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Abstract

The geometric theory of additive separation of variables is applied to

the search for multiplicative separated solutions of the bi-Helmholtz equa-

tion. It is shown that the equation does not admit regular separation in

any coordinate system in any pseudo-Riemannian space. The equation is

studied in the four coordinate systems in the Euclidean plane where the

Helmholtz equation and hence the bi-Helmholtz equation is separable. It

is shown that the bi-Helmoltz equation admits non-trivial non-regular sep-

aration in both Cartesian and polar coordinates, while it possesses only

trivial separability in parabolic and elliptic-hyperbolic coordinates. The

results are applied to the study of small vibrations of a thin solid circular

plate of uniform density which is governed by the bi-Helmholtz equation.
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1 Introduction

The solution of boundary value problems for the partial differential equations
of mathematical physics by the method of separation of variables is an effective
method that has been employed for almost two centuries [10, 9]. The method,
which assumes that the solution is a product of functions each one of a single
independent variable (product ansatz), reduces the partial differential equation
to a set of ordinary differential equations with a corresponding set of separation
constants. The application of the method to the various equations of mathemat-
ical physics leads to certain ordinary differential equations the solutions of which
are studied in their own right in special function theory. The special functions
defined by an equation arising from a given separable coordinate system define
function spaces that yield the solution of the given boundary problem under
general boundary values. The theory of this method for a general second order
linear PDE with variable coefficients under the product ansatz is well developed
[1, 7, 8] However, the theory for equations of higher order has only more recently
been studied [6] where general separation is considered and where the concept of
non-regular separation may be utilized. In this article a geometric formulation of
this theory [4] is applied to the bi-Helmholtz equation which arises in the study
of small vibrations of a thin, solid plate [11, 5].

The plan of the paper is as follows. In Section 2 the geometric theory of
separation of variables is reviewed and the concepts of regular and non-regular
separation defined. In Section 3 the theory of the previous section is applied to the
bi-Helmholtz equation. The main result of this section is the proof of Theorem 1
which states that regular multiplicative separation for the bi-Helmholtz equation
(7) on any Riemannian or pseudo-Riemannian n-dimensional manifold does not
occur in any system of coordinates. Conditions for non-regular separation to occur
are given in Proposition 2 and the concept of non-trivial non-regular separation
is introduced. Section 4 contains examples in E

2 of coordinate systems where the
bi-Helmholtz equation admits trivial and non-trivial non-regular separation. In
Section 5 the results of the preceding section are applied to the analysis of the
small vibrations of a thin solid circular plate which reproduce the classical results
obtained by Rayleigh [11]. The Conclusion is given in Section 6.

2 Geometric theory of separation of variables

One of the most known ansatz for solving a PDE depending on n independent
variables (qi) is the additive separation, that is the search of those solutions u(qi)
which are written as sum of functions depending on a single variable (in the given
coordinate system (qi)):

u =

n
∑

i=1

S(i)(q
i)
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Moreover, we do not look for a single separated solution but we want to determine
a family (as big as possible) of separated solutions

u =

n
∑

i=1

S(i)(q
i, cα),

where the real constant parameters cα satisfy a suitable completeness condition
(see below). When the method of SoV works, it is possible to split the PDE into
n ODEs of order l which involve only one of the functions S(i); these ODEs are
known as separated equations. Separability of a PDE strongly depends on the
choice of the independent variables and is destroyed by a general transformation
of the (qi). However, we want to provide a geometrical interpretation of what
we mean by solving a PDE through the ansatz of separation of variables. We
will distinguish between two possible types of families of separated solutions: the
first type depends on the maximal number of parameters (we refer to this case as
”free” [1] or ”regular” [6] separation of variables) and the second type depending
on less parameters. We refer to this case as ”non regular separation” [6, 3].

We consider the separability of the l-th order PDE

H(qi, u, ui, . . . , u
(l)
i ) = h (h ∈ R) (1)

in the coordinates (qi) on the n-dimensional manifoldQ. Here and in the following
we denote by u = u(qi) the unknown function and set

ui =
∂u

∂qi
, u

(2)
i = uii =

∂2u

(∂qi)2
, . . . u

(l)
i =

∂lu

(∂qi)l
.

For the sake of simplicity, we assume that the maximal order of derivatives in-
volved in H is the same for each index i = 1, . . . , n. Let Z be the (nl + 1)-
dimensional space of the dependent variable and its separated derivatives: coor-
dinates on Z are given by (u, ui, u

(2)
i , . . . , u

(l)
i ). We consider the trivial bundle over

Q, M = Q× Z. In [1] free separation is defined as the existence of an additively
separated solution u of (1), depending on nl + 1 parameters (cA), satisfying the
completeness condition

rank

[

∂u

∂cA

∣

∣

∣

∣

∂ui

∂cA

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∂u
(l)
i

∂cA

]

= nl + 1.

