doucet et al

BrainMap paradigm z score BrainMap paradigm z score BrainMap paradigm z score

Theory of Mind 13.696 Theory of Mind 7.986 Theory of Mind 8.359
Semantic Monitor/Dis-

crimination
5.255 Episodic Recall 5.266 Semantic Monitor/Discrimination 6.68

Episodic Recall 5.227 Self-Reflection 4.395 Episodic Recall 5.414
Emotion Induction 4.768 Emotion Induction 4.262 Cued Explicit Recognition/Recall 4.369
Self-Reflection 3.872 Acupuncture 4.043 Emotion Induction 4.303
Deception 3.69 Imagined Objects/Scenes 3.954 Reasoning/Problem Solving 4.112
Passive Listening 3.327 Reward 3.458 Reward 3.647

Deception 3.614
Reading (Covert) 3.601
Imagined Objects/Scenes 3.537
Face Monitor/Discrimination 3.536

Table 2  Details about the result of Sleuth queries for the main analy-
sis

N experiments N groups N foci N subjects

Theory of Mind
 218 63 1663 1127

Semantic/Monitor Discrimination
 646 205 4954 3020

Episodic Recall
 123 39 1009 566

Emotion Induction
 537 166 3575 3234

Self-Reflection
 28 7 144 140

Deception
 115 39 885 954

Imagined Object/Scenes
 120 46 1097 660

Reward
 757 199 5860 3681

Task-induced deactivations
 189 106 1665 1494
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Fig. 1  Surface mapping of the nine activation likelihood estimation maps
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Multidimensional scaling

The standardized stress of the 2D solution is S = 0.25, 
which is considered as a “poor” solution (Kruskal 1964), 
while the 3D solution has a “fair” stress of S = 0.15. Thus, 
only the 3D solution will be considered between the main 
results. The 1 − r dissimilarity matrix (Kriegeskorte et al. 
2008) between maps and the resulting 3-dimensional MDS 
can be seen in Fig. 3 (the 2D solution is presented in Sup-
plementary Fig. S7). The MDS graphs obtained excluding 
the Self-Reflection condition are presented in Supplemen-
tary Fig. S8. Both with and without the Self-Reflection 
map, the 3D MDS solution seems to suggest a first axis 
standing for medial–lateral, or a core-lPFC, spatial repre-
sentation. The maps found on one side of the axis (e.g., 
TID, ToM, and Episodic Recall) show activations in the 
midline DMN core, while those found on the other side 
(e.g., Deception, Imagined Objects/Scenes, Semantic 
Monitor/Discrimination) display a weaker involvement of 
such regions, especially PCC. Conversely, the latter have 
significant clusters in the lPFC and insula, and the midline 
activations are especially located in the SMA. The maps 
activating the midline core are not only those presenting 
more similarity with its stereotypical image, but also those 
whose functions were more commonly associated with the 
DMN (Buckner et al. 2008). As for the opposite side, these 
maps are related to tasks more rarely associated with the 
network, and they bear a similarity with the spatial dis-
tribution of SN, rather than the one of DMN. Moreover, 
they are reminiscent of the semantic regions (i.e., SemN) 
found by Chiou et al. (2020) as belonging to a more out-
ward-leaning DMN subsystem (see also Evans et al. 2020). 
Hence, this anatomical midline-lateral axis could also be 
seen as a psychological internal/external dimension. As 
for the second axis, the distribution of the maps may sug-
gest a dorsal–ventral labeling. On one side, activations are 
more focused in SMA, PCC, or dorsal frontal and parietal 
cortices. On the other side, there are insular, temporopolar, 
and medial temporal areas. The third axis added in the 3D 
solution does not have an obvious explanation. A quanti-
tative analysis confirming our interpretation is presented 
in the Supplementary Materials at Table S2 and Fig. S9.

