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1 Introduction

Over the past few years, great effort has been devoted to extending powerful on-shell

methods specifically developed for the computation of amplitudes to partially off-shell

quantities such as form factors, and fully off-shell quantities such as correlation functions.

Form factors are the overlap of an n-particle state with a state produced by a local gauge-

invariant operator O(x) applied on to the vacuum, and naturally appear as amplitudes

in effective theories. Hence, one would expect that many of the amplitudes methods can

be ported to this interesting case as well. This expectation was confirmed in [1, 2] where

unitarity cuts [3, 4], BCFW recursion relations [5, 6] and MHV diagrams [7, 8] were used

directly to find new expressions for tree-level and one-loop form factors. These papers also

provided first indications of extensions of the amplitude/Wilson loop duality [9–12] and

formulations of form factors in momentum twistor space [13].1

It also became clear soon after [14] that more advanced methods like generalised uni-

tarity [15, 16] and the symbol of transcendental functions [17] could be employed effectively

to obtain a plethora of novel results [18–22]. It also turned out that new geometric for-

mulations like Grassmannians [23] and twistor strings could be extended, see [24] and [25–

27], respectively. Even the scattering equations [28] and related formulations in twistor

space [29, 30] could be generalised to form factors [31, 32]. Explicit results for a number

of helicity configurations and for super form factors of the stress-tensor multiplet operator

1The corresponding periodic kinematic configurations (“periodic Wilson loops”) in dual momentum

space and in momentum twistor space play an important role in this paper.
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were obtained, see [1, 2, 33–35], and in particular in [33] an expression for the n-point

NMHV form factors of this operator was obtained by solving the supersymmetric BCFW

recursion relation [36, 37] in a similar way as done in [38] for superamplitudes.

The successful extension of recursive techniques to integrands of planar loop amplitudes

in N =4 SYM was accomplished in [39], following earlier work of [40].2 A key insight of [39]

is that at each loop order one can unambiguously define an object, the planar integrand,

which can then be computed recursively. This relies on the fact that for a colour-ordered

amplitude, one can re-write the momenta of the particles using region momenta as [10, 42]

pi = xi − xi+1 . (1.1)

This change of variables automatically implements momentum conservation, and is a crucial

ingredient in the duality between Wilson loops and scattering amplitudes in N =4 SYM [9–

11]. In this duality, the Wilson loop is stretched along a polygonal light-like contour which

connects the points xi. At strong coupling [9], this mapping can be interpreted as a T-

duality transformation on the AdS5 coordinates. In the weak coupling picture [10–12],

the assignment of region momenta for the planar integrand shows the emergence of an

anomalous hidden symmetry, known as dual conformal invariance (DCI) [43, 44]. In the

Wilson loop picture, DCI is simply conformal invariance of the Wilson loop expectation

value, which is anomalous due to the presence of cusps along the contour, with the anomaly

being controlled by the cusp anomalous dimension. This interpretation allows to check DCI

also on the integrated amplitude by applying dual conformal generators on the final result

expressed in terms of region variables [43, 44].

For form factors, two important differences need to be taken into account. First,

momentum conservation now reads

n∑
i=1

pi = q , (1.2)

where q is the incoming momentum of the off-shell leg associated with the operator in-

sertion. This implies that the dual Wilson line cannot be drawn as a closed, piecewise

light-like polygon. The proposal of [45, 46] at strong coupling is to draw the dual contour

as a periodic Wilson line, with period q. Furthermore, the inserted local operator is gauge

invariant, i.e. a colour singlet, thus making the object inherently non-planar. In [1], a

similar picture was advocated at weak coupling, and further discussed in section 5 of [2].

In the latter paper, dual MHV rules which crucially involve a periodic configuration in mo-

mentum twistor space were also introduced, and applied to the computation of tree-level

and one-loop supersymmetric form factors of protected operators.

In this work we leave aside a more detailed definition of the form factor/Wilson line

duality, and instead give a well-motivated prescription for expressing form factors in terms

of region variables living on a periodic contour. Crucially, with such a prescription one

can unambiguously define one-loop integrands even for form factors, and hence study loop

recursion relations, both for a two-line and an all-line shift. With this prescription in hand,

2A similar loop recursion relation was recently derived for Wilson-line form factors [41].
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xi xn
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Figure 1. Possible assignments of region momenta in a planar form factor diagram. The double

line corresponds to the off-shell leg carrying incoming momentum q. In our notation x−i ≡ xi − q.

recursion relations can be formulated straightforwardly. Furthermore, and importantly, this

prescription is mandatory in order to define and understand the action of dual conformal

symmetry on form factors. In the present paper we will define this prescription and use

it to study loop-level recursion relations for form factor integrands, while the realisation

of DCI will be fully studied in the companion paper [47]. Throughout these works we will

consider form factors of the (chiral part of the) stress-tensor multiplet operator. It would

clearly be of interest to extend our discussion to more general operators as well.

The rest of the paper is organised as follows. In section 2 we discuss the assignment of

region momenta for form factors and introduce a periodic kinematic configuration inspired

by [1, 45, 46]. This is a key step which then allows us to formulate recursion relations. In

section 3 we review NMHV form factors and the particular R-invariants used to express

them, some of which are novel compared to amplitudes. Section 4 is the central section

of the paper. There we introduce two types of recursion relations, namely the two-line

shift, or BCFW recursion relation for the loop integrand, and the all-line shift recursion

relation, which is equivalent to MHV diagrams. Several one-loop examples are described in

order to illustrate the practical implementation of the recursions and point out important

differences compared to recursion relations for amplitudes. Finally, in two appendices we

describe our conventions and present details of the derivation of NMHV tree-level form

factors.

2 Assignment of region momenta for form factors

We begin our discussion by considering a generic form factor diagram, such as that in

figure 1, contributing in the planar limit. This could be a Feynman or BCFW diagram or

an integral function, and we colour order all external on-shell legs. Because the operator

is a gauge singlet, the corresponding line q can be inserted between any pair of lines. Up

to one loop one can only have planar diagrams, but starting from two loops, non-planar

integrals can appear even at leading order in colour.

Once we have drawn q in a particular position, e.g. between legs i − 1 and i as in

figure 1, we label the region variables starting from q and moving in a clockwise fashion.

We then introduce the region momenta as in (1.1), with the identification

xi+n = xi − q ≡ x−i . (2.1)

– 3 –
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Figure 2. Form factor with three external legs and periodic dual configuration. The highlighted

region is the one we select.

When we get back to the leg with momentum q, we have moved all the way to x−i and this

provides a natural way to rewrite q in terms of region variables as3 q = xi − x−i .

We would like to stress that the peculiarity of our prescription is that the definition

of q in terms of region variables changes according to the diagram we are considering,

since a priori the off-shell leg is not ordered with respect to the on-shell ones. In the

companion paper [47] we will show how this assignment is crucial in defining the action of

dual conformal symmetry. In other words, given the infinite sequence of light-like segments

in the periodic dual configuration, we associate to every diagram a particular period therein.

As an example, in figure 2 we consider the three-leg case and show how the three possible

configurations are mapped to three different periods.

Notice that our prescription involves the choice of an origin. For instance, in the first

diagram of figure 2 we chose to start labelling regions from x1 and then move clockwise

around the diagram. It should be clear that we could have labelled region momenta starting

from any other vertex. This would have no consequences for the integrated result thanks

to translation invariance in dual space. Nevertheless this choice has consequences in the

definition of the loop integrand, and the action of the dual conformal generators.

The application of recursion relations to the loop integrand of scattering amplitudes

requires the unambiguous definition of the integrand itself. This is obtained in the planar

limit by introducing region variables. In a similar way we can introduce region variables

for the form factor loop integrands. At one loop they will involve propagators of the type

1/x20i, where x0 is the region of the loop momentum. It is also clear that an overall shift

of the external region variables xi → xi + mq can be compensated by a shift in the loop

variable x0 → x0 +mq. This feature will be crucial in the derivation of the loop recursion

relation presented later.

This property of the loop integrand can also be viewed in the light of the recent

work [48], where a Wilson loop dual for double-trace contributions to scattering amplitudes

is discussed. Their main observation is based on the idea that the string worldsheet for

double-trace amplitudes has the topology of a cylinder, or equivalently of an annulus with

3In our conventions, the momentum q is incoming.
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q
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Figure 3. (a) Worldsheet configuration for a four-point double-trace amplitude. Each × stands

for the insertion of an open string vertex operator. (b) Worldsheet configuration for the Sudakov

form factor. The • stands for the closed string vertex operator.

q

p1

p2

←→ p1 p2
q

Figure 4. A non-planar Feynman diagram which appears as planar when drawn on a punctured

disk. All such diagrams contribute to the large N form factor.

open string insertions on the two boundaries. The case of form factors can be thought

of as a degenerate limit of the double-trace amplitude, where the internal circle of the

annulus shrinks to a point corresponding to a closed string insertion (see figure 3). In the

large-N limit on the gauge theory side only diagrams survive that can be drawn on the

punctured disk topology. A neat example is shown in figure 4, where a two-loop “non-

planar” diagram contributing to the Sudakov form factor is drawn as a planar diagram on

the punctured disk.4

The authors of [48] established a correspondence between a double periodic Wilson loop

and what they called the cylinder cut of the amplitude. We refer to [48] for the precise

definition of the cylinder cut. Here we only point out that it depends on an additional

momentum `, which, in the Wilson line picture, parameterises the distance between the two

periodic Wilson lines. This momentum `, as much as our x0 loop variable, is characterised

by an ambiguity under shifts by an integer number of periods, i.e. ` 7→ `+mq. In that case,

the authors decided to eliminate this ambiguity by summing over all possible shifts. For

our purposes, instead of resolving the residual ambiguity of the integrand by performing

an analogous sum, we just rely on the obvious property∫
d4x0 f(x0) =

∫
d4x0 f(x0 +mq) , (2.2)

and regard different representations of the integrand related by shifts in x0 as different

4The degree of non-planarity of form factors is similar to the one described in [49], since they can be

made planar by removing the leg carrying momentum q. However q is not light-like, hence the argument

of [49] does not apply here. Actually we will show in the companion paper [47] that the full dual conformal

symmetry is preserved by form factor diagrams.
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representatives of the same equivalence class of integrands. Although this introduces a

level of freedom in defining integrand representations, it allows to re-express the result of

the recursion in terms of a more conventional basis of integral functions.

