
20 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Boolean kernels for rule based interpretation of support vector machines

Published version:

DOI:10.1016/j.neucom.2018.11.094

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1848829 since 2022-03-11T16:20:00Z



Boolean kernels for rule based interpretation of Support

Vector Machines

Mirko Polato and Fabio Aiolli

University of Padova - Department of Mathematics

Via Trieste, 63, 35121 Padova - Italy

Abstract

Machine learning started as an academic-oriented domain, but nowadays it is becoming

more and more widespread across diverse domains, such as retail, healthcare, finance,

and many more. This non-academic face of machine learning creates a new set of

challenges. The usage of such complex methods by non-expert users has increased the

need for interpretable models. To this end, in this paper we propose an approach for

extracting explanation rules from support vector machines. The core idea is based on

using kernels with feature spaces composed by logical propositions. On top of that, a

searching algorithm tries to retrieve the most relevant features/rules that can be used

to explain the trained model. Experiments on both categorical and real-valued datasets

show the effectiveness of the proposed approach.

1. Introduction

Machine learning (ML) is becoming increasingly ubiquitous. Nowadays, ML mod-

els are used for almost everything, from predicting the stock price of a company to de-

tecting object in an image. However, when it comes to apply ML by non expert users

the black box nature of most of ML methods can become an obstacle. The lack of

interpretability of many machine learning methods, e.g., kernel machines and (deep)

neural networks, makes hard their application in scenarios in which explanations are

as important as the prediction quality, for example, support systems for physicians and

recommender systems. Interpretability is also key to winning trust in algorithms that

try to improve upon human judgement, instead of just automating it.
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The need of explanations is also theme of the Article 22.1 of the General Data

Protection Regulation which states that: “The data subject shall have the right not to

be subject to a decision based solely on automated processing”[1].

In the past, some efforts have been devoted in order to alleviate this black-box

nature of ML models [2, 3]. In this work we focus on interpreting kernel machines,

in particular SVM. In the literature [2], most of the proposed methods for extracting

explanation rules from SVM are based on the definition of regions in the input space

that are then converted into if-then-else rules. Here, we propose a different approach

which works directly in the feature space. Specifically, by means of Boolean kernels,

which have shown state-of-the-art performance in binary classification tasks [4, 5], the

data are mapped onto an easy-to-interpret feature space, and in such space an SVM

is trained (BK-SVM). Since the feature space of a BK-SVM is composed of Boolean

rules, it is possible to give a human-readable interpretation of the solution of the SVM

by extracting the most influential rules in the decision.

Besides the application to categorical datasets, we show the effectiveness of the

method on a real-valued dataset. The application of Boolean kernels on such data is

made possible by a discretization pre-processing step. Applied on the UCI [6] Breast

Cancer Wisconsin Data Set, we compare the interpretation rule extracted by our pro-

posed algorithm w.r.t. the rule set extracted by state-of-the-art rule extraction methods.

So, the main contribution of this work is five-fold:

• first we present a new Boolean kernel which creates a feature space made of

(potentially) all possible monotone DNF formulas over the input variables;

• we propose an algorithm for extracting from the BK-SVM the most relevant rule

which can be used to interpret the solution of the support vector machine;

• we describe a method for applying Boolean kernels to non binary datasets;

• we show a thoroughly set of experiments on both artificial and real-world datasets.

We analyze strength and weaknesses of the proposed method on real-world cat-

egorical and real-valued dataset;

• a comparison with rule extraction technique is provided.
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The remainder of the paper is structured as follows: Section 2 presents the neces-

sary background about Boolean kernels; Section 3 describes the first main contribution,

that is, the construction of a kernel in which the feature space is composed of poten-

tially all mDNF formula over the input variables; Section 4 presents the algorithm for

extracting interpretation rules from a SVM based on Boolean kernels; Finally, Section 5

shows all the performed experiments on both artificial and real-world datasets.

2. Background

Throughout the paper we consider binary valued datasets for binary classification

tasks. Formally, T ≡ {xi, yi}
L
i=1

is a training set where ∀ i, xi ∈ {0, 1}
n and yi ∈ {+1,−1}.

We refer to generic n-dimensional Boolean vectors with x and z, and with the nota-

tion xb we indicate the component-wise exponentiation, i.e., x
b1

1
x

b2

2
· · · x

bn
n . Finally, the

notation ~·� represents the indicator function.

2.1. Boolean kernels

In the literature, the term Boolean kernel has been used as a synonym of the so-

called DNF kernel [7]. However, in a recent work [4] a broader definition has been

provided: Boolean kernels are kernel functions which take binary vectors as input and

apply the dot-product in a feature space where each dimension represents a logical

proposition over the input variables. The general idea behind Boolean kernels is de-

picted in Figure 1.