Free separation occurs if and only if the n vector fields of the form

Di =
∂

∂qi
+ ui

∂

∂u
+ u

(2)
i

∂

∂ui
+ . . .+ u

(l)
i

∂

∂u
(l−1)
i

+Ri

∂

∂u
(l)
i

, (2)

where Ri(q
j , u, uj, . . . , u

(l)
j ) are functions onM , are commuting symmetries of (1)

namely, the conditions

DiH = 0, (3)

[Di, Dj] = 0 (4)
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are satisfied (see [1]). Eqs (3) determine the functions Ri, while (4) are equivalent
to

DiRj = 0 (i 6= j). (5)

By expanding conditions (5), we get exactly the conditions given in [6] for regular
separation. Thus, free separation corresponds to regular separation.

Remark 1. The geometrical interpretation of the free separation is summarized
in the following items (see [1]):

• ∆ = span(Di) is an integrable distribution of rank n on M .

• The foliation of n-dimensional integral manifolds of ∆ is described by a
complete separated solution of H = h:















u = S =
∑n

i=1 S(i)(q
i, cα)

ui = S ′

(i)

uii = S ′′

(i)

· · ·

with ∂iS = S ′

(i), ∂
2
ijS = δijS

′′

(i), . . .

• Free (regular) separated solutions depend on nl + 1 parameters.

• Completeness means that for any point P0 with coordinates (qi0) there is
a separated solution of H = h for each choice of the value of u and its nl
derivatives ui, u

2
i , . . . , u

l
i at P0.

Remark 2. If H does not depend on u, then u is defined up to an additive
constant and the relevant constants appearing in the separated solutions are in
fact nl (the remaining one being the finial additive constant). In this case we can
eliminate the variable u from the space Z and (2) reduce to

Di =
∂

∂qi
+ u

(2)
i

∂

∂ui
+ . . .+ u

(l)
i

∂

∂u
(l−1)
i

+Ri

∂

∂u
(l)
i

. (6)

Moreover, even the separated equations do not depend on S(i). Thus, each of
S(i) is defined by its ODE up to an additive constant which can be disregarded,
since it only affect the inessential global additive constant of u . Hence, each l-th
order ODE actually contribute with l − 1 essential integration constants. This
means that the nl constants which are involved in the regular separated solutions
splits into n separation constants plus nl − n = n(l − 1) integrating constants
(see Remarks 4.8 and 4.9 in [1] for the case of the Schrödinger equation).

We consider now the second type of separation, occurring when condition
(5) is not identically satisfied. This case was firstly considered by Kalnins and
Miller in [6] and called non-regular separation. The authors state that also in this
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case separable solutions still may exist, but they will depend on less than nl + 1
parameters.

However, in [6] it is not specified under what conditions separable solutions
will exist and how to determine the number of the parameters involved.

In [3] one of us gives a geometric interpretation of the situation that naturally
leads to an effective definition of non-regular separation.

Let N be a submanifold of M = Q× Z locally described by the r equations

fa = 0 (a = 1, . . . , r).

If the vectors Di commute on N , that is

DiRj |N = 0 (i 6= j, i, j = 1, . . . , n),

and the vector fields Di are tangent to N , that is

Difa|N = 0 (i = 1, . . . , n, a = 1, . . . r),

then we can restrict the distribution ∆ generated by the Di to an involutive
distribution on N . Thus, on N we have a complete separated solution of H = h

depending on nl+1−r parameters (cα), which can be considered as a constrained
separated solution on M . Hence, according to [3] we have the following

Definition 1. The PDE H = h admits a non-regular or constrained additive
separation on a submanifold N of M defined by the r equations fa = 0, if

1. u =
∑

i S
(i)(qi, cα) is a solution of H = h;

2. u depends on nl+1− r parameters (cα) satisfying the completeness condi-
tions

rank

[

∂u

∂cα

∣

∣

∣

∣

∂ui

∂cα

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∂u
(l)
i

∂cA

]

= nl + 1− r;

3. u and its derivatives satisfy fα(q
j, u, ui...) = 0 for all (admissible) values of

the parameters (cα).

From the above discussion we get the following criterion for the constrained
separation

Proposition 1. In a given coordinate system (qi) equation (1) admits a con-
strained separation on the submanifold N defined by equations fa = 0 if and only
if the vector fields Di (2) are symmetries of (1), tangent to N and commute on
N , that is

DiH = 0, DiRj |N = 0, Difa|N = 0 (i 6= j = 1, . . . , n, a = 1, . . . , r).
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Remark 3. If DiRj are everywhere different from zero, then equation (1) has no
additive separable solutions. A possible choice for N is the set of points satisfying
equations DiRj = 0, but in many cases this set is not a well-defined manifold or
the vectors Di are not tangent to it.

Remark 4. In analogy with Remark 1, the geometric interpretation of the con-
strained separation on a submanifold N is sketched in the following items:

• ∆S = span(Di) is an integrable n-dimensional distribution on N whose in-
tegral manifolds are described by a constrained complete separated solution
of H = h.

• constrained separated solutions depend on nl + 1− r parameters.

• completeness means that for any P0 = (qi0) there is a separated solution of
H = h for each choice of the value of u and its nl separated derivatives at
P0 satisfying fα = 0 (i.e., the initial condition belongs to N).