3 Overview of NMHV form factors

The modern approach to the study of scattering amplitudes is based on the idea that on-

shell quantities can be used as building blocks for the construction of tree-level amplitudes

as well as loop-level integrands. With the aim of applying a similar philosophy to the case

of form factors, we review some existing results for planar NMHV form factors at tree and

one-loop level. We start by setting our conventions. We denote by F
(l)
n,k the n-point, l-loop

NkMHV form factor and, analogously, with A
(l)
n,k the n-point, l-loop NkMHV amplitude.

At tree level, we graphically represent these quantities as

F
(0)
n,k = k

1 2

n− 1n

A
(0)
n,k = k

1 2

n− 1n

(3.1)

Notice that the number k inside a circle indicates the MHV degree and we associate the label

k=−1 with the three-point MHV amplitude. We also use the following conventions for the

particular cases of three-point tree-level amplitudes, and two-point tree-level form factor,

A
(0)
3,0 =

1

2

3

A
(0)
3,−1 =

1

2

3

F
(0)
2,0 =

1

2

(3.2)

Explicit expressions for these quantities are given in appendix A. These are the building

blocks for the construction of the so-called R-invariants. The latter were defined, for the

case of scattering amplitudes, as the dual conformal invariant quantities entering the ra-

tio A
(0)
n,1/A

(0)
n,0 [37, 44]. Subsequently, it became clear that the R-invariants determine the

amplitude for any helicity configuration [6, 38]. They can be related to maximal cuts of

one-loop n-point amplitudes using the BCFW bridge [6, 16] and recursive arguments [50],

which can be better understood in twistor variables [51] or in the on-shell diagram formu-

lation [52].

The extension to form factors was discussed in [33], where it was shown that the NMHV

form factor can be expressed in terms of two types of R-invariants, which we introduce with

the following on-shell diagrams:

R′rst =

0 0

0

r + 1

s− 1 t− 1s

t

r − 1
r

, R′′rst =

0 0

0

r + 1

s− 1

t− 1

s

t

r − 1r

. (3.3)
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0 0

0

xc, θc

xc+1, θc+1

xa, θa

xb, θb

{P, qP } {Q, qQ}

{R, qR}{r, qr}

Figure 5. Conventions for assigning outgoing momenta and supermomenta as well as region

variables for a generic kinematic configuration.

The precise relation between the above on-shell diagrams and the associated maximal cuts

C′rst and C′′rst reads

C•rst = i∆
δ(8)(q)

〈1 2〉〈2 3〉 · · · 〈n 1〉
R•rst , (3.4)

where the • indicates that this formula applies to both types of R-invariants, and

∆ = (pr + P )2(pr +R)2 − P 2R2 . (3.5)

Furthermore, we denote the total outgoing momentum and supermomentum in the upper-

left, upper-right and lower-right corners respectively as {P, qP }, {Q, qQ} and {R, qR} (see

figure 5).

A simple computation allows to derive an explicit expression for R•rst, which can be

straightforwardly applied to the case of form factors if s 6= t [33, 53],

R•rst =
〈s− 1 s〉〈t− 1 t〉 δ(4)(〈qr + qP |QR|r〉 − 〈qR|QP |r〉)
Q2〈r|RQ|s− 1〉〈r|RQ|s〉〈r|PQ|t− 1〉〈r|PQ|t〉

. (3.6)

In particular, no modification is needed for the corner case

R′′rsr =
0 0r + 1

s− 1

r − 1

s

r

, (3.7)

which does not have a counterpart in the context of amplitudes. However, the previous

formula does not apply to the specific case s = t:

R′rss =

0

0

r + 1

s− 1

s

r − 1
r

, (3.8)
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for which the correct result turns out to be given by

R′rss = −〈s− 1 s〉 δ(4)(〈qr + qP |QR|r〉 − 〈qR|QP |r〉)
Q4〈r|RQ|s− 1〉〈r|PQ|s〉〈r|PQ|r〉

. (3.9)

The box diagrams are decorated with the assignment of specific region variables according

to the rule outlined in section 2: we proceed clockwise and assign the x and θ variables

associated to each one of the four regions starting from the one that comes after the corner

where the off-shell leg is inserted. We can represent this for a generic box diagram, as

shown in figure 5, without the need to specify where the off-shell leg sits. By comparison

with the diagrams in (3.3) we have that

xc ∼ xr , θc ∼ θr ,
xa ∼ xs , θa ∼ θs ,
xb ∼ xt , θb ∼ θt , (3.10)

where the ∼ sign indicates that the identity holds up to an appropriate shift by some

integer multiple of a period. It is important to rewrite the results introduced so far in

terms of region variables for the purpose of establishing recursion relations at loop level

discussed in this paper, and to associate to each diagram a well defined behaviour under

dual conformal transformations described in detail in the companion paper [47]. In terms

of region variables, one can rewrite (3.6) and (3.9) as

R•rst =
〈s− 1 s〉〈t− 1 t〉 δ(4)(〈r|xcaxab|θbr〉+ 〈r|xcbxba|θar〉)

x2ab〈r|xcbxba|s− 1〉〈r|xcbxba|s〉〈r|xcaxab|t− 1〉〈r|xcaxab|t〉
, (3.11)

R′rss = −〈s− 1 s〉 δ(4)(〈r|xcaxab|θbr〉+ 〈r|xcbxba|θar〉)
x4ab〈r|xcbxba|s− 1〉〈r|xcaxab|s〉〈r|xcaxbc|r〉

. (3.12)

Finally, we wish to present the complete tree-level, n-point NMHV form factor. In [53]

it was shown that the tree-level NMHV form factor can be written as a combination of

R-invariants. In appendix B we give details of this derivation. The general idea is that,

for n particles, the BCFW recursion relation contains 2n− 5 diagrams involving a product

of one MHV amplitude and one MHV form factor, and a single diagram containing the

product F
(0)
n−1,1 ×A

(0)
3,−1. For the former case one can use the BCFW bridge to rewrite the

MHV×MHV diagrams in terms of R-invariants. For the latter, instead, one has to use a

recursive procedure. This results in the following combination of (n− 2)2 R-invariants:

F
(0)
n,1 = F

(0)
n,0

 n∑
j=3

j∑
i=3

R′1;i,j +
n+1∑
j=5

j−2∑
i=3

R′′1;i,j

 , (3.13)

where the sum is meant to be periodic, i.e. with the identification n + 1 ∼ 1. Notice that

this representation has been obtained by using a particular BCFW shift, in this case [1 2〉.

– 8 –
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4 Recursion relations for form factor integrands

Given our prescription for the assignment of region variables in one-loop diagrams, we now

proceed to consider the complete one-loop integrand F (1)
n,k(x0), defined by

F
(1)
n,k =

∫
ddx0 F (1)

n,k({xi};x0) . (4.1)

In order to obtain recursion relations we perform particular shifts of the external legs

F (1)
n,k({x̂i};x0) ≡ F̂

(1)
n,k(z) such that

0 =
1

2πi

∮
dz

z
F̂ (1)
n,k(z) = F (1)

n,k({xi};x0) +
∑
zi 6=0

Res
z=zi

F̂ (1)
n,k(z)

z
, (4.2)

where the sum is taken over the residues of the integrand occurring at zi 6= 0, and we

used F̂ (1)
n,k(0) = F (1)

n,k({xi};x0). Unitarity and locality guarantee that there are only first-

order poles, and we assume that the chosen deformation preserves the overall momentum

conservation and leaves all particle momenta on shell. An important requirement is also

that F̂ (1)
n,k(z) ∼ 1/z for large z. In this paper we only make use of deformations for which

this is the case. We start with the case of a two-line shift, i.e. the loop-level generalisation

of the familiar tree-level BCFW recursion relation.

4.1 BCFW loop recursion relation

In this section we consider a shift of the one-loop integrand that involves the shift of a

single region momentum, together with all its periodic images. To be concrete, we focus

on the shift

x̂•1 ≡ x•1 − zλnλ̃1 . (4.3)

In terms of spinor variables, the above corresponds to a shift of the form

λ̂1 ≡ λ1 − zλn , ˆ̃
λn ≡ λ̃n + zλ̃1 , η̂n ≡ ηn + zη1 . (4.4)

Similarly to the case of amplitudes, the residues of the integrand have simple physical

origins: they are associated either to factorisation channels or to forward limits of tree-level

form factors.