2.1.1. Monotone Conjunctive kernel

One of the simplest Boolean kernel is the monotone Conjunctive kernel (mC-

kernel) [5]. As the name suggests, its feature space is composed by all conjunctions

of exactly c different input variables, where c is an hyper-parameter. Hence, the mC-

kernel of arity c between x and z computes the number of true conjunctions of c literals

in common between x and z. Formally, the embedding of the mC-kernel of arity c is

given by φc
∧ : x 7→ (φ

(b)
∧ (x))b∈Bc

, where Bc = {b ∈ {0, 1}
n | ‖b‖1 = c}, and φ

(b)
∧ (x) = xb.

The dimension of the resulting feature space is
(

n

c

)

. Thus, the mC-kernel of arity c is

computed by κc∧(x, z) =
(

〈x,z〉

c

)

.
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Figure 1: Depiction of a generic Boolean (operator ⊗) kernel of arity 2: firstly the input vectors are mapped

into the feature space which is formed by all formulas with arity 2 (without repetition). Then, the kernel

is computed by “matching” (dotted lines) the corresponding features. Arrows from the input vectors to the

feature vectors indicate when a variable influences the formula.

It is worth to notice that the mC-kernel generalizes the linear kernel, in fact, by

fixing c = 1 we obtain κ1∧(x, z) =
(

〈x,z〉

1

)

= 〈x, z〉 = κLIN(x, z).

2.1.2. Monotone Disjunctive kernel

Similarly to the mC-kernel, the monotone Disjunctive kernel (mD-kernel) [5] of ar-

ity d between x and z computes the number of true disjunctions of d literals in common

between x and z. Thus, the embedding of the mD-kernel is the same as the mC-kernel,

however the logical interpretation is different since the combinations of variables rep-

resent disjunctions. Formally, the embedding of the mD-kernel of arity d is given by

φd
∨ : x 7→ (φ

(b)
∨ (x))b∈Bd

, with φ
(b)
∨ (x) = ~〈x, b〉 > 0�. The corresponding mD-kernel is

computed by

κd∨(x, z) =

(

n

d

)

−

(

n − 〈x, x〉

d

)

−

(

n − 〈z, z〉

d

)

+

(

n − 〈x, x〉 − 〈z, z〉 + 〈x, z〉

d

)

. (1)

The full derivation of Equation (1) is presented in [5].
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2.1.3. Monotone Disjunctive Normal Form (DNF) kernel

A Disjunctive Normal Form (DNF) is a normalization of a logical formula that is

represented by a disjunction of conjunctive clauses, e.g., (x1 ∧ x3) ∨ (x5 ∧ x6) ∨ x2.

The monotone DNF kernel (mDNF-kernel) [5] computes the dot-product of vectors in

a feature space composed by monotone DNF formulas of the input variables, where the

DNFs are composed by disjunction of exactly d conjunctive clauses made of c literals

(c and d are hyper-parameters). For example, by fixing d = 2 and c = 3 a possible

mDNF is (x1 ∧ x3 ∧ x5) ∨ (x2 ∧ x3 ∧ x4). Its embedding map is the composition of the

embedding maps of the mC-kernel and the mD-kernel, φ
d,c
∨∧ : x 7→ φd

∨(φc
∧(x)), hence

the mDNF-kernel can be computed as the mD-kernel of degree d in the space formed

by all conjunctions of degree c. Thus, computing the mDNF-kernel(d,c) is the same as

Eq.(1) by substituting κ with the corresponding mC-kernels of degree c (κc∧) and n with
(

n

c

)

, i.e., the dimension of the input space induced by φc
∧. In the following we will refer

to mDNF with at most D disjunctive clauses of conjunctive clauses of at most C literal

with the notation mDNF(D,C).

3. The feature space of monotone DNFs

A shortcoming of the mDNF-kernel defined in Section 2.1.3 is that the mDNF

formulas have a fixed form, that is, they are composed by disjunctions of d conjunctive

clauses made of c literals. In order to overcome this limitation, we first create a feature

space composed by all conjunctions up to a certain arity C, by concatenating the feature

spaces of κc∧ for c ∈ [1,C], that is φC
Σ

(x) = (φ1
∧(x), φ2

∧(x), . . . , φC
∧(x)). The corresponding

kernel can be implicitly computed [8] by κC
Σ

(x, z) =
∑C

c=1 κ
c
∧(x, z). Now, by composing

φC
Σ

with φd
∨ (for some d) we obtain a feature space constituted of all possible mDNFs

made of d conjunctive clauses of at most C literals. This kernel can be calculated by

replacing 〈x, z〉 (i.e., the linear kernel) with κC
Σ

(x, z) and n with
∑C

c=1

(

n

c

)

in Eq. (1).

Finally, by summing up all these kernels with d ∈ [1,D] we obtain a kernel with a

feature space composed of all possible mDNF formulas with at most D conjunctive

clauses of at most C literals. Formally,

κD,C∗ (x, z) =

C
∑

d=1

κd∨(φC
Σ (x), φC

Σ(z)),
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which is a valid positive semi-definite kernel because it is a result of closure proper-

ties [8].