3 Application to the bi-Helmholtz equation

In order to apply the theory recalled in the previous section to the multiplica-
tive separation of the bi-Helmholtz equation, we should transform the unknown
function ψ to its logarithm u = logψ and then we should write down the sim-
plified equation for separated solutions. First of of all, we need to express the
bi-Helmholtz equation

∆2ψ = λψ, λ ∈ R (7)

where ∆ is the Laplace-Beltrami operator on a n-dimensional Riemannian or
pseudo-Riemannian manifold (Q, g) with respect to a coordinate system (qi) in
which the metric has contravariant components (gij). For the moment we do
not require any special property to the coordinates (such as orthogonality, or
specifying of the dimension n). It is well known that

∆ψ = gij∂i∂jψ − Γi∂iψ (8)

where ∂i is the partial derivative with respect to qi and

Γh = gijΓh
ij =

1

2
gijghk(∂igjk + ∂jgik − ∂kgij)

are the contracted Christoffel symbols (see [1]).
If not explicitly written, Einstein summation notation is sytematically em-

ployed: repeated upper and lower indices means summation.
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By applying twice the Laplace operator we get

∆2ψ = gij∂ij(g
hk∂hkψ − Γh∂hψ)− Γi∂i(g

hk∂hkψ − Γh∂hψ) =

= gijghk∂ijhkψ + 2(gij∂jg
hk − ghkΓi)∂ihkψ +

(gij∂ijg
hk − 2gjk∂jΓ

h − Γi∂ig
hk + ΓhΓk)∂hkψ + (9)

(−gij∂ijΓ
h + Γi∂iΓ

h)∂hψ,

where
∂i1...ip := ∂i1 . . . ∂ip . (10)

In order to simplify notation we can write the bi-Laplacian as

∆2ψ = Aijkl∂ijklψ +Bijk∂ijkψ + C ij∂ijψ +Di∂iψ, (11)

where

Aijkl = g(ijgkl) (12)

Bijk = 2(gh(i∂hg
jk) − g(ijΓk)) (13)

C ij = gkl∂klg
ij − 2gk(i∂kΓ

j) − Γk∂kg
ij + ΓiΓj (14)

Di = −gjk∂jkΓ
i + Γj∂jΓ

i = −∆Γi (15)

where (· · · ) indicates symmetrization of the indices.
In order to pass from a multiplicative separated solution to an additive sepa-

rated solution we perform the change of unknown

ψ = eu, u = logψ

We denote the partial derivatives of u by ui, uij etc. The link between partial
derivatives of ψ and u is given by

∂iψ = euui

∂ijψ = eu(uij + uiuj)

∂ijkψ = eu(uijk + 3u(iujk) + uiujuk)

∂ijklψ = eu(uijkl + 4u(iujkl) + 3u(ijukl) + 6u(iujukl) + uiujukul)

Hence, the equation to which we want to apply the geometric theory of SoV is

H(qi, ui, uij, . . . , uijkl) = λ, λ ∈ R,

where

H = Aijkluijkl + (Bijk + 4Aijklul)uijk + (C ij + 3Bijkuk)uij+

3Aijkluijukl + 6Aijkluiujukl +

Aijkluiujukul +Bijkuiujuk + C ijuiuj +Diui,

7



If we are interested only in separated solutions

u =
∑

i

S(i)(q
i, cA), A = 1, . . . , 4n,

where, since the PDE does not depend explicitly on u, the constants (cA) are at
most 4n, we replace H by

Hs = (gii)2u
(4)
i + (4giigijuj +Biii)u

(3)
i + (giigjj + 2(gij)2)u

(2)
i u

(2)
j +

(2(giighj + 2gijgih)ujuh + (Biij +Biji +Bjii)uj + C ii)u
(2)
i +

gijghkuiujuhuk +Bihkuiuhuk + C ijuiuj +Diui,

(16)

where u
(s)
i is the s-th partial derivative of u w.r.t. qi.

The function (16) is a 4-th degree polynomial in the derivatives of u to the 4-th
order; by observing that the terms Bijh, C ij, Di contains first, second, third order
derivatives of the metric tensor respectively, we can say that Hs is homogeneous:
the sum of the degree and the order of the derivatives it is the same (four) in all
terms.

For the further computation it is useful to write down the first partial deriva-
tives of Hs

∂Hs

∂u
(4)
i

= (gii)2 (17)

∂Hs

∂u
(3)
i

= Biii + 4giigijuj (18)

∂Hs

∂u
(2)
i

= 2(giigjj + 2(gij)2)u
(2)
j + 2(giighj + 2gijgih)ujuh + (19)

(Biij +Biji +Bjii)uj + C ii

∂Hs

∂ui
= 4gjjgiju

(3)
j + u

(2)
j (Bjji +Bjij +Bijj + 4(gjjghi + 2gjigjh)uh) + (20)

Di + (C ij + Cji)uj + (Bijh +Bjhi +Bhij)ujuh + 4gijghkujuhuk

We compute the vector fields associated with the separation, which are of the
form (6):

Di = ∂i + u
(2)
i

∂

∂ui
+ u

(3)
i

∂

∂u
(2)
i

+ u
(4)
i

∂

∂u
(3)
i

+Ri

∂

∂u
(4)
i

,

where the index i is not summed and the functions Ri(q
h, uh, ...u

(4)
h ) are deter-

mined by the condition
Di(Hs) = 0.