As for form factors, with A(l)
n,k we will denote the l-loop n-points NkMHV amplitude

integrand. In our notation, with l = 0 we simply denote the corresponding tree-level

quantities. It is also useful to introduce the ratios defined by dividing form factors by the

corresponding tree-level MHV quantities,

F̃ (l)
n,k ≡

F (l)
n,k

F (0)
n,0

. (4.5)

– 9 –
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We can then propose the following formula for the one-loop integrand:

F (1)
n,k = F

(0)
n,0 F̃

(1)
n−1,k(x̂1, x3, . . . , xn, x0)

+
1

x201

∫
d4η` F

(0)
n+2,k+1(x̂1, . . . , xn, x̂

−
1 , x

−
0 )

+
∑
l,i,kL

∫
d4η`

[
F (l)
i,kL

(x̂1, . . . , xi)
1

(x+i1)
2
A(1−l)
n−i+2,kR

(x̂1, xi, . . . , xn)

+A(l)
i,kL

(x̂1, . . . , xi)
1

(xi1)2
F (1−l)
n−i+2,kR

(x̂1, xi, . . . , xn)

]
, (4.6)

where l = 0, 1, i = 2, . . . , n−1 and kL+kR = k−1 with kL, kR ≥ 0, and η` is the Grassmann

variable associated to the internal lines. We will now systematically describe the various

terms in this formula. Note that for ease of notation we have dropped the dependence on

x0 in the last two lines.

The first line of (4.6) originates from the particular factorisation channel

F(1)
n−1,k

x3

x̂11̂

2
3

n̂ ←→
xn

x1

x̂1

x2
x3

(4.7)

which is the only one associated with the Parke-Taylor prefactor. This diagram is evaluated

in the particular kinematics for which (x̂1 − x3)2 = 0, as indicated by the light-like wavy

red line. According to (4.5), we can write the one-loop integrand in the above diagram as

F (1)
n−1,k = F

(0)
n−1,0 F̃

(1)
n−1,k(x̂1, x3, . . . , xn;x0) . (4.8)

The tree-level prefactor recombines with the the MHV amplitude, as in the BCFW recur-

sion at tree level, to give the first line of (4.6). Specifically,

A
(0)
3,−1

1

x213
F (1)
n−1,k = A

(0)
3,−1

1

x213
F

(0)
n−1,0 F̃

(1)
n−1,k(x̂1, x3, . . . , xn;x0)

= F
(0)
n,0 F̃

(1)
n−1,k(x̂1, x3, . . . , xn;x0) . (4.9)

The second line of (4.6) contains the contributions from the forward limits. They are

evaluated at the value of z for which (x0 − x̂1)2 = 0. The geometric interpretation of the

forward limit is shown in figures 6a and 6b. Compared to the recursion relation of amplitude

integrands, there is an important difference arising from diagrams where the shifted region

variable xi appears twice in the expression of the integrand (see figure 7). This occurs when

the operator carrying momentum q is located between the shifted region momenta x̂1 and

x̂−1 . When taking the sum over the residues, these diagrams will give two contributions:

one arising from a pole when x̂201 = 0, and another one from a pole at (x̂+01)
2 = 0. These

two poles are associated with two different values of z. However, as discussed in section 2,

we can use the freedom of shifting x0 by a period to find a representation of the integrand
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x+n+1 → x1

x2 xn

xn+1 → x−1

xn+2

x−2 xn

x−n+1 → x−−1

x−n+2

(a) Forward limit.

x̂1

x2 xn

x̂−1

x−0

x−2 xn

x̂−−1

x−−0

(b) Single loop-leg cut.

Figure 6. Illustration of the forward limits and single cuts on the periodic kinematic configuration.

The red wiggly represents the distance x̂01 that becomes null at the location of the residue. This

also explains the arguments of the (n+ 2)-point form factor appearing in the second line of (4.6).

x̂−1

x̂1 x0

x+n

x1

x̂1

x2

xn

x−1

x̂−1

x−2

x0

x+n

x1

x̂1
x2

xn

x−1

x̂−1
x−2

x0

x̂−1

x̂1 x−0

Figure 7. The special kinematic configuration where q is located between the shifted region

momenta x̂1 and x̂−1 . The two corresponding residues reside on different periods of the periodic

kinematic configuration. They can be mapped into each other by a shift of x0. Note that for a

generic configuration there is only a single residue as in the case of amplitudes.

with an overall factor 1/x201. Notice that, since z itself depends on x0, this gets shifted

as well and the two residues are then associated with the same value of z. One may still

wonder whether both these contributions are produced in the forward limit of some higher

point amplitudes; this is indeed the case and we will demonstrate this in specific examples

later on.
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Finally, in the last two lines of (4.6) every pole is associated with a standard factori-

sation channel, thus z is evaluated respectively at (xi − x̂−1 )2 = 0 and (xi − x̂1)2 = 0 as

illustrated below:

FL AR

xi

x̂−1

1̂

i− 1 i

n̂

←→

x+n

x̂1

x1 x2
xi−1

xi

xi+1 xn

x̂−1

x−1 x−2

AL FR

xi

x̂1
1̂

i− 1 i

n̂ ←→

x+n

x̂1

x1 x2
xi−1

xi

xi+1 xn

x̂−1

x−1 x−2

(4.10)

Given the one-loop recursion relation (4.6), it is tempting to propose at this point a

straightforward all-loop generalisation:

F (l)
n,k = F

(0)
n,k F̃

(l)
n−1,k(x̂1, x3, . . . , xn, x0)

+
1

x201

∫
d4η` F

(l−1)
n+2,k+1(x̂1, . . . , xn, x̂

−
1 , x

−
0 )

+
∑
lL,i,kL

∫
d4η`

[
F (lL)
i,kL

(x̂1, . . . , xi)
1

(x+i1)
2
A(lR)
n−i+2,kR

(x̂1, xi, . . . , xn)

+A(lL)
i,kL

(x̂1, . . . , xi)
1

(xi1)2
F (lR)
n−i+2,kR

(x̂1, xi, . . . , xn)

]
, (4.11)

with lL + lR = l, i = 2, . . . n − 1 and kL + kR = k − 1 with kL, kR ≥ 0. In this expression

we have suppressed lower loop variables for easy of notation and we only quote x0 corre-

sponding to the new variable. One of the issues that needs to be clarified at higher loops is

the assignment of region variables and the associated ambiguity we discussed in section 2.

We leave this analysis for the future, and in this work we focus on explicit checks of the

one-loop recursion presented in (4.6).

The examples we discuss in the following are one-loop MHV form factors. In this case,

the recursion has only two contributions:

F (1)
n,k = F

(0)
n,0 F̃

(1)
n−1,k(x̂1, x3, . . . , xn, x0) +

1

x201

∫
d4η` F

(0)
n+2,k+1(x̂1, . . . , xn, x̂

−
1 , x

−
0 ) . (4.12)

In the next two subsections we provide examples of the BCFW recursion at one loop.

We show the validity of our approach by comparing results obtained by using our pre-

scription in (4.6) with integrands obtained from generalised unitarity. To show agreement

between the two, we will explicitly check that the result obtained with unitarity methods

has residues coming from single loop-leg cuts which are precisely captured by forward limits

of tree-level form factors, up to shifts in x0.
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4.1.1 The one-loop two-point form factor

The simplest example is given by the minimal form factor at one loop. As anticipated,

we start by considering the one-loop integrand coming from generalised unitarity. In this

case only triangles can appear. When summing over cyclic permutations of the external

on-shell legs, one obtains

F (1)
2,0 (x1, x2;x0) = F

(0)
2,0

s12 x1
x2

x−1

x0 + s12

x2
x−1

x−2

x0

 . (4.13)

We now consider the BCFW shift

x̂•1 ≡ x•1 − zλ2λ̃1 , (4.14)

and collect all the residues associated with it. These come from the cuts

x̂1

x2

x̂−1

x0 = − 1

x201x
2
02(x̂

+
01)

2
,

x̂1

x2

x̂−1

x0 = − 1

(x+01)
2x̂201x

2
02

,

x2

x̂−1

x−2

x0 = − 1

(x+01)
2x202(x

+
02)

2
. (4.15)

Similarly to the situation depicted in figure 7, the first triangle in (4.13) gives rise to two

different cut contributions. Notice also how, in this particular case, the triangle coefficients

and the MHV prefactor are insensitive to the deformation. Let us collect the three terms

in a single function Icut. In doing so, we perform the shift x0 7→ x−0 on the last two terms

to obtain a universal prefactor 1/(x01)
2 associated with the cut leg. Hence, we obtain

Icut = −
F

(0)
2,0

x201

(
s12

x202(x̂
+
01)

2
+

s12

(x̂−01)
2(x−02)

2
+

s12

(x−02)
2x202

)
. (4.16)

According to (4.6), we can reproduce the results above from the forward limit of F
(0)
4,1 . The

expression for this, given in (3.13), reads

F̃
(0)
4,1 = R′133 +R′134 +R′144 +R′′131 . (4.17)

When taking the forward limit, we make the assignments

λ4 → −λ3 , λ̃4 → λ̃3 , η4 = η3 . (4.18)

By looking at the expressions of the R-invariants it is easy to see that some of the denom-

inators vanish under these identifications. In particular, this happens when legs 3 and 4

are attached to the same MHV blob as in the first two diagrams in the second line of (B.1)

for n = 4, i.e. R′133 and R′′131. Similar diagrams were already considered in the amplitude
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case [39, 40, 54]. It turns out that for supersymmetric theories their contribution vanishes

in the sum over all the possible external states appearing in the two legs with momenta p3
and −p3 in the forward limit. For N = 4 SYM the sum over the states can be implemented

by integrating over the Grassmann variable η3. Looking at the expressions for the R-

invariants R′133 and R′′131 one immediately notices that the dependence on η4 disappears in

the configuration (4.18). This implies that the integration over η3 will always vanish when

legs 3 and 4 are attached to the same MHV blob. This provides a systematic and graphical

way to isolate the diagrams that contribute to the forward limit of the NMHV amplitude.

