SUPPLEMENTARY MATERIAL

ZVI-Fenton based process affects the total load of human pathogenic bacteria in wastewater

Raffaella Sabatino^a, Francesco Furia^{b,c}, Ester M. Eckert^a, Marco Minella^c, Gianluca Corno^a, Andrea Di Cesare^a*, Davide Vione^c*

^a Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research
Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
^b Arpa Sicilia, Viale Cristoforo Colombo snc, 90149, Palermo, Italy

^c Department of Chemistry, Università di Torino, Via Pietro Giuria, 5, 10125 Torino, Italy

* Corresponding authors:

CNR – Water Research Institute, Largo Tonolli 50, 28922, Verbania, Italy. E-mail address, *andrea.dicesare@cnr.it* (Andrea Di Cesare).

Department of Chemistry, Università di Torino, Via Pietro Giuria, 5, 10125, Torino, Italy. Email address, *davide.vione@unito.it* (Davide Vione).

S1. Wastewater characterization

The wastewater samples were characterized for conductivity (HI2030 Multi-parameter probe, Hanna Instruments), pH (Checker HI98103, Hanna Instruments), total carbon (TC), inorganic carbon (IC), total organic carbon (computed as TOC = TC – IC), total nitrogen (TN, Shimadzu ON-LINE TOC-VCSH instrument, equipped with an ASI-V autosampler and fed with zero-grade air), and the anions Cl⁻, NO₃⁻ and SO₄²⁻ (Dionex DX 500 ion chromatograph, Dionex Ion Pac AS9-HC column, elution with 9 mM K₂CO₃ at 1 mL min⁻¹). The results are reported in Supplementary Table S1 below.

Supplementary Table S1. Physico-chemical features of the studied wastewater samples. TC = total carbon, TOC = total organic carbon, IC = inorganic carbon (TOC = TC - IC), TN = total nitrogen.

Parameter	WW
Conductivity, μ S cm ⁻¹	267
рН	7.5
$TC, mg_C L^{-1}$	10.5
TOC, $mg_C L^{-1}$	7.8
$IC, mg_C L^{-1}$	2.7
$TN, mg_N L^{-1}$	5.8
Chloride (Cl ^{$-$}), mg L ^{-1}	35.6
Nitrate (NO ₃ ⁻), mg L ⁻¹	34.7
Sulfate (SO ₄ ^{2–}), mg L ^{-1}	19.6

Supplementary Table S2. Operational conditions used in the ZVI-Fenton treatment of wastewater. In the case of the experiments with H_2O_2 alone, conditions were the same except that ZVI was not added.

		$ZVI + H_2O_2$	
Time, min			H ₃ PO ₄ , pH 6
	H ₂ SO ₄ , pH 5	H ₃ PO ₄ , pH 5	checked and corrected
			during the reaction
0	$H_2O_2 3 \times 10^{-4} M$	$H_2O_2 3 \times 10^{-4} M$	$H_2O_2 3 \times 10^{-4} M$
	ZVI 0.02 g L^{-1}	$ZVI0.02~g~L^{-1}$	$\rm ZVI0.02~g~L^{-1}$
30	$H_2O_2 5 \times 10^{-5} M$	$H_2O_2 5 \times 10^{-5} M$	$H_2O_2 5 \times 10^{-5} M$
	Correct pH to 5	Correct pH to 5	
60	$H_2O_2 \ 5 \times 10^{-5} \ M$	$H_2O_2 5 \times 10^{-5} M$	$H_2O_2 5 \times 10^{-5} M$
	Correct pH to 5	Correct pH to 5	
90	End	End	End

Supplementary Table S3. Primer pairs and annealing temperatures used to detect and quantify the 16S rRNA gene, ARGs, and *intI*1 gene by qPCR.

Target gene	Primer pairs	Primer sequence (5'- 3')	Annealing temperature (°C)	Amplicon size (bp)	Reference
16S rRNA	Bact1369F Prok1492R	CGGTGAATACGTTCYCGG GGHTACCTTGTTACGACTT	55	142	Di Cesare et al., 2015
qnrS	qnrSF qnrSR	GACGTGCTAACTTGCGTGAT TGGCATTGTTGGAAACTTG	62	118	Marti and Balcázar, 2013
sul2	sulIIF sulIIR	TCCGGTGGAGGCCGGTATCTGG CGGGAATGCCATCTGCCTTGAG	60	191	Pei et al., 2006
tetA	tet(A)F tet(A)R	GCTACATCCTGCTTGCCTTC CATAGATCGCCGTGAAGAGG	64	210	Ng et al., 2001
intI1	intI1LC5 intI1LC1	GATCGGTCGAATGCGTGT GCCTTGATGTTACCCGAGAG	60	196	Barraud et al., 2010

Supplementary Table S4. Statistical results for the analysis of variance (ANOVA) assessing the influence of the treatment on the cell abundance of samples from "experiment 1". Abbreviations: "PA"= phosphoric acid, "SA"= sulfuric acid, "HP"= hydrogen peroxide, and "FE"= ZVI-Fenton Process.