Hence, under the technical assumption that gii 6= 0, we have

Ri = −

(

∂Hs

∂u
(4)
i

)

−1(

∂iHs + u
(2)
i

∂Hs

∂ui
+ u

(3)
i

∂Hs

∂u
(2)
i

+ u
(4)
i

∂Hs

∂u
(3)
i

)

=

8



= −
1

(gii)2

(

∂iHs + u
(2)
i

∂Hs

∂ui
+ u

(3)
i

∂Hs

∂u
(2)
i

+ u
(4)
i

∂Hs

∂u
(3)
i

)

The condition for free (or regular) separation is that

DiRj = 0 ∀i 6= j

that is

∂iRj + u
(2)
i

∂Rj

∂ui
+ u

(3)
i

∂Rj

∂u
(2)
i

+ u
(4)
i

∂Ri

∂u
(3)
i

+Ri

∂Rj

∂u
(4)
i

= 0.

We look for terms containing u
(3)
h or u

(4)
h and such that the sum of the orders of

the derivatives of u is six i.e., the terms containing u
(4)
h u

(2)
k or u

(3)
h u

(3)
k (for k 6= h)

and with the components of the metric tensor not derived. Since we have for
i 6= j

∂Rj

∂u
(4)
i

= −
1

(gjj)2

(

∂2Hs

∂qj∂u
(4)
i

+ u
(2)
j

∂2Hs

∂u
(4)
i ∂uj

+ u
(3)
j

∂2Hs

∂u
(4)
i ∂u

(2)
j

+ u
(4)
j

∂2Hs

∂u
(3)
j ∂u

(4)
i

)

= −
∂j(g

ii)2

(gjj)2
,

the addendum Ri
∂Rj

∂u
(4)
i

does not contain such a term, as well as ∂iRj . Moreover,

we have

∂Rj

∂u
(3)
i

= −
1

(gjj)2

(

∂2Hs

∂qj∂u
(3)
i

+ u
(2)
j

∂2Hs

∂u
(3)
i ∂uj

+ u
(3)
j

∂2Hs

∂u
(3)
i ∂u

(2)
j

+ u
(4)
j

∂2Hs

∂u
(3)
j ∂u

(3)
i

)

= −
1

(gjj)2

(

∂jB
iii + 4∂j(g

iigih)uh + 4u
(2)
j giigij

)

Thus, in the addendum u
(4)
i

∂Rj

∂u
(3)
i

, the function DiRj contains the term

− 4
giigij

(gjj)2
u
(2)
j u

(4)
i (21)

For the derivative of Rj w.r.t. u
(2)
i we have

∂Rj

∂u
(2)
i

= −
1

(gjj)2

(

∂2Hs

∂qj∂u
(2)
i

+ u
(2)
j

∂2Hs

∂u
(2)
i ∂uj

+ u
(3)
j

∂2Hs

∂u
(2)
i ∂u

(2)
j

+ u
(4)
j

∂2Hs

∂u
(3)
j ∂u

(2)
i

)

=

= −
1

(gjj)2

(

∂2Hs

∂qj∂u
(2)
i

+ u
(2)
j

∂2Hs

∂u
(2)
i ∂uj

+ 2(giigjj + 2(gij)2)u
(3)
j

)

.

9



Therefore, in u
(3)
i

∂Rj

∂u
(2)
i

, the function DiRj contains the term

−2

(gjj)2
(giigjj + 2(gij)2)u

(3)
j u

(3)
i (22)

and, since ∂Hs

∂u
(2)
i

does not depend on u
(3)
h and u

(4)
h , we disregard other addenda of

∂Rj

∂u
(2)
i

. The last term to consider is

∂Rj

∂ui
= −

1

(gjj)2

(

∂2Hs

∂qj∂ui
+ u

(2)
j

∂2Hs

∂ui∂uj
+ u

(3)
j

∂2Hs

∂ui∂u
(2)
j

+ u
(4)
j

∂2Hs

∂u
(3)
j ∂ui

)

= −
1

(gjj)2

(

4gjjgiju
(4)
j + terms with derivatives of u of order less than 4th

)

Thus DiRj contains the term

− 4
gij

gjj
u
(4)
j u

(2)
i (23)

and no other terms in u
(4)
h u

(2)
k or u

(3)
h u

(3)
k are present in DiRj except for (21,22,23).

It is easy to see that the three terms cannot be all zero since gii 6= 0, for all i.
Hence, we have proved that

Theorem 1. Regular multiplicative separation for the bi-Helmholtz equation (7)
on any Riemannian or pseudo-Riemannian n-dimensional manifold does not oc-
cur in any system of coordinates.

Remark 5. This means that we cannot find a family of separated solutions that
depends on 4n parameters and such that the values of

ui, u
(2)
i , u

(3)
i , u

(4)
i (24)

can be fixed in an arbitrary way. Going back to the multiplicatively separated
solutions

∏

i ψi of (7), the impossibility that regular separation occurs can be
interpreted as follows: the one-to-one relationship existing between (24) and

ψ′

i

ψi

ψ′′

i

ψi

ψ′′′

i

ψi

ψ′′′′

i

ψi

(see [1] for the explicit link till order 2) implies that it is not possible to assign
these values in an arbitrary way at a point q0 and finding a separated solution
satisfying these initial conditions.