Therefore, after integrating over d4η3 we are left with the following contributions:

lim
p4→−p3

∫
d4η3R

′
134 =

δ(8)(q) [12]2

(p3 − q)2 (p3 − p1)2 2p3 · q

=
δ(8)(q) [12]2

q2 (p3 − p1)2 2p3 · q
+

δ(8)(q) [12]2

q2 (p3 − q)2 (p3 − p1)2
, (4.19)

lim
p4→−p3

∫
d4η3R

′
144 = − δ(8)(q) [12]2

(p3 + q)2 (p3 + p2)2 2p3 · q

= − δ(8)(q) [12]2

q2 (p3 + p2)2 2p3 · q
+

δ(8)(q) [12]2

q2 (p3 + q)2 (p3 + p2)2
. (4.20)

The sum of these expressions gives

Iforw = −F (0)
2,0

(
s12

s1,−3s1,2,−3
+

s12
s1,2,3 s2,3

+
s12

s2,3s1,−3

)
, (4.21)

where we used the notation si,...,±j = (pi + · · · ± pj)2. This is the result for the forward

limit. According to (4.6) we need to evaluate this expression on a shifted kinematics. First

we express Mandelstam variables in terms of region variables, using the forward kinematics

x3 = x−1 , x4 = x−0 . Then we simply shift x1 7→ x̂1 as shown in figure 6a.

With this, we obtain full agreement between the two expressions, as stated in (4.6),

i.e. we have

Icut =
1

x201
Îforw , (4.22)

where in Îforw we performed the identification described above. In this particular case, Icut
reconstructs the full integrand, since, as noted earlier, the poles we considered are all the

poles of the integrand function.

4.1.2 The one-loop three-point MHV form factor

The example described in the previous section is very simple because of the small number

of diagrams and the absence of boxes. The first case where box diagrams appear is the

three-point case, whose one-loop integrand was derived in [1]. This result, expressed using
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the region variable assignment described in section 2, reads

F (1)
3,1 (x0)

F
(0)
3,0

=
x213(x

+
21)

2

2
x3

x−1

x1

x2x0 +
(x+21)

2(x+32)
2

2
x−1

x−2

x2

x3x0 +
(x+32)

2x213
2

x−2

x−3

x3

x−1x0

+
(x+21)

2 + (x+32)
2

2

 x1
x3

x−1

x0 +

x3
x−1

x−3

x0


+

(x+32)
2 + x213
2

 x2
x−1

x−2

x0 +

x1
x2

x−1

x0


+
x213 + (x+21)

2

2

 x3
x−2

x−3

x0 +

x2
x3

x−2

x0

 . (4.23)

We then consider the BCFW shift

x̂•1 ≡ x•1 − zλ3λ̃1 , (4.24)

and collect the residues coming from the the above expression. These are associated with

the cuts

x3

x̂−1

x̂1

x2x0 =
1

x201x
2
02x

2
03(x̂

+
01)

2
,

x3

x̂−1

x̂1

x2x0 =
1

x̂201x
2
02x

2
03(x

+
01)

2
,

x̂−1

x−2

x2

x3x0 =
1

x202x
2
03(x

+
01)

2(x+02)
2
,

x−2

x−3

x3

x̂−1x0 =
1

x203(x
+
01)

2(x+02)
2(x+03)

2
,

x̂1

x3

x̂−1

x0 =
1

x201x
2
03(x̂

+
01)

2
,

x̂1

x3

x̂−1

x0 =
1

x̂201x
2
03(x

+
01)

2
,

x̂1

x2

x̂−1

x0 =
1

x201x
2
02(x̂

+
01)

2
,

x̂1

x2

x̂−1

x0 =
1

x̂201x
2
02(x

+
01)

2
,

x3

x̂−1

x−3

x0 =
1

x203(x
+
01)

2(x+03)
2
,

x2

x̂−1

x−2

x0 =
1

x202(x
+
01)

2(x+02)
2
. (4.25)
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As done in the previous section, we shift x0 appropriately on each term to collect an overall

1/x201 factor. The sum of all the residues reads

Icut = −
F

(0)
3,0

2x201

[
(x̂+21)

2x̂213
x202x

2
03(x̂

+
01)

2
+

(x̂+21)
2x̂213

(x−03)
2(x−02)

2(x̂−01)
2

+
(x̂+21)

2(x+32)
2

(x−02)
2x202(x

−
03)

2
+

x̂213(x
+
32)

2

x203x
2
02(x

−
03)

2

+
(x+32)

2 + (x̂+21)
2

(x−03)
2x203

+
x̂213 + (x+32)

2

x202(x̂
+
01)

2
+

(x+32)
2 + (x̂+21)

2

x203(x̂
+
01)

2
+

(x+32)
2 + x̂213

x202(x
−
02)

2

+
(x̂+21)

2 + (x+32)
2

(x−03)
2(x̂−01)

2
+

(x+32)
2 + x̂213

(x−02)
2(x̂−01)

2

]
. (4.26)

We will now show that the above can be obtained through the forward limit of the

five-point NMHV form factor. We start from the general expression for the NMHV form

factor (3.13) and we consider the five-point case

F̃
(0)
5,1 = R′135 +R′145 +R′155 +R′′135 +R′134 +R′133 +R′144 +R′′131 +R′′141 . (4.27)

We then consider the forward limit of legs 4 and 5 by setting

λ5 → −λ4 , λ̃5 ,→ λ̃4 η5 = η4 . (4.28)

Analogously to the previous case, only some R-invariants give a non-vanishing contribution

after the fermionic integration,

lim
p5→−p4

∫
d4η4R

′
135 =

δ(8)(q) [1 2]2

(p12 − p4)2 p214 [4|q |3〉 〈3 4〉
,

lim
p5→−p4

∫
d4η4R

′
145 = − δ(8)(q) q4

(q − p4)2 〈1 2〉 〈2 3〉 [4|q |3〉 [4|q |4〉 〈1 4〉
,

lim
p5→−p4

∫
d4η4R

′
155 = − δ(8)(q) q4

(q + p4)2 〈1 2〉 〈2 3〉 [4|q |1〉 [4|q |4〉 〈3 4〉
,

lim
p5→−p4

∫
d4η4R

′′
135 =

δ(8)(q) [2 3]2

(p23 + p4)2 p234 [4|q |1〉 〈4 1〉
. (4.29)

As usual, the result of BCFW recursion relations contains spurious poles. By making use

of the kinematic identities

〈2 4〉 [4|q |3〉 [3 2] = s24s23 +
1

2
(s13s24 − s12s34 + s14s23) ,

〈1 4〉 [4|q |3〉 [3 1] = s14s13 +
1

2
(s13s24 − s12s34 + s14s23) ,

〈2 4〉 [4|q |1〉 [1 2] = s12s24 +
1

2
(s12s34 − s14s23 + s13s24) ,

〈3 4〉 [4|q |1〉 [1 2] = s13s34 +
1

2
(s12s34 − s14s23 + s13s24) , (4.30)

and after some partial fractioning, we can write the sum of the four terms above as

Iforw = −
F

(0)
3,0

2

[
s12s13

s1,2,−4s1,−4s34
+

s23s12
s1,−4s1,2,−4s1,2,3,−4

+
s23s13

s2,3,4s1,−4s34

+
s23s12

s34s2,3,4s1,2,3,4
+
s13 + s23
s34s1,2,−4

+
s12 + s13

s1,−4s1,2,3,−4
+

s13 + s23
s1,2,−4s1,2,3,−4

+
s13 + s12
s1,−4s2,3,4

+
s23 + s13
s34s1,2,3,4

+
s13 + s12
s2,3,4s1,2,3,4

]
. (4.31)
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If we now identify x5 = x−0 , x4 = x−1 and perform the shift x1 7→ x̂1, i.e. if we set

s1,−4 = x202 , s1,2,−4 = x203 , s1,2,3,−4 = (x̂+01)
2 ,

s34 = (x−03)
2 , s2,3,4 = (x−02)

2 , s1,2,3,4 = (x̂−01)
2 ,

s12 = x̂213 , s23 = (x̂+21)
2 , s13 = (x+32)

2 , (4.32)

we arrive at

Icut =
1

x201
Îforw . (4.33)

The complete integrand is then obtained by including the contribution from the first line

in (4.6), where the corresponding residue is due to the overall tree-level MHV form factor

F
(0)
3,0 which leads to the factorisation depicted in (4.7).