4. Interpreting BK-SVM

One of the biggest advantages of using Boolean kernels is that the features in the

embedding space are easy to interpret, and this characteristic can be leveraged to ex-

plain the solution of a kernel machine, e.g., SVM. In particular, the most influential

features (i.e., logical rules) in the solution can be extracted in order to provide a human-

readable interpretation of the decision. From the Representer Theorem [8] we know

that the solution of an SVM can be written as w =
∑

i∈S yiαiφ(xi), where S is the set of

support vector indexes, and αi ≥ 0 are the contributions of the support vectors to the

solution. Hence, the weight associated to a feature f , i.e., a Boolean rule, inside the

feature space induced by φ can be calculated by:

w f =
∑

i∈S

yiαiφ f (xi) =
∑

i∈S

yiαi~ f (xi)� =
∑

i∈S+

αi~ f (xi)� −
∑

i∈S−

αi~ f (xi)�, (2)

where S+ (resp. S−) is the set of positive (resp. negative) support vector indexes, and
∑

i∈S+ αi =
∑

i∈S− αi. Our goal is to find the formula f such to maximize the value

w f . Since all αi are positives and
∑

i yiαi = 0, then this problem can be reduced to the

one of finding the formula such that w f =
∑

i∈S+ αi. It is easy to show that, if (i) the

set is linearly separable, (ii) the target concept is defined by a formula g, and (iii) the

feature space contains g, then g = argmax f w f =
∑

i∈S+ αi. It is noteworthy that w f is

maximized for every f consistent with the support vectors, and hence the best formula

could not be unique. This is due to the fact that the target function generates the labels,

then δ f (xi) = 1 ⇔ yi = +1. Moreover, any other formula f for which it holds has

w f = wg. In the case of non-separability, finding the rule that maximizes the value of

w f is still a good heuristic since it is a way to minimize the loss with respect to the

decision function.

4.1. Rule extraction via Genetic Algorithm

Searching for the best feature is not an easy task because of the huge dimensionality

of the feature space and hence, in general, an exhaustive search is not feasible. In order
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to find the best rule, we adopted (as a proof of concept) a genetic algorithm (GA) based

optimization. The design choices for the GA are described in the following:

population it is formed by 500 randomly initialized individuals, i.e., mDNF formulas

with at most D conjunctions made of at most C literals.

fitness given a formula f , its fitness is equal to the weight w f as in Eq. (2).

crossover given two mDNF formulas f and g, the crossover operator creates a new

individual by randomly selecting a subset of the conjunctive clauses from the

union of f and g while keeping the number of clauses ≤ D.

mutation given a mDNF formula, the mutation operator randomly performs one out

of the following three actions:

• removing one of the conjunctive clauses (when applicable);

• adding a new random conjunctive clause;

• replacing a literal in one of the conjunctions with another literal picked

from the ones that are not currently included in it.

selection we adopted the elitist selection strategy to guarantee that the solution quality

will not decrease.

The complete procedure for extracting the best rule is describe in Algorithm 1.

5. Experiments

We experimentally analyzed the proposed approach on different aspects. Specifi-

cally:

• fidelity of the extracted interpretation rules with respect to the source SVM on

datasets with a specific classification rule;

• benefit of leveraging on the support vectors, via the fitness function, instead of

using the genetic algorithm guided by the pure training error;
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Algorithm 1: Interpretation rule extraction algorithm

Input:

X: input instances;

y: instances label;

κ
D,C
∗ : kernel function;

C: conjunction arity;

D: disjunction arity;

Pµ: mutation probability;

Ne: size of the elitist selection;

Np: maximum number of individuals;

Ng: maximum number of generations;

Output: R: best interpretation rule

1 α, SV← SVM(X, y, κ
D,C
∗ ) ⊲ gets the support vectors (SV) and the

associated weights (α)

2 pop← random initialization(Np,C,D)

3 for g← 1 to Ng do

4 pop← selection(α, SV, pop,Ne) ⊲ elitist selection on the basis

of the fitness

5 do

6 a← random choice(pop)

7 b← random choice(pop)

8 h← mutate(crossover(a, b), Pµ)

9 pop← pop ∪ {h}

10 while |pop| < Np

11 R← individual ∈ pop with maximum fitness

12 return R

• application on real world categorical datasets;

• adaptation to real-valued datasets.

5.1. Experimental settings

All the experiments have been implemented in python 2.7 using the modules Scikit-

Learn [9], MKLpy and pyros available in the PyPi repository.

We evaluated the proposed algorithm in terms of the most used metrics for eval-

uating explanation rules [2], namely, comprehensibility, accuracy and fidelity. Com-

prehensibility is the extent to which the extracted representations are humanly com-

prehensible. In our case we can assume high comprehensibility because the retrieved

rules are simple (and short) logical propositions over the input binary variables. The
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accuracy of a classification function (or rule) f over the test set Tts is equal to

accuracy( f ,Tts) =
|{(x, y) ∈ Tts | ~ f (x) ⇐⇒ y = +1�}|

|Tts|
.