Component decompositions

Given the lack of common ground between different DMN 
expressions, we performed a PCA to summarize the inter-
paradigm similarities. Even if the high significance of the 
Bartlett’s test (p < 0.001) seems to suggest otherwise, the 
Kaiser–Meyer–Olkin index (KMO = 0.61) indicates a suffi-
cient but mediocre relation between the maps. The first four 
principal components (PC) explain 96.3% of the variance, 
and loads particularly on Reward (PC1, 51.8% of explained 
variance), Semantic Monitor/Discrimination (PC2, 30.5%), 
Emotion Induction (PC3, 10.1%), TID and ToM (PC4, 4%). 
Supplementary Fig. S10 shows the PC maps and respective 
loadings. The PCA results computed excluding the Self-
Reflection map were identical (not shown).

As the PCA indicated that four principal components pro-
vide a significant decomposition of the variance, we selected 
a four-component solution for the ICA as well (Fig. 4). 
When excluding the Self-Reflection map from the data, the 
ICA results did not change (not shown). The independent 
components (IC) were similar to those of the PCA. Thus, 
for an easier argumentation, we ordered them so as to match 
the principal ones.

IC1 is associated with Reward and shows positive coef-
ficients in most mPFC, anterior PCC, insula, and thalamus/
BG. However, it presents negative values with dmPFC, 
PCC proper, occipito-temporal cortices, and amygdala. 
IC2, related to Semantic Monitor/Discrimination, shows 
positive coefficients especially in the left hemisphere, in a 
cluster formed by the PFC (including IFG), AI, and most 
of the premotor cortex, as well as in the temporal cortex, 
SMA and PCC. Large parts of the midline display negative 
values, in particular the dmPFC, as the component loads 
negatively to Emotion Induction and this area is activated by 
such task (Fig. 1). IC3, associated with Emotion Induction, 
is positively associated with AI, temporo-occipital cortices, 
dmPFC, a small part of PCC, thalamus and amygdala. Nega-
tive coefficients are closely juxtaposed to positive areas, in 
BG, around PCC, in prefrontal and temporal cortices. IC4 
is linked to TID and ToM, and it is clearly expressed in the 
canonical DMN regions and anticorrelated with the insula, 
SMA, and amygdala.

Intriguingly, when the ICA maps were fed back into 
a Paradigm Analysis (positive voxels only), the output 
returned a much longer list of significant experimental 
tasks (Supplementary Table S3 and Fig. S11), comprising 
the paradigms heavily loaded by the component. IC4 rep-
resents an exception, as it gives only few paradigms other 
than those found by the three original DMN masks. This is 
not surprising, as IC4 is associated with TID. This analysis 
suggests that IC1, IC2, and IC3, compared to the canonical 
DMN, are more closely associated with different modes of 
extrinsic cognition.

Fig. 2  Pie charts with the proportions of each ALE voxels for each 
one of the resting-state networks proposed by Shirer et al., Yeo et al., 
and Doucet et al. As reference, each parcellation is presented in form 
of volume renderings. ECN executive control network, sal salience 
network, precun precuneus, BG basal ganglia, visuospat visuospatial 
network, sensmot sensorimotor network. The ECN by Shirer et  al. 
roughly corresponds to the frontoparietal network by Yeo et  al. and 
Doucet et al. The ventral attention network by Yeo et al. includes the 
salience network. The language network by Shirer et al. includes large 
parts of the DMN as depicted by others

◂
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Exploratory analyses pointed out that solutions with more 
than five components produced patchy maps that may be 
considered as noise, or as evidence that our data have no 

information to be further decomposed. The five-component 
solution was rather similar to the one presented here, except 
for TID and ToM split into two different components. The 