4.2 All-line loop recursion relation

In [55], an all-line, or MHV recursion relation for one-loop amplitude integrands was formu-

lated, as an application of the integrand loop recursion of [39] combined with the tree-level

MHV recursion of [56]. In this section we show how this MHV loop recursion is extended

to include also form factors. This is based on the application of MHV rules [7] to form fac-

tors [2], which can be immediately extended to one-loop form factors using the formalism

developed in [8, 54, 57, 58].

To formulate the all-line recursion relation we employ the all-line shift of [56], where

all the region momenta are deformed [55]:

x̂•i (z) ≡ x•i + z ρi ζ , (4.34)

where

ρi ≡
riλi−1 − ri−1λi
〈i− 1 i〉

, (4.35)

and the ris are non-vanishing complex numbers which ensure that all the region momenta

receive a non-vanishing shift. They obey the periodicity condition ri = ri±n = r±i in

order to ensure that the deformed kinematic configuration remains periodic since under

this condition ρi±n = ρ±i = ρi. Finally ζα̇ is a constant reference spinor. It can easily be

checked that the corresponding shifts of the spinors of the particles are

λ̂i ≡ λi , ˆ̃
λi ≡ λ̃i + z ζ

ri〈i− 2 i+ 1〉 − ri−1〈i i+ 1〉 − ri+1〈i− 1 i〉
〈i− 1 i〉〈i i+ 1〉

, (4.36)

confirming that these are MHV diagram-type shifts: only the anti-holomorphic spinors of

the particles’ momenta are shifted. As a consequence, since the MHV form factor vertices

are holomorphic, the only dependence on z occurs through the propagators which also

receive a z-dependent shift.

To explain this concretely, we focus on the MHV diagram expansion for the simplest

case, namely the one-loop two-point (or Sudakov) form factor, which contains already the

main features of a generic computation.
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1

2

x1

x2

x−1

x0

2

1

x2

x−1

x−2

x0

1

2

x2

x1

x−1

x0

2

1

x−1
x2

x−2

x0

Figure 8. The four one-loop MHV diagrams contributing to the one-loop Sudakov form factor.

The expansion of a Sudakov form factor in terms of MHV diagrams is given in figure 8.

Because the form factor insertion carries no colour, there are two possible types of diagrams,

namely with q = p1+p2 between particles 1 and 2, and between particles 2 and 1. Note the

appearance in the second line of that figure of diagrams that have a vanishing two-particle

cut, but are nevertheless important to guarantee that the final result is independent of che

choice of the reference spinor, as explicitly shown in one-loop MHV amplitude examples

in [8, 57, 58] and later shown in full generality in [54] using the cancellation of forward

scattering singularities in supersymmetric theories.

Consider now a generic MHV diagram and perform a shift of the region momenta

as in (4.34). Because the MHV vertices are holomorphic, the shift (4.36) does not affect

them. Hence, the only z-dependence occurs through the shifted propagators in a generic

MHV diagram. In the case at hand there will be two shifted propagators, and the residue

theorem takes the form ∫
dz

z

1

(x0 − x̂i)2
1

(x0 − x̂j)2
= 0 , (4.37)

where x0−x̂i and x0−x̂j are the shifted momenta in the propagators belonging to the same

MHV diagram, with the shifts given by (4.34). For instance, in the first MHV diagram in

figure 8, these would be x0 − x̂1 and x0 − x̂−1 . Furthermore, note that

(x0 − x̂i)2 = −〈ρi|x0 − xi|ζ] (z − zi) , (4.38)

with

zi =
(x0 − xi)2

〈ρi|x0 − xi|ζ]
, (4.39)

ensuring that there is no pole at infinity – and hence the validity of (4.37). The statement

of the recursion relation in this particular one-loop example is therefore nothing but

1

zizj
+

1

zi(zi − zj)
+

1

zj(zj − zi)
= 0 . (4.40)

Next we use that

(x0 − x̂i)2
∣∣
zj

= −〈ρi|x0 − xi|ζ](zj − zi) , (4.41)

(x0 − x̂j)2
∣∣
zi

= −〈ρj |x0 − xj |ζ](zi − zj) , (4.42)
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1̂

2̂

x̂1

x̂2

x̂−1

x0

1̂

2̂

x̂1

x̂2

x̂−1

x0

2̂

1̂

x̂2

x̂−1

x̂−2

x0

2̂

1̂

x̂2

x̂−1

x̂−2

x0

1̂

2̂

x̂2

x̂1

x̂−1

x0

1̂

2̂

x̂2

x̂1

x̂−1

x0

2̂

1̂

x̂−1

x̂2

x̂−2

x0

2̂

1̂

x̂−1

x̂2

x̂−2

x0

Figure 9. The single-cut diagrams contributing to the one-loop recursion. A red dotted line indi-

cates a cut propagator, and a cross implies that the corresponding shifted propagator is evaluated

on the solution to the cut of the other shifted propagator.

as well as the standard BCFW relation

zl 〈ρl|x0 − xl|ζ] = (x0 − xl)2 , (4.43)

where the right-hand side of (4.43) is the usual pole denominator in the BCFW recursion

relation. This allows us rewrite (4.40) in a transparent way:

1

(x0 − xi)2 (x0 − xj)2
=

1

(x0 − xi)2 (x0 − x̂j)2|zi
+

1

(x0 − xj)2 (x0 − x̂i)2|zj
. (4.44)

The left-hand side is nothing but a pair of unshifted scalar propagators; they are present

in all one-loop MHV diagrams we are considering in figure 8. The first term on the right-

hand side of (4.44) is evaluated on the solution zi to (x0 − x̂i)
2 = 0, while the second

for (x0 − x̂j)2 = 0. The effect of such terms is as for the MHV amplitude recursion [55],

which we quickly summarise here. For the sake of concreteness, we focus on the first MHV

diagram in figure 8. Applying (4.44), this diagram is mapped on to two terms, namely the

first two diagrams in figure 9. The first diagram appears with a factor of

1

(x0 − x̂1)2

∣∣∣∣
(x0−x̂−1 )2=0

1

(x0 − x−1 )2
, (4.45)

while the second with

1

(x0 − x̂−1 )2

∣∣∣∣
(x0−x̂1)2=0

1

(x0 − x1)2
. (4.46)

In both cases, the first monomial is the crossed propagator appearing in the corresponding

diagram in figure 9, evaluated on the solution to the condition that puts on shell the other

propagator originally present in the one-loop MHV diagram (and decorated with a cut).

The second is a multiplicative factor that will be present in the final form for the recursion

relation; it has the meaning of 1/L2 where L is the off-shell loop integration variable (more

on this later). Importantly, in the first diagram the condition (x0 − x̂−1 )2 = (x̂+01)
2 = 0

puts on shell the other shifted loop momentum, opening up the propagator, and adding
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(a)

−` `

1̂

2̂

x̂2

x̂1

x̂−1

x0

(b)

` −` 1̂

2̂

x̂1

x̂2

x̂−1

x0

(c)

` −`2̂

1̂

x̂−1
x̂2

x̂−2

x0

(d)

−` `

2̂

1̂

x̂2

x̂−1
x̂−2

x0

(e)

−` `

2̂

1̂

x̂−1
x̂2

x̂−2

x0

(f)

` −` 2̂

1̂

x̂2

x̂−1
x̂−2

x0

(g)

` −`1̂

2̂

x̂2

x̂1

x̂−1

x0

(h)

Figure 10. Recombination of single-cut diagrams contributing to the one-loop recursion. The first

line contributes to F (1, 2, `,−`) while the second to F (2, 1, `,−`). Diagrams (a,b,d) and (c) are

accompanied by a propagator 1/(x+01)2 and 1/x201, respectively; while for diagrams (e,f), and (g,h),

the corresponding propagators are 1/(x+02)2 and 1/x202, respectively.

two particles in a forward scattering configuration. The massless momenta of the two

additional particles are ` and −`, where the on-shell momentum ` is precisely

` = x̂−1 − x0
∣∣
z−1

. (4.47)

In the second diagram the roles of the two propagators are swapped, and

` = x̂1 − x0|z1 . (4.48)

This has the effect of performing a single cut of the four one-loop MHV diagram of figure 8,

which are mapped into the eight cut diagrams shown in figure 10.

For convenience, we have shown the same diagrams again in figure 10 (but slightly

reordered), and it is clear that these diagrams split into two sets: (a)–(d) correspond to

MHV diagrams contributing to the four-point NMHV form factor with particle ordering

(1, 2, `,−`), while (e)–(h) to MHV diagrams contributing to the four-point NMHV form

factor with particle ordering (2, 1, `,−`).
There are two important points to discuss next – the first one is the familiar absence

of some diagrams (in the tree-level recombination into a NMHV form factor), while the

second is new and characteristic of form factors. We discuss them in turn.

1. First, we focus on the first line of figure 10 and make the observation that summing

these four diagrams one would obtain the NMHV form factor with legs (1, 2, `,−`),
minus some “missing” MHV diagrams, i.e. those where particles ` and −` belong

to the same MHV vertex (with an implicit sum over all particles in the theory that

can propagate along the cut leg). This class of diagrams is obviously never produced

when cutting open a one-loop MHV diagram.