The fidelity over the test set Tts of a rule f w.r.t. a decision function h learnt by a

learning algorithm is computed by

fidelity( f , h,Tts) =
|{(x, y) ∈ Tts | ~ f (x) ⇐⇒ h(x) = +1�}|

|Tts|
.

5.2. Case study: toy problems

In this series of experiments we used three UCI [6] datasets (monks-1, monks-3

and tic-tac-toe) and seven artificial datasets, for a total of 10 binary datasets. These

datasets have a fixed number of ones for every instance. This is not a limitation since,

given a dataset with categorical features, each instance can be converted into a fixed

norm binary vector by means of the one-hot encoding [10]. The artificial datasets

(indicated by the prefix art-) have been created in such a way that the positive class

can be described by one monotone DNF formula over the input variables. The details

of the datasets are summarized in Table 1.

Dataset #Inst. #Ft. Rule

tic-tac-toe* 958 27 mDNF1, d = 8, c = 3

monks-1* 432 17 (x0 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x5) ∨ x11

monks-3* 432 17 mDNF2, d = 7, c = 2

art-d2-c4 1000 30 (x11 ∧ x9 ∧ x1 ∧ x14) ∨ (x27 ∧ x17)

art-d3-c3 1000 30 (x3 ∧ x28) ∨ x27 ∨ (x14 ∧ x7 ∧ x26)

art-d4-c2 1000 30 x3 ∨ (x0 ∧ x7) ∨ (x5 ∧ x9) ∨ x8

art-d4-c3 1000 30 (x25 ∧ x21) ∨ (x15 ∧ x5 ∧ x19)∨

(x0 ∧ x26) ∨ (x8 ∧ x21 ∧ x20)

art-d5-c4 1000 30 mDNF3, d = 5, c ≤ 4

art-d5-c5 1000 30 mDNF4, d = 5, c ≤ 5

Table 1: Information of the datasets: number of instances, number of binary features and the rule which

describes the positive class. (*) means that the dataset is freely available in the UCI repository.

This set of experiments aimed to show that the interpretation rules extracted from

the SVM are highly faithful to the model.
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SVM Best Rule Fidelity

Dataset Train Test Train Test Train Test GA #Gen.

tic-tac-toe 100.00
±0.00

98.33
±0.87

100.00
±0.00

100.00
±0.00

100.00
±0.00

98.33
±0.87

358.00
±156.81

monks-1 100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

9.20
±3.37

monks-3 100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

100.00
±0.00

230.40
±385.79

art-d2-c4 100.00
±0.00

98.87
±0.50

99.89
±0.23

99.40
±0.80

99.89
±0.23

99.07
±0.68

10.60
±3.55

art-d3-c3 100.00
±0.00

97.13
±1.13

100.00
±0.00

100.00
±0.00

100.00
±0.00

97.13
±1.13

14.60
±7.34

art-d4-c2 100.00
±0.00

97.87
±0.75

100.00
±0.00

100.00
±0.00

100.00
±0.00

97.87
±0.75

15.0
±2.28

art-d4-c3 100.00
±0.00

95.07
±1.34

100.00
±0.00

100.00
±0.00

100.00
±0.00

95.07
±1.34

35.20
±19.36

art-d5-c4 100.00
±0.00

96.00
±0.67

99.71
±0.57

99.20
±1.60

99.71
±0.57

96.00
±0.67

340.40
±338.10

art-d5-c5 100.00
±0.00

94.27
±0.85

99.97
±0.06

99.40
±0.33

99.97
±0.06

94.20
±0.85

61.20
±17.68

Table 2: Experimental results averaged over 5 runs: for each dataset the accuracy (%) in both training and

test is reported for SVM and for the extracted rule. It is also reported the fidelity of the rule w.r.t the SVM as

well as the average number of generations required to the GA to find the best rule.

For each dataset the experiments have been repeated 5 times by using different

70%-30% training-test splits. In each experiment an hard-SVM with the kernel κ5,10
∗

has been trained over the training set, and then the most relevant formula has been

extracted. We used an hard SVM because we know a-priori that all the toy datasets are

linearly separable.

The parameters of the GA (described in Section 4.1) have been set as in the fol-

lowing: C = 5, D = 10, mutation probability = 0.6, and the maximum number of

generations = 103. It is worth to notice that the computational time for calculating κ∗

is in the order of milliseconds for each dataset.

The achieved results are summarized in Table 2.