However, smaller families of separated solutions may exist. In this case the
theory of non-regular separation (see [3]) may be usefully applied.
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Proposition 2. In any coordinate system (qi) allowing regular separation for the
Helmholtz equation, there exists a submanifold N of M with dimension at least
2n where bi-Helmholtz admits non-regular separation.

The statement follows form the fact that every solution of the Helmholtz
equation is also a solution of the bi-Helmholtz equation. Hence, the 2n-parameter
families of the multiplicatively separated solutions of the Helmholtz equation are
multiplicatively separated solution of (7). Non-regular separation separation is
said to be non-trivial if there exists a bigger family of separable solutions for
the bi-Helmholtz equation than that for the Helmholtz equation. Otherwise, the
separation is said to be trivial. A detailed analysis of some examples shows that
non-trivial non-regular separation is possible.

4 Examples

In this section we provide some explicit computations of the manifolds N allow-
ing non-regular separation of variables for the bi-Helmholtz equation. For sake
of simplicity, we restrict ourselves to the Euclidean plane. Moreover, in order
to be sure that there exists a N where non-regular separation occurs, we shall
consider only coordinates that allow separation for the Helmholtz equation. Sev-
eral situations will be described. In two of the four possible separable coordinate
systems (Cartesian and polar) we show that non-trivial non-regular separation
of the bi-Helmholtz equation is possible (sections 4.1 and 4.2). One the other
hand, if we use parabolic or elliptic-hyperbolic coordinates, the only possibility
is trivial separation.

4.1 Cartesian coordinates on the plane

Let us examine the case of bi-Helmholtz equation on the plane in Cartesian
coordinates (q1, q2) = (x, y). The only separability condition D1R2 = 0 becomes

− (2u
(2)
2 u2 + u

(3)
2 )(2u

(2)
1 u1 + u

(3)
1 ) = 0 (25)

which is satisfied if one of the factors vanishes. However, this condition alone does
not define a submanifold such that D1 and D2 are tangent to it: for example

D1(2u
(2)
1 u1 + u

(3)
1 ) = 2(u

(2)
1 )2 + 2u

(3)
1 u1 + u

(4)
1 (26)

Thus this condition must also be added in order to define a manifold where the
non-regular separation could occur. Let us call N the submanifold defined by the
equations

f1 = u
(3)
1 + 2u

(2)
1 u1 = 0, f2 = u

(4)
1 + 2(u

(2)
1 )2 + 2u

(3)
1 u1 = 0 (27)

11



It is easy to check that Difa|N = 0 (i = 1, 2 a = 1, 2) and that DiRj|N =
0. Hence, on the 6-dimensional manifold N non-regular separation occurs in
Cartesian coordinates. The four derivatives of S2(y) (u2, u

(2)
2 , u

(3)
2 , u

(4)
2 ) can be

arbitrarily assigned at an initial point, while only two of the derivatives of S1(x)

(u1, u
(2)
1 ) are free and the remaining ones are determined by the equations fa

defining N .
Since the equations for N only involve the dependence of u on q1 = x, they

can be seen as separated equations for the function S1(q
1): in particular f1 and

f2 (its differential consequence) imply that S1 has to satisfy

d2

dx2
S1 + (

d

dx
S1)

2 = c1, c1 ∈ R (28)

It is interesting to remark that (28) means precisely that S1 is a separated
solution of the Laplace equation. Indeed, by inserting the function ψ1(x) = eS1

in (28), we get
ψ′′

1 = c1ψ1 (c1 ∈ R).

However, the family of the separated solutions is bigger than the separated solu-
tions of the Helmholtz equation, since for S2 we can get functions which are not
solutions of the Helmholtz equation but only of the bi-Helmholtz one. Indeed,
by (28) the separated equation for Hs written in Cartesian coordinates takes the
form

u
(4)
2 +3(u

(2)
2 )2+4u2u

(3)
2 +6(u2)

2u
(2)
2 +(u2)

4+2c1

(

u
(2)
2 + (u2)

2
)

+c21−λ = 0, (29)

where c1 = u
(2)
1 + (u1)

2 which is constant on the constraint surface N . A sim-
pler form for (29) is given in terms of ψ2 = ln(S2): with respect to this new
independent variable the ODE becomes the linear 4-th order equation

(ψ2)
(4) + 2c1ψ

′′

2 + (c21 − λ)ψ2 = 0.

4.2 Polar coordinates

Let us examine the case of bi-Helmholtz equation on the plane in polar coordi-
nates (q1, q2) = (r, θ). The situation is similar, but is no longer symmetric in the
two variables because we pass from two ignorable coordinates to one ignorable
coordinate.