Such missing diagrams, which we have already encountered in the BCFW recursion of

section 4.1, have appeared in several instances [39, 40]; to the best of our knowledge,
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their first appearance is in section 3.1 of [54], where it was shown that such diagrams

vanish in this forward-scattering configuration upon performing the (super-)sum over

the internal species, which is equivalent to performing the integration over the Grass-

mann variables corresponding to the internal legs
∫

d4η`. As a consequence, the

four diagrams in the first line of figure 10 reconstruct by themselves the four-point

tree-level NMHV form factor F
(0)
NMHV(1, 2, `,−`).

2. The second important point, which we have also encountered already in section 4.1,

is a specific feature arising for form factors. Indeed, as recalled earlier, the single-cut

diagrams in figure 10 are accompanied by particular denominators of the form 1/L2

(with L being an off-shell loop momentum) as demanded by (4.44). For the eight

diagrams in that figure these are

1

(x+01)
2
,

1

(x+01)
2
,

1

x201
,

1

(x+01)
2
, (4.49)

for the first four diagrams (first line), and

1

(x+02)
2
,

1

(x+02)
2
,

1

x202
,

1

(x+02)
2
, (4.50)

for the remaining four diagrams (second line). In the recursion for amplitudes, due

to the planarity of the diagrams there is no such ambiguity and only one denomina-

tor appears.

Correspondingly, in this form factor recursion the meaning of ` is different in these

diagrams. Indeed we have, for the first four diagrams

` = x̂−10 , ` = x̂−10 , ` = x̂10 , ` = x̂−10 , (4.51)

and

` = x̂−20 , ` = x̂−20 , ` = x̂20 , ` = x̂20 , (4.52)

for the last ones. Crucially, these two issues are fixed by allowing shifts in the integration

variable x0 by q, which we can do in diagram (c), as well as in diagram (g), (h). More

in detail, we can focus on diagrams (a), (b), (d) in figure 10. By performing the change

of integration variable x0 → x0 − q with q = x1 − x−1 , the new denominator becomes

(x0 − q − x−1 )2 = (x0 − x1)2, that is as in diagram (c). Furthermore, the meaning of `

becomes the same as in the diagram (c). Indeed, before the shift we have:

diagrams (a), (b), (d) : ` = (x̂3 − x0)|z−1 , diagram (c) : ` = (x̂1 − x0)|z1 . (4.53)

After the shift in x0 we get, using (4.34),

(x̂−1 − x0)
∣∣
z−1
→ x1 − x0 + ρ−1 ζ z

−
1

∣∣
x0→x0−q . (4.54)
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` −`2̂

1̂

x̂−1

x̂2

x̂−2

x̂0

(d)

` −`

2̂

1̂

x̂1

x̂−1

x̂2

x̂0

(d’)

Figure 11. Two different (but equivalent) ways to depict diagram (d) of the previous figure. In

the first depiction ` = x̂−10 while in the second ` = x̂10, which differs from the previous one by q.

We can now show that the right-hand side of (4.54) is nothing but (x̂1 − x0)|z1 . First, we

note that ρi = ρ−i , from the definition (4.35) and the fact that λi+n = λi. Hence we simply

have to show that

z−1
∣∣
x0→x0−q = z1 , (4.55)

which follows from (4.39) and ρ−1 = ρ1.

In conclusion, after performing appropriate shifts in the diagrams (a), (b), (d) we bring

all diagrams in the first line of figure 10 to have ` = x̂10|z1 , while for the second line of the

same figure we can perform appropriate shift to arrive at ` = x̂20|z2 . In conclusion, the

recursion relation here has the form

F
(1)
2,0 (1, 2) =

∫
ddx0 d4η`

[
F

(0)
4,1 (1̂, 2̂, `,−`)
(x0 − x1)2

+
F

(0)
4,1 (1̂, `,−`, 2̂)

(x0 − x2)2

]
, (4.56)

where the first term is evaluated on the solution to x̂201 = 0 while the second for x̂202 = 0. In

the first term ` = x̂10|z1 , while in the second ` = x̂20|z2 . A few final remarks are in order.

1. First, we would like to comment on the arbitrariness of the assignments of region

momenta. In order to making it manifest, we have drawn diagram (d) of figure 10

in two different ways in figure 11. The form factor insertion is colour blind, hence

there is no reason to prefer one to the other. The assignments of region momenta are

modified correspondingly. Using (d’) instead of (d) would change (4.49) into a more

“symmetric”

1

(x+01)
2
,

1

(x+01)
2
,

1

x201
,

1

x201
. (4.57)

The point to make is that there is no preferred choice – both give the same answer for

the integrand thanks to the possibility of shifting x0 by q. Moreover, we could write

various terms in the recursion (4.56) using variables belonging to different periods; as

an example, the first term on the right-hand side of (4.56) could have been written as

F
(0)
4,1 (1̂, 2̂, `,−`)
(x0 − x−1 )2

, (4.58)

with ` now being given by ` = (x̂−1 − x0)
∣∣
z−1

, where we also recall that x−1 = x1 − q.
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2. We also note that the one-loop recursion relation for the two-point case (4.56) extends

immediately to an arbitrary number of points. For the one-loop MHV form factors

the recursion has the form

F
(1)
n,0(1, . . . , n) =

∫
ddx0 d4η`

[
F

(0)
n+2,1(1̂, 2̂, . . . , n̂, `,−`)

(x0 − x1)2

+ · · ·+
F

(0)
n+2,1(n̂, 1̂, . . . , n̂− 1, `,−`)

(x0 − xn)2

]
. (4.59)

3. In the case of NkMHV form factors with k ≥ 1, also the familiar terms corresponding

to standard factorisation appear: the recursion then reads

F
(1)
n,k(1, . . . , n) =

∫
ddx0 d4η`

n∑
i=1

F
(0)
n+2,k+1(1̂, 2̂, . . . , î− 1, `,−`, î, . . . , n̂)

(x0 − xi)2

+
∑
l,i,kL

∫
d4η`

[
F

(l)
i,kL

(x̂1, . . . , x̂i)
1

(x+i1)
2
A

(1−l)
n−i+2,kR

(x̂1, x̂i, . . . , x̂n)

+A
(l)
i,kL

(x̂1, . . . , x̂i)
1

(xi1)2
F

(1−l)
n−i+2,kR

(x̂1, x̂i, . . . , x̂n)

]
,

(4.60)

where, as in (4.6), l = 0, 1, i = 2, . . . , n− 1 and kL + kR = k − 1 with kL, kR ≥ 0.

4. Bonus relation: in [36], it was noted that thanks to their 1/z2 fall-off at infinity,

N = 8 supergravity amplitudes at tree level satisfy a bonus recursion relation of

the type ∫
dz A(z) = 0 , (4.61)

whereA(z) is the shiftedN = 8 superamplitude with a supersymmetric two-line shift.

Here we make the rather simple observation that because all internal propagators in

a one-loop MHV diagram receive a shift (and therefore fall off as 1/z for large z), we

will therefore have bonus recursion relations. With at least two propagators, a generic

one-loop integrand will behave, under the all-line shift, as 1/z2. Again focusing on

the one-loop Sudakov form factor, in this case the bonus relation reads

0 =

∫
ddx0

[
F

(0)
4,1 (1̂, 2̂, `,−`)

D1
+
F

(0)
4,1 (1̂, `,−`, 2̂)

D2

]
, (4.62)

where Di ≡ (x0 − xi)2/zi = 〈ρi|(x0 − xi)|ζ], where we used (4.39). Note that this

is no longer a recursion relation for one-loop integrands, rather a constraint on the

NMHV form factors at tree level.
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A Conventions and notation

The fundamental building blocks used in this paper are the three-point superamplitudes

and the two-point, or Sudakov form factor:

A
(0)
3,0 =

1

2

3

= i
δ(8)(λ1η1 + λ2η2 + λ3η3)

〈1 2〉〈2 3〉〈3 1〉
,

A
(0)
3,−1 =

1

2

3

= −i
δ(4)([2 3]η1 + [3 1]η2 + [1 2]η3)

[1 2][2 3][3 1]
,

F
(0)
2,0 =

1

2

=
δ(8)(q)

〈1 2〉〈2 1〉
. (A.1)

The off-shell leg of the form factor, which is indicated by a double line, carries incoming

momentum q and supermomentum γ, with

q =
n∑
i=1

pi , q =
n∑
i=1

qi − γ . (A.2)

Note that FMHV
2 is the minimal supersymmetric form factor of the chiral half of the pro-

tected stress-tensor multiplet (for details see [2]) and γ labels different components of

this multiplet.

Because there is a notion of ordering for on-shell legs, the kinematics of a n-point

form factor can be realised in terms of dual coordinates by specifying a set of xαα̇i and θAαi
such that

xαα̇i − xαα̇i+1 = pαα̇i = λαi λ̃
α̇
i , (A.3)

θAαi − θAαi+1 = qAαi = ηAi λ
α
i . (A.4)

– 24 –



J
H
E
P
0
2
(
2
0
1
9
)
1
8
2

More generally one has, for i < j,

pi + pi+1 + · · ·+ pj = xi − xj+1 ≡ xi j+1 , (A.5)

and similarly for the θi variables. If q 6= 0 the dual coordinates will not describe a closed

polygon. Cyclicity can be fully realised by introducing periodic images for the points

xi with

x
[m]
i = xi +mq , θ

[m]
i = θi +mγ , (A.6)

with m ∈ Z. This generates a periodic segmented line in the space of dual coordinates.