As evident from the table, in every dataset the best rule extracted by the GA is in-

deed the one which (almost always) explains the label and the decision of the SVM (the

fidelity is very high). Moreover, despite the huge search space (on average 1045 for-

1(x8 ∧ x14 ∧ x20)∨ (x5 ∧ x14 ∧ x23)∨ (x2 ∧ x14 ∧ x26)∨ (x8 ∧ x17 ∧ x26)∨ (x11 ∧ x14 ∧ x17)∨ (x2 ∧ x11 ∧

x20) ∨ (x20 ∧ x23 ∧ x26) ∨ (x2 ∧ x5 ∧ x8),
2(x8 ∧ x13) ∨ (x3 ∧ x11) ∨ (x4 ∧ x11) ∨ (x3 ∧ x12) ∨ (x4 ∧ x12) ∨ (x3 ∧ x13) ∨ (x4 ∧ x13),
3(x20 ∧ x6) ∨ (x3 ∧ x17 ∧ x16 ∧ x23) ∨ (x1 ∧ x27 ∧ x12 ∧ x29) ∨ (x26 ∧ x14 ∧ x24)
4(x29 ∧ x8 ∧ x15 ∧ x14 ∧ x19) ∨ (x27 ∧ x9 ∧ x5) ∨ (x23 ∧ x8) ∨ (x18 ∧ x24 ∧ x9 ∧ x11) ∨ (x10 ∧ x1 ∧ x12)
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mulas), the number of generations required to find the best rule is very low. Accuracy

results are further highlighted in Figure 2.
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Figure 2: Comparison between the GA guided by the SVM (w/) and w/o the SVM. The plot shows the

average accuracy on the test set.
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Figure 3: Comparison between the GA guided by the SVM (w/) and w/o the SVM. The plot shows the

average number of generations required by the GA to find the best rule.

To highlight how the weights learned by the SVM are indeed useful to guide the

research of the GA (through the fitness), we also tried to retrieve the best formula by

using the same GA with αi = 1/L,∀ i ∈ [1, L]. In this case the fitness corresponds

to the training accuracy. Figure 3 shows the comparison between the GA w/ and w/o

SVM. From the figure, it is evident that using the GA guided by the SVM ensures

that a better rule will be found with fewer generations. It is also worth to mention

that computing the fitness over all the training set is significantly less efficient than
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calculating it for the support vectors only. It is worth to notice that the interpretation

rules (that we know existing) achieve better accuracies than the associated SVMs. This

phenomenon can be explained by the fact that SVM classifies an instance on the basis

of a weighted committee of the rules that are satisfied in the support vectors. Since

the feature space is composed with a hierarchy of rules, it is reasonable that some of

the more general rules (i.e., features) w.r.t. the best one get a not negligible weight.

Unfortunately these rules on some instances mislead the classification causing a little

drop in the performances.

5.3. Case study: real-world categorical datasets

5.3.1. Poker dataset

The poker5 dataset contains over one million valid poker hands. The general task

is to classify the hand. In our experiments we used a subset of the whole dataset by

randomly selecting 30 thousand hands. Since we are focusing on binary classification,

we selected a target class as the positive one and all the others as negative. This ap-

proach is also known as one-vs-rest classification. We tried to classify two different

hands, namely, flush and three of a kind. Table 3 show an example of all possible poker

hand values and the number of times each of them appear in the dataset.

Hand Name Class value # Instances %

2
♠

4
♠

8
q

9
r

K
♣ Nothing 0 14989 49.96

3
r

3
q

10
♠

Q
r

K
q Pair 1 12701 42.34

6
♣

6
♠

Q
♠

Q
q

K
r Two pairs 2 1465 4.88

10
♠

10
♣

10
q

K
♠

A
♣ Three of a kind 3 606 2.02

9
r

10
♠

J
♣

Q
♣

K
q Straight 4 116 0.39

2
r

5
r

6
r

10
r

A
r Flush 5 63 0.21

Q
r

Q
♣

Q
♠

A
q

A
♠ Full house 6 44 0.15

2
♠

A
r

A
q

A
♣

A
♠ Four of a kind 7 6 0.02

3
♣

4
♣

5
♣

6
♣

7
♣ Straight flush 8 5 0.017

10
♠

J
♠

Q
♠

K
♠

A
♠ Royal flush 9 5 0.017

Table 3: Example of all possible poker hand values.

5https://www.kaggle.com/c/poker-rule-induction
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Each poker hand has been converted into a binary vector using a one-hot encod-

ing of each card appended one after the other. A card is one-hot encoded in the

following way. Given a card C, with suit suit(C) ∈ {♥,♦, ♠,♣} and value val(C) ∈

{2, 3, . . . , 10,A, J,Q,K}, both suit and value are one-hot encoded and finally appended

together. For example, the 10♠ is converted into a vector x10♠ ∈ {0, 1}
17 as:

A 2 3 4 5 6 7 8 9 10 J Q K ♥ ♦ ♠ ♣

x10♠ = [ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 ]

At the end of this conversion, a poker hand will have a dimension of 17 × 5 = 85.