(u
(3)
1 r2 + 2r(u1)

2 + u
(2)
1 r − u1 + 2u

(2)
1 u1r

2)(2u
(2)
2 u2 + u

(3)
2 ) = 0 (30)

As in the Cartesian case, if we consider the condition on θ-depending function,
on the six-dimensional submanifold Npol defined by

f1 = 2u
(2)
2 u2 + u

(3)
2 = 0, f2 = u

(4)
2 + 2(u

(2)
2 )2 + 2u

(3)
2 u2 = 0 (31)

12



reduced separation occurs. Conditions (31) mean that the following separated
equation for S2(θ) holds

d2

dθ2
S2 + (

d

dθ
S2)

2 = c2, c2 ∈ R (32)

i.e., that ψ2(θ) = eS2 satisfies
ψ′′

2 = c2ψ2 (33)

As in the Cartesian case plugging (32) into the separated equation Hs provides
a separated equation which involves the variable r only:

r4u
(4)
1 +

(

4r4u1 + 2r3
)

u
(3)
1 + 3r4(u

(2)
1 )2 + r2

(

6r2(u1)
2 + 6ru1 + 2− 1

)

u
(2)
1 +

+ r4(u1)
4 + 2r3(u1)

3 + (2c2 − 1)(r2(u1)
2 − ru1)− λr4 + c22 − 4c2 = 0 (34)

here c2 = u
(2)
2 +(u2)

2 which is constant on the constraint surface Npol. The above
equation becomes simpler passing to ψ1 = eS1

r4(ψ1)
(4) + 2r3(ψ1)

(3) + r(2c2 − 1)(rψ′′

1 − ψ′

1) + (c22 + 4c2 − λr4)ψ1 = 0 (35)

whose solutions will be analyzed in Section 5.
The condition for the r-depending part of (30) is equivalent to

r2(
d2

dr2
S1 + (

d

dr
S1)

2)− r
d

dr
S1 = c1, c1 ∈ R

However, this condition and its differential conditions defines a submanifold which
is tangent to the generator D1 only for λ = 0.

4.3 Parabolic and Elliptic-Hyperbolic coordinates

We consider the general case of Liouville coordinates on R
2 which produces Carte-

sian, polar, parabolic and elliptic-hyperbolic coordinates as special cases when we
demand that the Gaussian curvature vanishes. This coordinate system is char-
acterized by the following metric

g = (f(u) + g(v))(du2 + dv2), (36)

for some arbitrary smooth functions f and g. We first consider the Helmholtz
equation

∆ψ = γψ, (37)

where we recall that ∆ denotes the Laplace-Beltrami operator (8). In Liouville
coordinates it takes the form

∆ψ =
1

f + g

(

∂2uψ + ∂2vψ
)

(38)
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If we assume ψ(u, v) = U(u)V (v) the Helmholtz equation may be written as

(

U ′′

U
− γf

)

+

(

V ′′

V
− γg

)

= 0 (39)

We observe that the equation separates for any smooth functions f and g.

U ′′ − (c+ γf)U = 0 V ′′ + (c− γg)V = 0, (40)

where c denotes the separation constant.
We now turn our attention to the bi-Helmoltz equation. The Gaussian cur-

vature in this coordinate system has the following form

K = −
1

2(f + g)2

(

f ′′ + g′′ −
f ′2 + g′2

f + g

)

(41)

From here on we will set K = 0 in order to consider the parabolic and elliptic-
hyperbolic cases in which we also have that f ′ 6= 0, g′ 6= 0. We use the Laplace-
Beltrami (38) to write the bi-Laplace operator as

∆2ψ =
∆2

0ψ

(f + g)2
−

2

(f + g)3
(f ′∂u∆0ψ + g′∂v∆0ψ) +

f ′′ + g′′

(f + g)3
∆0ψ (42)

From here we can write the bi-Helmholtz equation ∆2ψ = λψ, using (42).
The product ansatz ψ(u, v) = U(u)V (v) implies that (7) takes the form

f
U (4)

U
+ g

V (4)

V
− 2f ′

U (3)

U
− 2g′

V (3)

V
+ f ′′

U ′′

U
+ g′′

V ′′

V

+
V ′′

V

(

f ′′ + 2f
U ′′

U
− 2f ′

U ′

U

)

+
U ′′

U

(

g′′ + 2g
V ′′

V
− 2g′

V ′

V

)

−λ(f + g)3 = 0 (43)

We observe that the above equation is not separable and hence does not admit
regular multiplicative separation. This result is consistent with the conclusion
of Theorem 1. However, non-regular separation may be possible. By taking
derivatives of (43) we can obtain necessary conditions for separation (constraint
equations). We find a first necessary condition by applying ∂2u,v which yields

f ′

(

V (4)

V

)′

+ g′
(

U (4)

U

)′

+

(

V ′′

V

)

′
(

f ′′ + 2f
U ′′

U
− 2f ′

U ′

U

)

′

+

(

U ′′

U

)

′
(

g′′ + 2g
V ′′

V
− 2g′

V ′

V

)

′

− 6λf ′g′(f + g) = 0 (44)
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We again note that this condition is not separable. We proceed by dividing
by f ′g′ and applying ∂2u,v to get the separable condition

(

1

g′

(

V ′′

V

)

′
)′
(

(

f ′′ + 2f U ′′

U
− 2f ′U ′

U

)′

f ′

)

′

+

(

1

f ′

(

U ′′

U

)

′
)′
(

(

g′′ + 2g V ′′

V
− 2g′ V

′

V

)′

g′

)

′

= 0. (45)

From here we obtain several cases: (i) neither
(

1
g′

(

V ′′

V

)′

)

′

nor
(

1
g′

(

V ′′

V

)′

)

′

vanish, from which we obtain λ = 0 (ii) only one vanishes which also implies
λ = 0 (iii) both vanish which gives us a solution to the Helmholtz equation in
Liouville coordinates. Hence, we do not get any non-trivial separated solutions.
The proof in case (i) is given below and in Appendix A while that for cases (ii)
and (iii) is given in Appendix B.