ANOVA	Df	Sum Sq	Mean Sq	F-value	p-value
	13	0.7404	0.05695	14.25	4.77e-09
Pairwise comparison*		Df	Lwr	Upr	p-value
PApH6T0-FEPApH5T90S		0.265467	0.076504	0.45443	0.00126320
WWT0-FEPApH5T90S		0.239084	0.050121	0.428047	0.00472660
PApH6T0-FEPApH6T90S		0.250923	0.06196	0.439885	0.00262410
WWT0-FEPApH6T90S		0.22454	0.035577	0.413502	0.00962350
HPPApH5T90S-FESApH5T90S		0.261353	0.07239	0.450316	0.00155450
HPPApH6T90S-FESApH5T90S		0.286875	0.097912	0.475838	0.00042690
PApH5T90S-FESApH5T90S		0.192186	0.003223	0.381149	0.04338000
PApH6T0-FESApH5T90S		0.41964	0.230677	0.608602	0.00000060
PApH6T90S-FESApH5T90S		0.28989	0.100927	0.478852	0.00036630
WWT0-FESApH5T90S		0.393257	0.204294	0.582219	0.00000210
WWT90-FESApH5T90S		0.32459	0.135627	0.513552	0.00006310
PApH5T0-HPPApH5T90S		-0.23694	-0.4259	-0.04798	0.00525390
SApH5T0-HPPApH5T90S		-0.27129	-0.46025	-0.08232	0.00094130
PApH5T0-HPPApH6T90S		-0.26246	-0.45142	-0.0735	0.00147000
SApH5T0-HPPApH6T90S		-0.29681	-0.48577	-0.10784	0.00025780
PApH6T0-HPSApH5T90S		0.284198	0.095235	0.473161	0.00048910
WWT0-HPSApH5T90S		0.257815	0.068852	0.446778	0.00185740
WWT90-HPSApH5T90S		0.189148	0.000186	0.378111	0.04959510
РАрН6Т0-РАрН5Т0		0.395226	0.206264	0.584189	0.00000190
PApH6T90S-PApH5T0		0.265476	0.076514	0.454439	0.00126260
WWT0-PApH5T0		0.368843	0.179881	0.557806	0.00000700
WWT90-PApH5T0		0.300177	0.111214	0.489139	0.00021730
PApH6T0-PApH5T90S		0.227454	0.038491	0.416417	0.00835650
SApH5T0-PApH5T90S		-0.20212	-0.39108	-0.01316	0.02771370
WWT0-PApH5T90S		0.201071	0.012108	0.390034	0.02907460
SApH5T0-PApH6T0		-0.42957	-0.61853	-0.24061	0.00000040
SApH5T90S-PApH6T0		-0.28377	-0.47273	-0.0948	0.00049990
SApH5T0-PApH6T90S		-0.29982	-0.48878	-0.11086	0.00022120
WWT0-SApH5T0		0.403189	0.214226	0.592152	0.00000130
WWT90-SApH5T0		0.334522	0.145559	0.523485	0.00003830
WWT0-SApH5T90S		0.257385	0.068422	0.446347	0.00189800

*Only significant differences are reported

Supplementary Table S5. Statistical results for the analysis of variance (ANOVA) assessing the influence of the treatment on the cell vitality of samples from "experiment 1". Abbreviations: "PA"= phosphoric acid, "SA"= sulfuric acid, "HP"= hydrogen peroxide, and "FE"= ZVI-Fenton Process.