Conversely to the previous set of experiments, here we employed a soft SVM using

a validation procedure (5-fold cross validation) in order to choose the best trade-off

hyper-parameter C from the set {10−1, . . . , 105}. The kernel has been fixed to κ5,10
∗ . 5

runs of a 70%-30% training and test split has been performed. The average results are

shown in Table 4. The discussion about the interpretation rules is based on an example

of rule extracted in one of the run.

In the following we discuss the two tasks separately in order to highlight the strengths

and weaknesses of the extracted interpretation rules.

Flush. In the flush classification task, the interpretation rule extracted by the algorithm

is a mDNF(4,5), namely,

(suit(C1) = ♥ ∧ suit(C2) = ♥ ∧ suit(C3) = ♥ ∧ suit(C4) = ♥ ∧ suit(C5) = ♥)∨

(suit(C1) = ♦ ∧ suit(C2) = ♦ ∧ suit(C3) = ♦ ∧ suit(C4) = ♦ ∧ suit(C5) = ♦)∨

(suit(C1) = ♣ ∧ suit(C2) = ♣ ∧ suit(C3) = ♣ ∧ suit(C4) = ♣ ∧ suit(C5) = ♣)∨

(suit(C1) = ♠ ∧ suit(C2) = ♠ ∧ suit(C3) = ♠ ∧ suit(C4) = ♠ ∧ suit(C5) = ♠)∨

where Ci indicates the i-th card in the hand for some enumeration of the cards. Even

though the rule is correct with respect to the concept of flush, the classification accuracy

Target hand Rule Accuracy SVM Accuracy Fidelity

Flush 99.98 99.83 99.81

Three of a kind 93.40 97.80 94.26

Table 4: Results on the poker dataset.
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is not 100%. This is because all combinations that contain a flush, e.g., royal flush, are

not labelled as a simple flush which cause a miss-classification.

Three of a kind. From a human perspective, recognizing a flush, i.e., five cards with

the same suit, is roughly as easy as recognizing, for example, a three of a kind. How-

ever, expressing such concepts using logical propositions over the values of the single

cards is not always trivial. Specifically, a three of a kind (TOAK) can only be expressed

by enumerating all possible combinations of values such that three of them are equal.

For a poker hand with 5 cards, a logical formula able to discriminate a TOAK is a

mDNF(130,3) which is not included in the feature space of κ5,10
∗ .

The accuracy achieved in the TOAK task, reported in Table 4, is highly influenced

by the unbalanced nature of the dataset. In fact, if we analyze the extracted interpre-

tation rule it is evident that the feature space is not rich enough to mimic the TOAK

concept. The following formula is an example of the extracted best rule:

(rank(C1) = A ∧ rank(C5) = A) ∨ (rank(C1) = 7 ∧ rank(C2) = 7)∨

(rank(C2) = 2 ∧ rank(C3) = 2) ∨ (rank(C1) = 5 ∧ rank(C3) = 5)∨

(rank(C1) = 8 ∧ rank(C2) = 8) ∨ (rank(C1) = 8 ∧ rank(C5) = Q ∧ suit(C2) = ♦)∨

(rank(C1) = K ∧ rank(C3) = K) ∨ (rank(C4) = 6 ∧ rank(C5) = 6)∨

(rank(C2) = 4 ∧ rank(C4) = 4) ∨ (suit(C2) = ♣ ∧ rank(C4) = 8).

It is clear that the rule is far from being an explanation rule for a TOAK. It contains

some notion of pair but it is not expressive enough to capture all the possibilities of

having a TOAK. Moreover, there are also a couple of conjunctive clauses completely

irrelevant for a TOAK, namely, (suit(C2) = ♣ ∧ rank(C4) = 8) and (rank(C1) = 8 ∧

rank(C5) = Q ∧ suit(C2) = ♦).

This example shows the limitation of using a logic representation defined over the

values of the attributes. In order of being more expressive, there is the need of introduc-

ing higher level features that capture, for example, the relation between the attributes.

5.3.2. Chess dataset

The chess6 dataset contains a set of 10000 (White) King+Rook vs. (Black) King

ending positions. The task is to classify illegal positions w.r.t. the legal ones with

14



white to move. In this particular case, an illegal position can be due to at least one of

the following reasons:

1. The Black King is in check (directly attacked) by the White Rook. This can

be achieved by having both White Rook and Black King in the same rank/file,

and the White King must not interfere. Figure 4 gives an example of the just

mentioned situation;

2. The current position on the board is impossible. E.g., two pieces in the same

square, or the two Kings in adjacent squares (mutual check which is impossible

to achieve).

The dataset contains 67% of illegal positions against the remaining 33% of legal ones.

8 0Z0Z0Z0Z
7 Z0Z0ZKZ0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 RZ0ZkZ0Z
1 Z0Z0Z0Z0

a b c d e f g h

(a) White Rook (R) and Black King (k) in the

same rank

8 0Z0Z0Z0Z
7 Z0ZRZ0Z0
6 0Z0Z0ZKZ
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0ZkZ0Z0

a b c d e f g h

(b) White Rook (R) and Black King (k) in the

same file

Figure 4: Examples of check: White Rook and Black are aligned. It is white to move, so the position is

illegal.