Case(i): Dividing (45) by
(

1
f ′

(

U ′′

U

)′
)

′
(

1
g′

(

V ′′

V

)′
)

′

we obtain a separable equa-

tion. Separating and integrating (see appendix A for this calculation) we find the
following equations

(2g − C)
V ′′

V
− 2g′

V ′

V
+ g′′ − C1g − C2 = 0, (46)

(2f + C)
U ′′

U
− 2f ′

U ′

U
+ f ′′ −D1f −D2 = 0, (47)

where C,C1, C2, D1.D2 ∈ R. We can use these conditions in (44) to obtain

1

g′

(

V (4)

V

)′

+
1

f ′

(

U (4)

U

)′

+
D1

g′

(

V ′′

V

)

′

+
C1

f ′

(

U ′′

U

)

′

− 6λ(f + g) = 0. (48)

Notice that this condition is now separable. And using this condition we can
integrate back to get a simplified form of equation (43)

f
U (4)

U
+ g

V (4)

V
− 2f ′

U (3)

U
− 2g′

V (3)

V
+ f ′′

U ′′

U
+ g′′

V ′′

V
− λf 3 − λg3+

+ f
V (4)

V
+ g

U (4)

U
+ (C1g + C2)

U ′′

U
+ (D1f +D2)

V ′′

V
− 3λf 2g − 3λfg2 = 0.

(49)

To make sure we account for all the constraints properly we also need to use
the derivatives of equations (46) and (47). There are other constraints coming
from the additional requirement K = 0, for the interest of brevity we will include
these calculations Appendix A.

After using all the constraint equations we end up with the following

15



(C2 −D2 − (C1 +D1)f)

C1 +D1

(

αf + β + 3λf 2 −
(k + C1)(D1 − k)f + C1(D2 −D) +D(D1 − k)

2f + C

+ 2
f ′2

(2f + C)2
(D1 − k)−

(D1f +D2)
2 − f ′′2

(2f + C)2

)

− 2
(D1 − k)

2f + C
f ′2

+ ((k − C1)f + C2 +D)

(

(D1 − k)f +D2 −D

2f + C

)

+ 2λf 3 + αf 2 + (β + γ)f = δ

(50)

Where from the condition K = 0 we have f ′2 = kf 2 + 2Df − k and g′2 =
−kg2 + 2Dg + k. Thus the above equation simplifies to a polynomial in f after
multiplication by (2f +C)2. Furthermore, since f ′ 6= 0, the set {1, f, f 2, . . . , fn}
is linearly independent. This implies that the coefficients of the different powers
of f must all vanish. The coefficient of the highest power of f the is 8λ the
vanishing of which implies that λ = 0. In the case that C1 + D1 = 0 (89) is a
polynomial in f with highest order term 3λf 2 which also implies λ = 0.

5 The circular vibrating plate

As mentioned in Section 3 one can pass between multiplicative and additive
separation by the change of variable ψ = eu. In this section we use the framework
of multiplicative separation.

We apply the results for polar coordinates obtained in Section 4 to study
vibrations of a thin, solid plate of uniform material, constant thickness, and areal
density ρ [11, 5].

The equation of motion for the plate under the assumption of small oscillations
is given by [5]

ρψ̈ + c∆2ψ = 0, (51)

where ψ is the lateral elevation at any point on the region Ω in the interior of the
plate and c is some positive constant depending on the material. If the plate is
clamped at the edge he boundary conditions on ψ are ψ|∂Ω= ψn|∂Ω= 0, where the
subscript n denotes differentiation with respect to the normal to the boundary.
For the case of a circular plate Ω is a disk of some radius a. We obtain the
solution of (51) by utilizing a separation of variables approach rather that the
Fourier series method employed by Rayleigh [11].

Consider solutions of (51) of the form ψ = w(r, θ)T (t) which yield the sepa-
rated equations

∆2w

w
= −

ρ

c

T̈

T
= k4. (52)
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The separation constant is assumed to be positive (hence written as k4 for conve-
nience), since we expect oscillatory behaviour in time. Notice that this separation
is regular since there are no additional constraints on the separated functions.
The time part of (52) has the form

T̈ + ω2T = 0, (53)

where ω2 = ck4

ρ
. The general solution is given by

T (t) = G cos(ωt) +H sin(ωt), (54)

where G and H are arbitrary constants.
The spatial part (52) satisfies the bi-Helmholtz equation,

∆2w = k4w (55)

Written out explicitly in polar coordinates this equation takes the form

wrrrr +
1

r4
wθθθθ +

2

r
wrrr −

1

r2
wrr +

1

r3
wr +

4

r4
wθθ −

2

r3
wrθθ +

2

r2
wrrθθ = k4w,

(56)

where the subscript r denotes d
dr
. We now consider product solutions of the form

w(r, θ) = R(r)Θ(θ), (57)

which yields the separated equations

Θ′′ = −l2Θ, (58)

D4R +
2

r
D3R−

1

r2
(1 + 2l2)D2R +

1

r3
(1 + 2l2)DR−

l2

r4
(4− l2)R = k4R, (59)

where l is a separation constant and D = d
dr
.