ANOVA	Df	Sum Sq	Mean Sq	F-value	p-value
	13	0.19124	0.014711	16.1	1.15e-09
Pairwise comparison*		Df	Lwr	Upr	p-value
FEPApH6T90S-FEPApH5T90	S	-0.14006	-0.23039	-0.04972	0.00031320
FESApH5T90S-FEPApH5T90	S	-0.12327	-0.2136	-0.03293	0.00185400
HPPApH6T90S-FEPApH5T90)S	-0.15496	-0.2453	-0.06463	0.00006450
HPSApH5T90S-FEPApH5T90)S	-0.0977	-0.18803	-0.00737	0.02498560
PApH5T0-FEPApH5T90S		-0.14447	-0.23481	-0.05414	0.00019590
PApH5T90S-FEPApH5T90S		-0.09552	-0.18585	-0.00519	0.03079550
PApH6T0-FEPApH5T90S		-0.21188	-0.30222	-0.12155	0.00000020
PApH6T90S-FEPApH5T90S		-0.15111	-0.24145	-0.06078	0.00009690
SApH5T0-FEPApH5T90S		-0.13491	-0.22525	-0.04458	0.00054070
SApH5T90S-FEPApH5T90S		-0.09943	-0.18976	-0.0091	0.02112550
WWT0-FEPApH5T90S		-0.28935	-0.37968	-0.19902	0.00000000
WWT90-FEPApH5T90S		-0.20808	-0.29842	-0.11775	0.00000030
WWT0-FEPApH6T90S		-0.14929	-0.23963	-0.05896	0.00011750
WWT0-FESApH5T90S		-0.16608	-0.25642	-0.07575	0.00002010
WWT90-FESApH5T90S		-0.08482	-0.17515	0.005516	0.08184300
HPPApH6T90S-HPPApH5T90	OS	-0.09315	-0.18348	-0.00281	0.03852520
PApH6T0-HPPApH5T90S		-0.15007	-0.2404	-0.05973	0.00010820
WWT0-HPPApH5T90S		-0.22753	-0.31787	-0.1372	0.00000000
WWT90-HPPApH5T90S		-0.14627	-0.2366	-0.05593	0.00016200
WWT0-HPPApH6T90S		-0.13439	-0.22472	-0.04405	0.00057200
PApH6T0-HPSApH5T90S		-0.11419	-0.20452	-0.02385	0.00477950
WWT0-HPSApH5T90S		-0.19165	-0.28198	-0.10132	0.00000150
WWT90-HPSApH5T90S		-0.11038	-0.20072	-0.02005	0.00706330
WWT0-PApH5T0		-0.14487	-0.23521	-0.05454	0.00018770
PApH6T0-PApH5T90S		-0.11637	-0.2067	-0.02603	0.00381340
WWT0-PApH5T90S		-0.19383	-0.28416	-0.1035	0.00000120
WWT90-PApH5T90S		-0.11256	-0.2029	-0.02223	0.00564860
SApH5T90S-PApH6T0		0.112455	0.022123	0.202788	0.00571210
WWT0-PApH6T90S		-0.13824	-0.22857	-0.0479	0.00038000
WWT0-SApH5T0		-0.15443	-0.24477	-0.0641	0.00006820
WWT0-SApH5T90S		-0.18992	-0.28025	-0.09959	0.00000170
WWT90-SApH5T90S		-0.10865	-0.19899	-0.01832	0.00842440

*Only significant differences are reported

Supplementary Table S6. Statistical results for the analysis of variance (ANOVA) assessing the influence of the treatment on the cell abundance of samples from "experiment 2". Abbreviations: "PA"= phosphoric acid, "HP"= hydrogen peroxide, and "FE"= ZVI-Fenton Process.

ANOVA	Df	Sum Sq	Mean Sq	F-value	p-value
	4	0.8518	0.21296	36.23	6.36e-06
Pairwise comparison*		Df	Lwr	Upr	p-value
PAT0-FET90S		-0.50999	-0.71601	-0.30398	0.00007630
PAT0-HPT90S		-0.51742	-0.72343	-0.31141	0.00006730
PAT90S-PAT0		0.51242	0.306406	0.718433	0.00007320
WWT0-PAT0		0.713457	0.507443	0.91947	0.00000370

*Only significant differences are reported

Supplementary Table S7. Statistical results for the analysis of variance (ANOVA) assessing the influence of the treatment on the cell vitality of samples from "experiment 2". Abbreviations: "PA"= phosphoric acid, "HP"= hydrogen peroxide, and "FE"= ZVI-Fenton Process.

ANOVA	Df	Sum Sq	Mean Sq	F-value	p-value
	4	0.10125	0.025312	235.7	7.57e-10
Pairwise comparison	1 *	Df	Lwr	Upr	p-value
PAT90S-FET90S		-0.07205	-0.0999	-0.0442	0.00005180
WWT0-FET90S		-0.20731	-0.23516	-0.17946	0.00000000
PAT90S-HPT90S		-0.06417	-0.09201	-0.03632	0.00014160
WWT0-HPT90S		-0.19943	-0.22727	-0.17158	0.00000000
PAT90S-PAT0		-0.08789	-0.11573	-0.06004	0.00000870
WWT0-PAT0		-0.22315	-0.25099	-0.1953	0.00000000
WWT0-PAT90S		-0.13526	-0.16311	-0.10741	0.00000020

*Only significant differences are reported

Supplementary Table S8. Statistical results for generalized linear model (GLM) assessing the influence of treatment on richness of whole bacterial community and potential pathogens.

	Df	Chisq	p-value
BACTERIAL COMMUNITY	2	85.694	< 2.2e-16
Pairwise comparison			
PA - FE			< 0.0001
PA - HP			0.0512
FE - HP			< 0.0001
POTENTIAL PATHOGENS	2	1.7685	0.413

Supplementary Figure S1. Dendrogram of average linkage clustering based on Bray–Curtis distances between the different samples. **a**) total bacterial community, **b**) potentially pathogenic genera. Abbreviations: "PA"= phosphoric, "HP"= hydrogen peroxide, and "FE"= ZVI-Fenton Process.