Fig. 3  Multidimensional scaling (MDS) of the nine activation likeli-
hood estimation (ALE) maps. A: 1  −  r distance matrix of the nine 
ALE maps. B First two axis of the MDS 3-dimensional solution. 
ALEs volume mappings are shown next to their respective MDS 

coordinates. C First and third axis of the MDS 3-dimensional solu-
tion. D MDS 3-dimensional solution, seen from different perspec-
tives. From left to right, the views are progressively rotated for a bet-
ter understanding of tridimensionality
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Fig. 4  Results of the four-component solution of the Independent Component Analysis. Left: surface mapping of the voxel-wise scores. Right: 
weights of the unmixing matrix of each component (loadings) on each paradigm map
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ToM component involves a smaller and more dorsal mPFC 
cluster, and a more posterior temporoparietal cluster than the 
TID one (Supplementary Fig. S12). On the contrary, solu-
tions two and three are not particularly meaningful. They 
showed maps similar to the canonical DMN or its anti-net-
work, but their components were unable to load on more 
than a paradigm each one (Supplementary Fig. S13).

Comparison with the resting‑state principal 
gradients

The first PG by Margulies et al. (2016) is a non-linear com-
ponent resembling the DMN and accounting for most rest-
ing-state signal variance, but it has also been shown to be 
related to cortical hierarchy, and thus interpreted as a model 
of heteromodal representation (Mesulam, 1998). The third 
one, conversely, shows resemblance with the task-positive 
network (TPN) by Fox et al. (2005a). The two PG maps are 
shown in Supplementary Fig. S14. A series of Behavioral 
Analyses (see Supplementary Materials for methods) con-
firmed that the whole-brain PG1 is anchored at one side to 
regions with primary functions and at the other to associa-
tive areas. The same method illustrates a sort of bimodal 
distribution of PG3 heteromodality, with DMN areas, at the 
lower part of the scale, associated with social cognition and 
emotions, and TPN regions, at the top, related to attention, 
working memory and reasoning, with primary functions 
half-way (Supplementary Fig. S14). Thus, PG3 could be 
used to distinguish between socioaffective and executive 
associative areas.

The correlations between our four ICs and these two 
PGs is presented in Table 3. Most correlation approaches 0, 
except for the one between IC1 and PG3 (r = 0.20), and those 
between IC4 and PG1 and PG3 (r = 0.18 and r = − 0.16, 
respectively). According to Cohen (1992), r = 0.10 is to be 
considered a small effect size, while a medium effect size 
equates to r = 0.30. This suggests that resting-state variance 
is not able to recapitulate brain activity fully.

However, a series of two-sample t tests indicates that the 
average gradient value of positive IC voxels was significantly 

higher than that of the rest of the brain (p ≈ 0 for all ICs and 
with both PGs). Figure 5 illustrates the overlaps between the 
positive voxels of the four IC and the two PGs. The percent-
age of positive voxels of each IC overlapping with those of 
the two PGs is reported in Table 3. All ICs overlap with at 
least 50% of their positive voxels with heteromodal regions 
as defined by PG1, and IC1 also shows high convergence 
with PG3.

The comparisons of PGs with ALE and PC maps pro-
duced similar results: low correlations and high overlaps. All 
the two-sample t tests were highly significant. Correlations 
and percentages of overlap are shown in Supplementary 
Table S4. Lastly, we tested if the correlations between ALE 
maps and PGs could, in turn, be correlated with their place-
ment on the MDS x axis, that is, if the alignment between an 
ALE map and a PG could be predictive of its placement on 
our internal–external gradient. MDS x coordinates correlate 
strongly and significantly with PG3 (r = − 0.69; p = 0.02, 
one-tailed t-test), but not so much with PG1 (r = 0.43; 
p = 0.12). This means that the internal–external axis is 
mostly orthogonal with heteromodality, but is related to a 
socioaffective-executive gradient.