A chess position is converted into a binary vector via the one-hot encoding of each

piece square (both the file and the rank are encoded) which are then appended together

by keeping the same pieces order. Thus, a position is finally represented as a binary

vector of dimension (8 × 2) × 3 = 48. Also in this case a 5 runs of 70%-30% training

and test split has been performed.

It is easy to grasp that, as in the case of the TOAK for the poker, also for this task

6https://www.doc.ic.ac.uk/˜shm/Datasets/chess/
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the feature space is not rich enough to contain a rule able to describe an illegal position.

We can also observe that there are some analogies between the two tasks. In the TOAK

task it is difficult to express the notion of 3 cards with the same rank because the logical

propositions are defined on single values rather than relations between the variables.

Similarly, in the illegal position task, it would be much easier to express such con-

cept having the possibility of using relations between the position of the pieces, for

example, the notion White Rook and Black King have the same rank.

For this reason, we also tried a second experiment in which we added to each in-

stance 6 features that indicate whether two pieces have the same file/rank. For example,

the position in Figure 5 is represented by a binary vector x ∈ {0, 1}54 in which the fea-

ture file(k)=file(R) is set to 1, as well as the feature rank(K)=rank(k).

8 0Z0Z0S0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0ZKZkZ0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 5: Examples of a possible position.

In the reminder we will refer to this representation as improved representation,

while the previous one as the standard representation. The achieved results using both

of the representations are reported in Table 5

Repr Rule Accuracy SVM Accuracy Fidelity

Standard 82.60 96.00 82.80

Improved 90.30 96.00 92.50

Table 5: Results on the chess dataset.

It is self-evident that using a slightly improved representation can hugely affect
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the quality of the extracted interpretation rule. An example of rule extracted using the

standard representation is the following:

(file(R)=d ∧ file(k)=d) ∨ (file(K)=h ∧ file(k)=h) ∨ (rank(R)=2 ∧ rank(k)=2) ∨

(file(R)=h ∧ file(k)=h) ∨(file(R)=g ∧ file(k)=g) ∨ (rank(R)=7 ∧ rank(k)=7) ∨

(rank(R)=1∧ rank(k)=1)∨ (rank(R)=8∧ rank(k)=8)∨ (rank(R)=3∧ rank(k)=3)

∨ (file(R)=e ∧ file(k)=e).

The rule catches some of the possible combinations of files and ranks which can

cause an illegal position, however they are not nearly enough. Let us see instead a rule

extracted in the improved representation:

(rank(K)=5∧ rank(R)=6∧ file(k)=file(K))∨ (file(K)=d∧ file(k)=e)∨ (file(K)=d

∧ file(k)=c) ∨ (file(K)=b ∧ file(k)=c) ∨ (file(K)=b ∧ file(k)=a) ∨ (rank(K)=5 ∧

rank(k)=4∧ file(K)=file(k))∨ (file(k)=file(K)∧ rank(k)=rank(K))∨ (file(R)=file(K)

∧ rank(R)=rank(K)) ∨ (file(R)=file(k)) ∨ (rank(R)=rank(k))

Despite not being entirely correct, the rule covers many cases of illegal position.

For example, the last four conjunctions almost explain all the possible ways of making

an illegal position: Kand k in the same square, K and R in the same square, k and

R in the same file, and k and R in the same rank.

This experiment underline the need of richer representations especially higher level

features that express concept between the variables values which are missing in the

common Boolean kernels feature spaces.

5.4. Case study: real world real-valued dataset

As pointed out previously, one of the shortcomings of Boolean kernels is the unap-

plicability to not binary valued data. However, it is possible to overcome this problem

using a discretization method. Discretization is a preprocessing technique which aims

to transform a set of continuous attributes into discrete ones, by associating categorical

values to intervals and thus transforming quantitative data into qualitative data. Clearly,

discretizing the data can strongly affect the effectiveness of the SVM which tightly de-

pends on the applied discretization technique. Hence, there is the need of making the

right choice of the discretization method.
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5.4.1. MDLP [11]

The binary discretization approach presented in [11] is a generalization of the stan-

dard entropy-based method used in decision trees [12, 13, 14]. The algorithm decides

to partition an interval using a criterion based on the minimum description length prin-

ciple: the partition induced by a cut point is accepted if and only if the length of the

message required to send before partition is more than the length of the message re-

quire to send after partition [15]. In a recent survey [16] the MDLP method has been

considered by the authors as one of the best alternatives in terms of tradeoff between

the number of intervals produced and accuracy.

5.4.2. Breast-cancer dataset

The Wisconsin Breast Cancer dataset7 (wbcd) is a standard UCI [6] dataset which

contains hospital patients values captured via a FNA (Fine-needle aspiration) test. Each

patient is characterized by 9 attributes regarding breast tumoral cells as described in

Table 6. Patients with missing values have been removed.