Supplementary Table S9. Results of the analysis of variance (PERMANOVA) of the beta diversity of bacterial community and potential pathogens as function of treatment.

	Df	Sum Sq	Mean Sq	F-value	\mathbf{R}^2	p-value
Bacterial community						
	2	0.064994	0.032497	2.8189	0.48444	0.007
Potential Pathogens						
_	2	0.086173	0.043086	1.3342	0.30783	0.023

Supplementary Table S10. Statistical results for generalized linear model (GLM) assessing the influence of treatment on the number of total reads associated to potential pathogens.

	Df	Chisq	p-value
GLM	2	9.3775	0.009198
Pairwise comparison			
PA - FE			0.0252
PA - HP			0.9937
FE - HP			0.0186

	Df	Chisq	p-value
Acinetobacter	2	13.899	0.0009593
FE-HP			0.0039
FE-PA			1
HP-PA			0.0039
Bacteroides	2	37.653	6.664e-09
FE-HP			0.0001
FE-PA			< 0.0001
HP-PA			0.1187
Clostridium_sensu_stricto_1	2	101.77	< 2.2e-16
FE-HP			< 0.0001
FE-PA			< 0.0001
HP-PA			0.0318
Klebsiella	2	14.338	0.00077
FE-HP			0.1972
FE-PA			0.0007
HP-PA			0.1012
Legionella	2	9.7538	0.007621
FE-HP			0.0177
FE-PA			0.992
HP-PA			0.0249
Mycobacterium	2	10.349	0.00566
FE-HP			0.8087
FE-PA			0.0408
HP-PA			0.0075
Prevotella_1	2	21.901	1.755e-05
FE-HP			0.9511
FE-PA			0.0005
HP-PA			0.0001
Prevotella_9	2	14.951	0.0005667
FE-HP			0.2445
FE-PA			0.0004
HP-PA			0.0647
Sphingomonas	2	77.285	< 2.2e-16
FE-HP			< 0.0001
FE-PA			0.8046
HP-PA			< 0.0001

Supplementary Table S11. Statistical results for generalized linear model (GLM) assessing the influence of treatment on the number of reads associated to potentially pathogenic genus.

Supplementary Figure S2. Normalized abundances of the antibiotic resistance genes (*sul*2, *qnr*S, *tet*A) and *intI*1 gene. Abbreviations: "PA"= phosphoric acid, "HP"= hydrogen peroxide, and "FE"= ZVI Fenton based Process.

Supplementary Table S12. Statistical results for the analysis of variance (ANOVA) assessing the influence of the treatment on antibiotic resistance and *intI*1 genes abundance.

	Df	Sum Sq	Mean Sq	F-value	p-value
sul2	2	2.4380e-09	1.2189e-09	0.1453	0.8677
tetA	2	8.1970e-10	4.0985e-10	1.998	0.2163
qnrS	2	2.8954e-08	1.4477e-08	3.1034	0.1188
intI1	2	8.4080e-10	4.2040e-10	4.1251	0.07464

Supplementary Table S13. Assessment of treatment costs for chemical reagents. That mentioned in the table is the initial pH value: the final one was in the range of 5.7-6. Note that conventional wastewater treatment would cost around 0.4 m⁻³, to which these are added costs.

	Cost, \$ m ⁻³
	рН 5, Н ₃ РО4
ZVI	0.016
H_2O_2	0.012
H ₃ PO ₄	0.121
Total cost	0.149

References

Barraud, O., Baclet, M.C., Denis, F., Ploy, M.C., 2010. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. J Antimicrob Chemother 65, 1642–1645. https://doi.org/10.1093/jac/dkq167

Di Cesare, A., Eckert, E.M., Teruggi, A., Fontaneto, D., Bertoni, R., Callieri, C., Corno, G., 2015. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Molecular Ecology 24, 3888–3900. <u>https://doi.org/10.1111/mec.13293</u>

Marti, E., Balcázar, J.L., 2013. Real-Time PCR Assays for Quantification of qnr Genes in Environmental Water Samples and Chicken Feces. Appl Environ Microbiol 79, 1743–1745. https://doi.org/10.1128/AEM.03409-12

Ng, L.K., Martin, I., Alfa, M., Mulvey, M., 2001. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 15, 209–215. <u>https://doi.org/10.1006/mcpr.2001.0363</u>

Pei, R., Kim, S.-C., Carlson, K.H., Pruden, A., 2006. Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research 40, 2427–2435. <u>https://doi.org/10.1016/j.watres.2006.04.017</u>