Discussion

The present work provides compelling evidence that regions 
of the DMN are engaged in several tasks, not restricted to 
those conventionally associated with the resting state and the 
mind-wandering, and also including semantic reasoning and 
reward mechanisms. In light of the resulting ALE maps, it 
is important to bear in mind that all these paradigms were 
found to activate at least two out of three DMN masks more 
than chance. Thus, the density of their foci in literature is 
particularly high within the DMN. However, the density in 
other RSNs might be just as high as in the DMN. Further-
more, there was no reason to always find meta-analytic acti-
vations in the central hubs of the network. In fact, while most 
maps show at least a cluster in the PCC of mPFC, Imagined 
Objects/Scenes and Deception seem to involve only areas 
such as IFG, the precuneus, AG. Conversely, many maps 
include non-DMN areas associated with task-positive net-
works such as the SN and frontoparietal network (FPN). 
This means that there are tasks involving nodes of the DMN 
along with those included in other networks, thus forming 
patterns of activation that cross the boundaries of canonical 
RSNs.

It has been argued that to assess its function, a network 
should be assessed considering it a spatially and temporally 
coherent system as a whole, and not in terms of its constitut-
ing regions (Jackson et al. 2019). Following this approach, 
Jackson et al. (2019) reported that the coherent DMN is not 
involved in semantic cognition, concluding that the DMN 

Table 3  Pearson’s correlation between the brain voxels of the four 
independent components (IC) and the two principal gradients (PG) by 
Margulies et al. (2016), and percentages of the positive voxels of the 
ICs overlapping with the positive voxels of the PGs

Pearson’s r Overlaps (positive voxels only)

PG1 PG3 PG1 PG3 PG1 ∪ PG3

IC1 0.04 0.20 55% 65% 83%
IC2 0.08 − 0.03 52% 35% 66%
IC3 0.04 − 0.05 50% 36% 70%
IC4 0.18 − 0.16 73% 12% 76%
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Fig. 5  Surface mapping of the overlaps between the volumes of positive voxels of the four ICs and PG1 and 3 by Margulies et al. (2016). For 
each comparison, the ratio of positive IC voxels overlapping with the positive PG is reported
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and SemN are two distinct networks. However, such consid-
eration could be extended to other cognitive domains, lead-
ing to the paradox that no function should be associated to 
the DMN. In fact, our results indicate that DMN task-related 
activations span across RSNs, suggesting that canonical net-
works might have limited heuristic value to understand brain 
functioning when involved in extrinsic processing. There-
fore, task engagement may induce the cooperation between 
areas belonging to different canonical RSNs. Although rely-
ing on intrinsic brain topology, such recruitment would not 
be strictly constrained by it (Cole et al. 2014; Krienen et al. 
2014). Thus, it might involve a flexible shift in brain hub-
ness (Cole et al. 2013; Fransson and Thompson 2020) and 
a remodulation of cooperative and competitive long-range 
connectivity patterns (Fornito et al. 2012; Piccoli et al. 2015; 
Dixon et al. 2017).

There are several obvious reasons explaining why canoni-
cal RSNs are a simplistic representation of brain complexity 
(Pessoa 2014). For instance, they partition the gray matter 
into non-overlapping volumes, even if in the brain, as in 
most real-world networks, a node is usually connected to 
more than one community (Palla et al. 2005; Ferrarini et al. 
2009; Yeo et al. 2014; Najafi et al. 2016). In addition, FC 
changes from rest to task (Arbabshirani et al. 2013; Mennes 
et al. 2013; Spreng et al. 2013; Cole et al. 2014; Goparaju 
et al. 2014; Vatansever et al. 2015a, b; Krieger-Redwood 
et al. 2016; Najafi et al. 2016; Bolt et al. 2017; Moraschi 
et al. 2020) and dynamically fluctuates over time (Chang 
and Glover 2010; Hutchison et al. 2013; Calhoun et al. 
2014; Preti et al. 2017). The non-stationarity of FC indi-
cates a fluid node recruitment by whole-brain connectivity 
modules, resulting in time-varying networks. In this regard, 
de Pasquale et al. (2012) found the DMN to be the system 
most connected with extra-network regions during epochs of 
strong internal correlation. More in general, several dynamic 
FC studies (Chang and Glover 2010; Kiviniemi et al. 2011; 
Liu and Duyn 2013; Karahanoğlu and Van De Ville 2015) 
portrayed the DMN as a moving landscape, with a changing 
spatial distribution and whole-brain correlations over time.