Domain 1 2 3 4 5 6 7 8 9 10

Clump Thickness (CT) 139 50 104 79 128 33 23 44 14 69

Uniformity of cell size (UCSI) 373 45 52 38 30 25 19 28 6 67

Uniformity of cell shape (UCSH) 346 58 53 43 32 29 30 27 7 58

Marginal adhesion (MA) 393 58 58 33 23 21 13 25 4 55

Single Epithelial cell size (SECS) 44 376 71 48 39 40 11 21 2 31

Bare Nuclei (BN) 402 30 28 19 30 4 8 21 9 132

Bare Chromatin (BC) 150 160 161 39 34 9 71 28 11 20

Normal Nucleoli (NN) 432 36 42 18 19 22 16 23 15 60

Mitoses (M) 563 35 33 12 6 3 9 8 0 14

Table 6: wbcd dataset description. Each attribute can assume an integer value in the range [1,10].

The task consists in correctly classify malignant breast tumor. Before applying

our algorithm the dataset has been discretized using the MDLP method describe pre-

viously. This dataset gives us the chance to compare the extracted interpretation rule

with other rule extraction methods. In particular we use as reference the results re-

ported in [17]. Since in [17] experiments have been carried out using a 10-fold cross

7https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Method #Rules Rules Acc.(%)

SSV[18] 3 MA> 2.5 ∧ BC> 2.5 86.36

MA> 2.5 ∧ BN> 3.5 ∧ BC> 0

UCSI> 5.5 ∧MA< 2.5 ∧ BC> 1.6

NEFC.[19] 1 CT is large ∧ UCSH is large ∧ 82.26

MA is large ∧ BN is large ∧

BC is large ∧ NN is large

GASVM[20] 2 CT≥ 7.085 ∨ UCSH ≥ 7.908 ∨ SECS ≥ 9.76 ∨ BC≥ 6.064 92.38

UCSH< 7.7 ∧ BN< 9.41 ∧ BC< 6.12 ∧M< 7.43

QSVM-G[21] 7 UCSH> 2.97063 ∧ BN> 4.93843 97.36

CT> 4.96292 ∧ UCSI> 3.9883

UCSI> 4.97866

CT> 2.98416 ∧ BN> 6.92955

CT> 5.98057 ∧ UCSI> 2.99794 ∧ UCSH> 3.98945

UCSH> 2.97063 ∧ SECS> 4.96611

NN> 8.964

ReRXJ48[22, 17] 2 CT ≤ 4 ∧ BN> 6 90.47

CT> 4 ∧ BN> 1

Our[23] 1 CT> 4.5 ∨ UCSI> 2.5 ∨ 2.5 <UCSH ≤ 4.5 89.73

Table 7: Rule extracted by some of the rule extraction algorithms reported in [17]. The accuracy referred

to the performance of the set of rules (appended with an ’or’) on the whole wbcd dataset.(*) this result has

been achieved by substituting ’is large’ with greater than the average value of the attribute.

validation, we used the same procedure. In this way the size of the test set is preserved.

The comparison is done by applying the extracted rule/rules to the entire dataset, and

the overall accuracy is registered. Table 7 summarizes the results. In the table only the

best performing methods w.r.t. [17] have been reported.

The first noticeable observation is that, in general, rule extraction methods return a

set of rules w.r.t. the single rule provided by our algorithm. Another difference are the

disjunctive clauses: in a standard rule extraction method they are inserted a-posteriori

in order to put all the rules together into a single one. Our method instead, by design,

gives a single mDNF which can contain disjunctions. From an accuracy point of view,

the rule extracted by our algorithm achieve a performance which is comparable to most

of the rule sets. The only method which achieve very high accuracy is QSVM-G, but

at a cost of a quite complex rule.

Another observation is that the rules of the best performing methods, namely,

QSVM-G, GASVM, ReRXJ48 and our, have rules that include almost the same at-
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tributes. Especially, from the results it seems that large values of CT and UCSH are a

good indicator of malignant breast tumor.

It is worth to underline that, the compared methods have been design to extract rules

able to explain the dataset. In turn, our proposed method works on top of a BK-SVM

and it extracts rule to interpret the solution of such SVM.

6. Future work

We have presented a method based on Boolean kernels to extract interpretation

rules from a support vector machine. After showing the effectiveness on categorical

datasets, we also provide a method for applying the proposed algorithm to real-valued

data. We have also investigated the strengths and weaknesses of our proposal. In

particular, it is evident that in many real-world problems using simple propositions

over the value of the features is not always enough. A richer representation is needed

in order to give the possibility to the SVM of leveraging on such higher level features.

The chess dataset has been used to show how effective can be the addition of higher

level features. To this end, in the future we aim to build methods able to learn such

higher level representations. Moreover, a more in-depth theoretical analysis need to be

conducted in order to further support the empirical results. Finally, other strategies for

extracting the best rules should be tested.
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