For the particular case m = ±1 we use the notation

x±i = xi ± q , θ±i = θi ± γ . (A.7)

The same kinematic configuration can be encoded in terms of momentum-twistor vari-

ables [13] since edges of the periodic line are light rays in dual space. The incidence relation

µα̇i = xαα̇i λi α = xαα̇i+1λi α (A.8)

fixes the components of the twistor Zi = (λi, µi), and the ambiguity in the choice of the

spinor-helicity variables (λi, λ̃i) now translates to the fact that Zi are interpreted as projec-

tive coordinates in twistor space T ' CP3. Periodicity is implemented [2] by the condition

λi+na = λi α , µα̇i+n = µα̇i − qαα̇λi α . (A.9)

This can be seen as the finite translation generated by

Pαα̇ = λα
∂

∂µα̇
. (A.10)

B Details on the tree-level NMHV form factor

In this appendix we outline the computation of NMHV tree-level form factors using on-

shell diagrams. We use a BCFW shift of the [1 2〉 kind. For an n-point form factors the

recursion gives

F
(0)
n,1 =

n∑
i=4

0

0

2 3 i− 1

i

n1

+
n∑
i=5

0

0

2 3

i− 1

i

n1

+

0

2 3

n

1

+

0

2

3

n1

+

1

2 3

4

n1

(B.1)
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Here the recursion is represented in terms of so-called BCFW bridges. The last diagram

can be written in terms of R-invariants by recursively inserting the NMHV (n − 1)-point

form factor in the lower-right corner.

To understand how many R-invariants contribute to that diagram, one can use the

following argument. An n-point NMHV form factor is expressed in terms of 2n−5 diagrams

containing products of MHV amplitudes and form factors and one diagram containing the

combination of a NMHV (n − 1)-point form factor and a MHV three-point amplitude. If

one denotes with an the number of R-invariants associated to the n-point NMHV form

factor, one can replace the NMHV (n − 1)-point form factor with its an−1 R-invariants.

This gives a recursive relation,

an = an−1 + 2n− 5 , (B.2)

which is solved by

an = (n− 2)2 . (B.3)

Consequently, the diagram involving a NMHV form factor times a MHV three-point am-

plitude should decompose into (n−3)2 box coefficients. The precise combination for a [1 2〉
shift is

F
(0)
n,1 = F

(0)
n,0

 n∑
j=3

j∑
i=3

R′1ij +
n+1∑
j=5

j−2∑
i=3

R′′1ij

 , (B.4)

where we make the identification n+1∼1. The number of R-invariants in this expression is

(n− 2)(n− 1)

2︸ ︷︷ ︸
R′

+
(n− 2)(n− 3)

2︸ ︷︷ ︸
R′′

= (n− 2)2 . (B.5)

Finally we want to illustrate how the NMHV×MHV diagram can be written in terms

of the R-invariants introduced in this paper. An elegant way to achieve this are on-shell

diagrams. We show how this works for the four-point and five-point form factor. Together

with the usual rules for on-shell diagrammatics that are used for amplitudes, namely

= , = , = , (B.6)

we use the fundamental vertices associated with the off-shell leg insertion,

0

1

2

3

=

1

2

3

, 1

1

2

3

=

1

2

3

. (B.7)
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If we take, for example, F
(0)
4,1 , with the above one can easily show that

1

2 3

4

1

=

3

2 1

4

=

0

3

2

41

, (B.8)

which allows us to identify the last term in the recursion as an R-invariant and explicitly

check (3.13). Similarly, for the n = 5 case the last term in (B.1) can be recast as

0

0

3

2

4

51

+

0 0

3

2

4

51

+

0

43

2

51

+

0 0

3

2

4

5

1

.

(B.9)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super

Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].

[2] A. Brandhuber et al., Harmony of super form factors, JHEP 10 (2011) 046

[arXiv:1107.5067] [INSPIRE].

[3] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory

amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]

[INSPIRE].

[4] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes

into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

[5] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons,

Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

[6] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in

Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

[7] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory,

JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].

[8] A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in N = 4

super Yang-Mills from MHV vertices, Nucl. Phys. B 706 (2005) 150 [hep-th/0407214]

[INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP01(2011)134
https://arxiv.org/abs/1011.1899
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1899
https://doi.org/10.1007/JHEP10(2011)046
https://arxiv.org/abs/1107.5067
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5067
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9403226
https://doi.org/10.1016/0550-3213(94)00488-Z
https://arxiv.org/abs/hep-ph/9409265
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9409265
https://doi.org/10.1016/j.nuclphysb.2005.02.030
https://arxiv.org/abs/hep-th/0412308
https://inspirehep.net/search?p=find+EPRINT+hep-th/0412308
https://doi.org/10.1103/PhysRevLett.94.181602
https://arxiv.org/abs/hep-th/0501052
https://inspirehep.net/search?p=find+EPRINT+hep-th/0501052
https://doi.org/10.1088/1126-6708/2004/09/006
https://arxiv.org/abs/hep-th/0403047
https://inspirehep.net/search?p=find+EPRINT+hep-th/0403047
https://doi.org/10.1016/j.nuclphysb.2004.11.023
https://arxiv.org/abs/hep-th/0407214
https://inspirehep.net/search?p=find+EPRINT+hep-th/0407214


J
H
E
P
0
2
(
2
0
1
9
)
1
8
2

[9] L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06

(2007) 064 [arXiv:0705.0303] [INSPIRE].

[10] J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon

planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243]

[INSPIRE].

[11] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills

and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

[12] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon

amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

[13] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013)

135 [arXiv:0905.1473] [INSPIRE].

[14] A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM,

JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].

[15] Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP

08 (2004) 012 [hep-ph/0404293] [INSPIRE].

[16] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4

super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

[17] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for

amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703]

[INSPIRE].

[18] A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders,

JHEP 08 (2014) 100 [arXiv:1406.1443] [INSPIRE].

[19] F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-shell methods for the

two-loop dilatation operator and finite remainders, JHEP 10 (2015) 012 [arXiv:1504.06323]

[INSPIRE].

[20] A. Brandhuber et al., The SU(2|3) dynamic two-loop form factors, JHEP 08 (2016) 134

[arXiv:1606.08682] [INSPIRE].

[21] F. Loebbert, C. Sieg, M. Wilhelm and G. Yang, Two-Loop SL(2) Form Factors and Maximal

Transcendentality, JHEP 12 (2016) 090 [arXiv:1610.06567] [INSPIRE].

[22] A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Higgs amplitudes from N = 4

super Yang-Mills theory, Phys. Rev. Lett. 119 (2017) 161601 [arXiv:1707.09897] [INSPIRE].

[23] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP

03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

[24] R. Frassek, D. Meidinger, D. Nandan and M. Wilhelm, On-shell diagrams, Graßmannians

and integrability for form factors, JHEP 01 (2016) 182 [arXiv:1506.08192] [INSPIRE].

[25] L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, Composite operators in the twistor

formulation of N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 011601

[arXiv:1603.04471] [INSPIRE].

[26] L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, All tree-level MHV form factors in

N = 4 SYM from twistor space, JHEP 06 (2016) 162 [arXiv:1604.00012] [INSPIRE].

[27] L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, On form factors and correlation

functions in twistor space, JHEP 03 (2017) 131 [arXiv:1611.08599] [INSPIRE].

– 28 –

https://doi.org/10.1088/1126-6708/2007/06/064
https://doi.org/10.1088/1126-6708/2007/06/064
https://arxiv.org/abs/0705.0303
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0303
https://doi.org/10.1016/j.nuclphysb.2007.11.041
https://arxiv.org/abs/0707.0243
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0243
https://doi.org/10.1016/j.nuclphysb.2007.11.002
https://arxiv.org/abs/0707.1153
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1153
https://doi.org/10.1016/j.nuclphysb.2007.11.007
https://arxiv.org/abs/0709.2368
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2368
https://doi.org/10.1007/JHEP05(2013)135
https://doi.org/10.1007/JHEP05(2013)135
https://arxiv.org/abs/0905.1473
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1473
https://doi.org/10.1007/JHEP05(2012)082
https://arxiv.org/abs/1201.4170
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4170
https://doi.org/10.1088/1126-6708/2004/08/012
https://doi.org/10.1088/1126-6708/2004/08/012
https://arxiv.org/abs/hep-ph/0404293
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0404293
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://arxiv.org/abs/hep-th/0412103
https://inspirehep.net/search?p=find+EPRINT+hep-th/0412103
https://doi.org/10.1103/PhysRevLett.105.151605
https://arxiv.org/abs/1006.5703
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5703
https://doi.org/10.1007/JHEP08(2014)100
https://arxiv.org/abs/1406.1443
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1443
https://doi.org/10.1007/JHEP10(2015)012
https://arxiv.org/abs/1504.06323
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.06323
https://doi.org/10.1007/JHEP08(2016)134
https://arxiv.org/abs/1606.08682
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08682
https://doi.org/10.1007/JHEP12(2016)090
https://arxiv.org/abs/1610.06567
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.06567
https://doi.org/10.1103/PhysRevLett.119.161601
https://arxiv.org/abs/1707.09897
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.09897
https://doi.org/10.1007/JHEP03(2010)020
https://doi.org/10.1007/JHEP03(2010)020
https://arxiv.org/abs/0907.5418
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.5418
https://doi.org/10.1007/JHEP01(2016)182
https://arxiv.org/abs/1506.08192
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08192
https://doi.org/10.1103/PhysRevLett.117.011601
https://arxiv.org/abs/1603.04471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04471
https://doi.org/10.1007/JHEP06(2016)162
https://arxiv.org/abs/1604.00012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.00012
https://doi.org/10.1007/JHEP03(2017)131
https://arxiv.org/abs/1611.08599
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.08599


J
H
E
P
0
2
(
2
0
1
9
)
1
8
2

[28] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions,

Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

[29] R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory,

Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].