Thus, it is not puzzling that our maps did not reproduce 
the resting-state DMN. Still, it is interesting to notice that 
not even TID or the functions more canonically associated 
with the network are able to show a strong affinity with the 
DMN masks (Supplementary Table S1 and S4, and Fig. S5 
and S6). The lack of a perfect match between the phenom-
enon of activations (and deactivations) and FC suggests 
that the resting-state connectivity, while usually regarded 
as intrinsic (Fox et al. 2007; Vincent et al. 2007; Van Dijk 
et al. 2010; Cole et al. 2014, 2016; Tavor et al. 2016), can 
inform us only partially about brain functioning. This rea-
soning does not invoke a complete abandonment of RSNs, 
as it can be argued that they maintain a sort of taxonomic 
utility, in the sense that they are well-known structures that 

help to categorize brain anatomy and topology (Uddin et al. 
2019). In this regard, it makes sense to investigate the func-
tions of the resting-state DMN. For instance, it may be rea-
sonable to conclude that the canonical DMN could be seen 
as an entity having the role of integrating different cognitive 
aspects thanks to the interactions between its subcomponents 
(Wen et al. 2020). This is in line with the observation that 
the DMN displays a diversified cytoarchitecture and con-
nectivity with the rest of the brain (Paquola et al. 2021). It is 
also consistent with its strong dynamical connectivity with 
external nodes, including task-positive regions (de Pasquale 
et al. 2012; Karahanoğlu and Van De Ville 2015), which 
might explain their involvement in our maps. These con-
siderations also resonate with the theoretical proposals that 
the function of DMN might be that of reducing the entropy 
or the free energy of the brain (Carhart-Harris and Friston 
2010; Carhart-Harris et al. 2014), or that of a sense-making 
network integrating new information with past knowledge 
(Yeshurun et al. 2021), in agreement with its dense connec-
tivity and its topologically central position in the connec-
tome (van den Heuvel and Sporns 2011; Tomasi and Volkow 
2011). In any case, besides any possible interpretation, our 
findings highlight that the tasks that significantly activate 
the canonical DMN cannot be simply reduced to it, and that 
they show anatomical and functional diversity between each 
other.

Although these tasks may be easily linked to certain inter-
nal forms of mentation, the nature of some of them highlight 
that such internal cognition seems to be crucial for external 
tasks. It is important to point out that since we tested the 
DMN for significant paradigms, the resulting ALE maps rep-
resent the activations of a specific set of experimental tasks, 
defined in an operational way. On the contrary, psychologi-
cal definitions such as those implemented by the Behavioral 
Analysis (Lancaster et al. 2012) span across paradigms. For 
instance, the behavioral domain of Semantics entails Covert 
Word Generation, Self-Reflection, Encoding, Passive Listen-
ing, Visuospatial Attention, and other tasks. These range 
from the most extrinsic and active functions to forms of 
internal cognition that may be involved in mind-wandering. 
Therefore, working at the level of paradigms allowed us to 
focus on the kind of activities the DMN regions are engaged 
in.

For instance, we found Reward paradigms to be asso-
ciated with canonical DMN. This is mostly due to a large 
amount of foci covering the whole mPFC. The latter is 
known to modulate reward mechanisms (Ferenczi et al. 
2016), to respond to the outcome of risky decisions (Xue 
et al. 2009), and to activate when receiving a social reward 
(Martins et al. 2021). Reward mechanisms could be consid-
ered as an example of functions meant to monitor internal 
states, yet crucial for the implementation of behavior. As 
a matter of fact, reward dynamics involve the perception 
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of somatic states and their emotional and self-related pro-
cessing, which implies the activity of mPFC, ACC, SMA, 
along with BG, amygdala, and insula (Verdejo-García and 
Bechara 2009; but see also Dunn et al. 2006). At the same 
time, reward functions are critical for learning, risk-taking, 
and behavior in general (Schultz 2015). Furthermore, as 
an example of collaboration between internal and external 
cognition, the reward system is functionally connected to 
the DMN during mental simulation of the outcome of goal-
directed behavior (Gerlach et al. 2014).

Deception is another paradigm class arguably standing in 
between internal and external cognition. Deceiving someone 
requires social cognition, which is typically associated with 
the DMN internal mentation (Buckner et al. 2008). However, 
it might be argued that deceiving is a more external activ-
ity than ToM. While the latter only requires to represent 
other people’s mental states, the former also implies goal-
directed programming of one’s own behavior to successfully 
deceive the other (Lisofsky et al. 2014). Moreover, specific 
attentional and executive functions are likely to be necessary 
to perform a deception paradigm (Christ et al. 2009; Farah 
et al. 2014). As a matter of fact, ToM appeared close to TID 
on the first MDS axis and Deception was at the extreme 
opposite side.

In general, the MDS results suggested that the DMN-
related experimental paradigms and their associated acti-
vation maps could be arranged along an internal–external, 
midline-lateral axis. This observation is consistent with 
the growing body of evidence pointing out that the DMN 
is recruited during task execution (Crittenden et al. 2015; 
Vatansever et al. 2017; Murphy et al. 2018), and suggests 
that its function may be related to some form of high-level 
cognition, detached from the here and now, but still crucial 
for goal-directed behavior (Konishi et al. 2015; Benedek 
et al. 2016). At the same time, our results also clearly illus-
trate that when engaged in external operations, the network 
activations shift from the spatial representation typical of 
the rest condition. In fact, the ALE maps associated with 
more extrinsic paradigms display a clear dissimilarity from 
the canonical representation of the DMN. Specifically, they 
involve peripheral nodes of the system such as AG and 
IFG, they often show weak or no activation at all within 
the midline core, and they sometimes engage SN and FPN 
considered to be anticorrelated to the DMN at rest (Fox et al. 
2005a).

To summarize the anatomical variance of such extrinsic 
and intrinsic brain activity, we performed a PCA and an 
ICA. A large part of the task-related variance is explained 
in the form of proactive modes of internal cognition (PC1, 
Reward; PC2, Semantic Monitor/Discrimination), in oppo-
sition to core areas active during rest and social cognition 
paradigms (PC4). The four-component ICA replicated the 
PCA results closely, with the meaningful difference that the 

first two components were found to be anticorrelated with 
regions associated with Emotion Induction. Therefore, affec-
tive functions may constitute an important factor of DMN 
reorganization during task execution. We also note that PC2 
and IC2 (but PC1 as well) resemble the SemN (Noonan et al. 
2013; Chiou et al. 2020; Evans et al. 2020; Milton et al. 
2021). Furthermore, they remind the transitional module 
serving an integrative function with FPN observed by For-
nito et al. (2012), as well as with the Overlapping Commu-
nity six found by Najafi et al. (2016). Consequently, we sus-
pect that they both serve some form of integration between 
the DMN core and the task-positive areas for the execution 
of more external tasks.

It has been proposed that the DMN topography might 
be crucial to understand its function: its placement at the 
furthest distance from areas with primary functions could 
imply that it carries out the most abstract representations and 
that it integrates the broadest range of information (Small-
wood et al. 2021). According to this, it could be expected 
that our ICs of DMN activity were somewhat related to 
PG1 by Margulies et al. (2016), which is associated with 
the topography of cortical hierarchy while explaining most 
of the resting-state variance. However, none of our ICs 
(or ALE maps) showed even a mediocre correlation with 
PG1, and, most importantly, the similarity of ALE maps 
with PG1 was not correlated with the first MDS axis. This 
does not imply that PGs (or, once again, resting-state FC 
in general) are not relevant for the understanding of brain 
activity. On the basis of the existing literature (Smith et al. 
2009; Laird et al. 2013), we would expect that if data reduc-
tion techniques were applied to a wider meta-analytic rep-
ertoire of functions, the resulting components would match 
the resting-state PGs much better. However, it points out 
that the DMN-to-primary areas PG1 is not sufficient to pre-
dict DMN active modes, but just to identify the associative 
regions that such modes are more likely to load. Therefore, 
we might be in need of more detailed models to understand 
brain dynamical reorganizations. In line with this, recent 
work by Paquola et al. (2021) reports that DMN connectivity 
is aligned to a cytoarchitectural axis rather than with PG1. 
Interestingly, the similarity between our ALE maps and the 
TPN-to-DMN PG3 correlates with our external-to-internal 
MDS axis, suggesting that a socioaffective-executive dif-
ferentiation between heteromodal regions might play a role 
in explaining DMN functional rearrangements.