[30] M. Spradlin and A. Volovich, From twistor string theory to recursion relations, Phys. Rev. D

80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].

[31] S. He and Y. Zhang, Connected formulas for amplitudes in standard model, JHEP 03 (2017)

093 [arXiv:1607.02843] [INSPIRE].

[32] A. Brandhuber et al., The connected prescription for form factors in twistor space, JHEP 11

(2016) 143 [arXiv:1608.03277] [INSPIRE].

[33] L.V. Bork, On form factors in N = 4 SYM theory and polytopes, JHEP 12 (2014) 111

[arXiv:1407.5568] [INSPIRE].

[34] L.V. Bork and A.I. Onishchenko, Grassmannians and form factors with q2 = 0 in N = 4

SYM theory, JHEP 12 (2016) 076 [arXiv:1607.00503] [INSPIRE].

[35] D. Chicherin and E. Sokatchev, Composite operators and form factors in N = 4 SYM, J.

Phys. A 50 (2017) 275402 [arXiv:1605.01386] [INSPIRE].

[36] N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?,

JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

[37] A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the

N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097]

[INSPIRE].

[38] J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009)

018 [arXiv:0808.2475] [INSPIRE].

[39] N. Arkani-Hamed et al., The all-loop integrand for scattering amplitudes in planar N = 4

SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

[40] S. Caron-Huot, Loops and trees, JHEP 05 (2011) 080 [arXiv:1007.3224] [INSPIRE].

[41] A.E. Bolshov, L.V. Bork and A.I. Onishchenko, The all-loop conjecture for integrands of

reggeon amplitudes in N = 4 SYM, JHEP 06 (2018) 129 [arXiv:1802.03986] [INSPIRE].

[42] J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal

four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

[43] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities

for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010)

337 [arXiv:0712.1223] [INSPIRE].

[44] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal

symmetry of scattering amplitudes in N = 4 Super-Yang-Mills theory, Nucl. Phys. B 828

(2010) 317 [arXiv:0807.1095] [INSPIRE].

[45] L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT,

JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

[46] J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11

(2010) 104 [arXiv:1009.1139] [INSPIRE].

– 29 –

https://doi.org/10.1103/PhysRevLett.113.171601
https://arxiv.org/abs/1307.2199
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2199
https://doi.org/10.1103/PhysRevD.70.026009
https://arxiv.org/abs/hep-th/0403190
https://inspirehep.net/search?p=find+EPRINT+hep-th/0403190
https://doi.org/10.1103/PhysRevD.80.085022
https://doi.org/10.1103/PhysRevD.80.085022
https://arxiv.org/abs/0909.0229
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0229
https://doi.org/10.1007/JHEP03(2017)093
https://doi.org/10.1007/JHEP03(2017)093
https://arxiv.org/abs/1607.02843
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.02843
https://doi.org/10.1007/JHEP11(2016)143
https://doi.org/10.1007/JHEP11(2016)143
https://arxiv.org/abs/1608.03277
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.03277
https://doi.org/10.1007/JHEP12(2014)111
https://arxiv.org/abs/1407.5568
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5568
https://doi.org/10.1007/JHEP12(2016)076
https://arxiv.org/abs/1607.00503
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00503
https://doi.org/10.1088/1751-8121/aa72fe
https://doi.org/10.1088/1751-8121/aa72fe
https://arxiv.org/abs/1605.01386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01386
https://doi.org/10.1007/JHEP09(2010)016
https://arxiv.org/abs/0808.1446
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.1446
https://doi.org/10.1103/PhysRevD.78.125005
https://arxiv.org/abs/0807.4097
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4097
https://doi.org/10.1088/1126-6708/2009/04/018
https://doi.org/10.1088/1126-6708/2009/04/018
https://arxiv.org/abs/0808.2475
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2475
https://doi.org/10.1007/JHEP01(2011)041
https://arxiv.org/abs/1008.2958
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
https://doi.org/10.1007/JHEP05(2011)080
https://arxiv.org/abs/1007.3224
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3224
https://doi.org/10.1007/JHEP06(2018)129
https://arxiv.org/abs/1802.03986
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.03986
https://doi.org/10.1088/1126-6708/2007/01/064
https://arxiv.org/abs/hep-th/0607160
https://inspirehep.net/search?p=find+EPRINT+hep-th/0607160
https://doi.org/10.1016/j.nuclphysb.2009.10.013
https://doi.org/10.1016/j.nuclphysb.2009.10.013
https://arxiv.org/abs/0712.1223
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1223
https://doi.org/10.1016/j.nuclphysb.2009.11.022
https://doi.org/10.1016/j.nuclphysb.2009.11.022
https://arxiv.org/abs/0807.1095
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.1095
https://doi.org/10.1088/1126-6708/2007/11/068
https://arxiv.org/abs/0710.1060
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.1060
https://doi.org/10.1007/JHEP11(2010)104
https://doi.org/10.1007/JHEP11(2010)104
https://arxiv.org/abs/1009.1139
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1139


J
H
E
P
0
2
(
2
0
1
9
)
1
8
2

[47] L. Bianchi, A. Brandhuber, R. Panerai and G. Travaglini, Dual conformal invariance for

form factors, arXiv:1812.10468 [INSPIRE].

[48] R. Ben-Israel, A.G. Tumanov and A. Sever, Scattering amplitudes — Wilson loops duality

for the first non-planar correction, JHEP 08 (2018) 122 [arXiv:1802.09395] [INSPIRE].

[49] Z. Bern, M. Enciso, C.-H. Shen and M. Zeng, Dual conformal structure beyond the planar

limit, Phys. Rev. Lett. 121 (2018) 121603 [arXiv:1806.06509] [INSPIRE].

[50] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for

N = 4 super-amplitudes, Nucl. Phys. B 869 (2013) 452 [arXiv:0808.0491] [INSPIRE].

[51] L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and

grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

[52] N. Arkani-Hamed et al., Grassmannian Geometry of Scattering Amplitudes, Cambridge

University Press, Cambridge U.K. (2016) [arXiv:1212.5605] [INSPIRE].

[53] L.V. Bork, On NMHV form factors in N = 4 SYM theory from generalized unitarity, JHEP

01 (2013) 049 [arXiv:1203.2596] [INSPIRE].

[54] A. Brandhuber, B. Spence and G. Travaglini, From trees to loops and back, JHEP 01 (2006)

142 [hep-th/0510253] [INSPIRE].

[55] M. Bullimore, MHV diagrams from an all-line recursion relation, JHEP 08 (2011) 107

[arXiv:1010.5921] [INSPIRE].

[56] K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206]

[INSPIRE].

[57] J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A twistor approach to one-loop

amplitudes in N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 706 (2005) 100

[hep-th/0410280] [INSPIRE].

[58] J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop

amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59 [hep-th/0412108].

– 30 –

https://arxiv.org/abs/1812.10468
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.10468
https://doi.org/10.1007/JHEP08(2018)122
https://arxiv.org/abs/1802.09395
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.09395
https://doi.org/10.1103/PhysRevLett.121.121603
https://arxiv.org/abs/1806.06509
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.06509
https://doi.org/10.1016/j.nuclphysb.2012.12.009
https://arxiv.org/abs/0808.0491
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0491
https://doi.org/10.1088/1126-6708/2009/11/045
https://arxiv.org/abs/0909.0250
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0250
https://doi.org/10.1017/CBO9781316091548
https://doi.org/10.1017/CBO9781316091548
https://arxiv.org/abs/1212.5605
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5605
https://doi.org/10.1007/JHEP01(2013)049
https://doi.org/10.1007/JHEP01(2013)049
https://arxiv.org/abs/1203.2596
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2596
https://doi.org/10.1088/1126-6708/2006/01/142
https://doi.org/10.1088/1126-6708/2006/01/142
https://arxiv.org/abs/hep-th/0510253
https://inspirehep.net/search?p=find+EPRINT+hep-th/0510253
https://doi.org/10.1007/JHEP08(2011)107
https://arxiv.org/abs/1010.5921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5921
https://doi.org/10.1088/1126-6708/2005/12/003
https://arxiv.org/abs/hep-th/0508206
https://inspirehep.net/search?p=find+EPRINT+hep-th/0508206
https://doi.org/10.1016/j.nuclphysb.2004.11.031
https://arxiv.org/abs/hep-th/0410280
https://inspirehep.net/search?p=find+EPRINT+hep-th/0410280
https://doi.org/10.1016/j.nuclphysb.2005.01.032
https://arxiv.org/abs/hep-th/0412108

	Introduction
	Assignment of region momenta for form factors
	Overview of NMHV form factors
	Recursion relations for form factor integrands
	BCFW loop recursion relation
	The one-loop two-point form factor
	The one-loop three-point MHV form factor

	All-line loop recursion relation

	Conventions and notation
	Details on the tree-level NMHV form factor