The absence of the ventromedial PFC (vmPFC) from our 
results deserves to be briefly commented. The only difference 
between our TID ALE map and that by Laird et al. (2009) 
is that our mPFC cluster does not include the most ventral 
areas of the region. Of the other maps, only Reward involves 
vmPFC. IC1 (and PC1) includes the vmPFC, but IC4 (and 
PC4), which loads on TID and ToM, does not. This is a bit 
surprising, as the vmPFC is considered part of the DMN, and 
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it is present in the ROIs utilized for the Paradigm Analysis 
(Supplementary Fig. S1). A possible explanation might be 
related to an attenuation of the detected effects in this area by 
the studies included in the meta-analysis, as the result of strate-
gies having the purpose to minimize artifacts, which are com-
mon in the most ventral parts of the brain. However, it would 
be unclear how this could explain the difference between our 
findings and those by Laird and colleagues. The difference 
may be explained by our larger database and updated ALE 
algorithms (Eickhoff et al. 2016, 2017). If the vmPFC absence 
from our maps was justified, it would be possible that it would 
be another difference between activations and connectivity.

An unexpected finding was that our meta-analysis was 
powerful enough to produce juxtapositions of components 
that were reminiscent of the works by Braga and colleagues 
(Braga and Buckner 2017; Braga et  al. 2019; DiNicola 
et al. 2020). As their results were originally obtained with 
minimally smoothed individual data, it is remarkable that 
something similar was achieved by our method. Another 
recent meta-analysis (Ngo et al. 2019) obtained a similar 
result, decomposing the inter-experiment DMN variability 
in two components. However, our methodology was able 
to highlight sharp contrasts between neighboring areas just 
analyzing the final ALE maps. This is particularly evident 
for PC3 and IC3, both related to Emotion Induction. In both 
components, the mPFC is parcellated in alternated bands of 
network and anti-network, with SMA and anterior dmPFC 
positively associated with the paradigm, and posterior 
dmPFC and central mPFC showing negative values. The 
opposite pattern was shown by IC1, related to Reward. The 
PCC was tightly segmented as well, particularly in IC2 and 
IC3, where a small section of positive voxels was surrounded 
by negative values. More in general, PC2, PC3, IC2, and 
IC3 indicated a preferential engagement of a more posterior 
portion of PCC in semantic monitoring and induction of 
emotions, with negative scores in a more anterior part. On 
the contrary, reward mechanisms showed the opposite pat-
tern in IC1 and, to some extent, in PC1. Such rostro-caudal 
segmentation of the PCC was also observed by Leech and 
colleagues during the execution of an attentional task, with 
the caudal portion displaying less integration with the DMN 
and less segregation with the task-positive regions (Leech 
et al. 2011). To summarize, the midline core, clearly associ-
ated with TID (PC4 and IC4), appeared much more jagged 
in other components, presenting patterns of correlation and 
anticorrelation in a gradient around the corpus callosum.

Limitations and future directions

The main limitation of this work derived from the choice 
of using the BrainMap database as the only source of acti-
vation foci. This was done for the sake of consistency, as 

the tasks significantly associated with the DMN were found 
using the Paradigm Analysis, which operates on the Brain-
Map database. Obviously, we could have integrated our 
data with experiments found through a systematic search 
on PubMed. However, a larger dataset could have possibly 
translated into ALE maps in disagreement with the Paradigm 
Analysis results, for instance without any significant activa-
tion within DMN nodes. Importantly, this would have not 
been necessarily due to a better representativity of the larger 
database, but possibly just because of a different coding of 
the paradigms. Having to choose between internal consist-
ency and a larger sample size, and considering the amplitude 
of the functional BrainMap data archive (more than 18,000 
experiments in total), we preferred to conduct our whole 
research within the same database. This choice returned an 
underpowered Self-Reflection ALE. However, by removing 
it from the data, we obtained a similar MDS and identical 
PCA and ICA results. Moreover, an exploratory ALE using 
a liberal uncorrected threshold with p = 0.001 (not shown) 
revealed additional clusters in the dmPFC, mPFC, dlPFC, 
left insula, and IFG. A similar map would be rather consist-
ent with our general results. Therefore, a more representative 
Self-Reflection map would probably be more heavily loaded 
by those components representing the DMN internal modes 
of cognition such as PC4 and IC4, rather than leading to 
radically different findings.

Our results indicate that several co-activation networks 
converge on the resting-state DMN nodes. For instance, 
the Semantic Monitor/Discrimination ALE map seems 
to indicate that the hubness of the DMN has been moved 
from the midline core to the left IFG and middle tempo-
ral gyrus, which are peripheral nodes during rest, and to 
left insula and SMA, these latter parts of the SN. This evi-
dence suggests that during task execution the nodes of the 
DMN could update their FC and dynamically modify their 
topological centrality, as observed by Cole et al. (2013) for 
the FPN. However, the present work did not directly test 
this hypothesis. In particular, during semantic monitoring 
tasks, left IFG could be coupled with the middle temporal 
cortex, and insula with SMA, forming two relatively inde-
pendent modules. Alternatively, they could be all recipro-
cally co-activated in a rich-club fashion. The methods used 
in the present research cannot disambiguate between these 
and other possible hypotheses. Thus, future works could be 
addressed towards the implementation of some methods to 
estimate networks of co-activations from meta-analytical 
data (Toro et al. 2008; De La Vega et al. 2016; Mancuso 
et al. 2019; Cauda et al. 2020) so as to assess the centrality 
of the nodes across tasks. Task-based stationary or dynamic 
FC could be used as well.

The present study raises a compelling question concern-
ing the mechanism arranging the dynamical shifts from the 
midline core during task. An influential model proposed that 
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the anterior insula could be responsible for coordinating the 
interplay between the DMN and frontoparietal task-positive 
regions (Sridharan et al. 2008; Menon and Uddin 2010). 
The insula was actually found by Najafi et al. (2016) to be 
connected to several modules despite a relatively low degree 
centrality, both during rest and emotional tasks. The AG 
was implicated in the same role and identified, by Kern-
bach et al. (2018), as the mediator of the interplay between 
different RSNs. Alternatively, the amPFC was shown to be 
activated during switches between stimulus-independent and 
stimulus-oriented thoughts (Gilbert et al. 2005), suggesting 
to play a role in the coordination of internal and external 
modes of mentation. Future studies could further investigate 
the issue to clarify which areas or mechanisms are involved 
in the task-based DMN rearrangements.

Conclusions

The present study indicates a series of tasks activating the 
DMN that are not exactly internal, nor completely external. 
These activations involve DMN regions but also large parts 
of other canonical RSNs, in particular SN and FPN. Further-
more, they appear to be arranged in an anatomo-psychologi-
cal gradient starting from the most internal functions, which 
activate the midline core, towards such relatively extrinsic 
mode of brain function, which involves the lateral cortices. 
In the light of our results, such extrinsic mode is especially 
related to reward, semantic, and emotional functions.

Ultimately, our findings highlight that resting-state scaf-
foldings do not suffice to explain the task-related anatomical 
variance of the active brain, which displays a much richer 
functional diversity, and shows more spatial complexity than 
it could be expected just observing intrinsic connectivity.
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