The solution of the differential equation (58) satisfied by the angular function
Θ has the form

Θl(θ) = El cos(lθ) + Fl sin(lθ), (60)

where El and Fl are arbitrary constants. In order that the function Θ be single
valued on Ω, the constant l must be a positive integer

l = n (n = 1, 2, . . .).
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We now turn our attention to (59). It may be shown that the left-hand-side
may be factored in two ways to yield

(

D2 +
1

r
D −

n2

r2
+ k2

)(

D2 +
1

r
D −

n2

r2
− k2

)

R = 0, (61)

(

D2 +
1

r
D −

n2

r2
− k2

)(

D2 +
1

r
D −

n2

r2
+ k2

)

R = 0. (62)

This result shows that the differential operators which appear inside the brackets
(the Bessel and modified Bessel operators) commute. Since we know bases of the
solution spaces to the Bessel and modified Bessel equations, the general solution
of the radial equation may be written as

Rn(r) = AnJn(kr) +BnYn(kr) + CnIn(kr) +DnKn(kr), (63)

where Jn, Yn, In, Kn are respectively the Bessel and modified Bessel functions of
the first and second kind and An, Bn, Cn, Dn are arbitrary constants.

The Bessel functions of the second kind are inadmissible since they are singular
at the origin so we take Bn = Dn = 0.

The boundary conditions tell us that Rn(a) = R′

n(a) = 0.

Rn(a) = AnJn(ka) + CnIn(ka) = 0 (64)

R′

n(a) = kAnJ
′

n(ka) + kCnI
′

n(ka) = 0 (65)

To solve (64) we either need ka = jn,m (the mth zero of Jn) and Cn = 0 in

which case we retrieve the vibrating membrane solution, or An = − In(ka)
Jn(ka)

Cn (we

can absorb Cn into the definition of En, Fn to simplify). Since we are interested
in solutions other than the ones for the vibrating membrane we take the latter in
which case (65) becomes

I ′n(ka)−
In(ka)

Jn(ka)
J ′

n(ka) = 0 (66)

I ′n(ka)

In(ka)
−
J ′

n(ka)

Jn(ka)
= 0 (67)

We determine the roots of the above equation numerically to get a condition
ka = ln,m, where ln,m is the mth root of equation (67) for some fixed m

Rn,m(r) = Cn

(

In

(

ln,mr

a

)

−
In(ln,m)

Jn(ln,m)
Jn

(

ln,mr

a

))

(68)
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Thus the general solution for u has the form

ψ =
∑

m,n

(En cos(nθ) + Fn sin(nθ)) (Gn,m cos(ωn,mt) +Hn,m sin(ωn,mt))Rn,m

(69)

Where ωn,m = c2
l2n,m

a2
. See Rayleigh [11] for further study of this solution.

6 Conclusion

The main idea of the paper is to apply the technique of the regular and non-
regular separation to the search of the multiplicative separated solutions of the
bi-Helmholtz equation, which is a classical 4-th order PDE equation of Mathe-
matical Physics which was solved in particular cases by means of this technique
([11]). Nevertheless, deeper studies about separability usually deal with first and
second order PDE’s (as well as the Hamilton-Jacobi equation and the stationary
Schrödinger equation).

The choice of the bi-Helmholtz equation relies on two aspects: the existence
of a physical application (it is not a simple toy model) and the fact that this kind
of equation seemed to provide a good example for a deeper understanding of the
non-regular separation method.

Non-regular separation appears naturally in the study of separability of the
bi-Helmholtz equation, since we prove (Section 3) that regular separation never
occurs for this equation, but on the other hand we already know the existence
of a family of separated solutions (the trivial ones, arising from the separability
of the standard Helmholtz equation). In the examples on the Euclidean plane,
we show that, in two of the four separable coordinate systems (Cartesian and
polar coordinates), non-trivial separated solutions can be determined, while in
the remaining coordinate systems (parabolic and elliptic-hyperbolic coordinates)
the only possibles separated solutions are proved to be the trivial ones.

The study of the separated solutions is done from the simplest geometrical
view point: the search for a submanifold, as large as possible, where the sep-
arability conditions are satisfied, without assuming any particular structure for
the separated solution (such as as side conditions or generalizations of Stäckel
matrices as is done in [7]).

This paper represents the first step in a program to analyse interesting ex-
amples of non-regular separation As further extensions of the present paper, one
could consider examples in higher dimensions or in different Riemannian mani-
folds, to get more physical applications. Indeed, a wider collection of examples
is the natural starting point of a study to gain a deeper insight into the geomet-
ric conditions (for instance in terms of symmetry operators) of the non-regular
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separation of the bi-Helmholtz equation, as has been done for the fixed energy
R-separation for the Schrödinger equation [4, 7].
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A

Dividing (44) by
(

U (3)

f ′U
− U ′′U ′

g′U2

)

′
(

V (3)

g′V
− V ′′V ′

g′V 2

)

′

, we see that we can separate as

follows

(
(

g′′+2g V ′′

V
−2g′ V

′

V

)

′

g′

)′

(

V (3)

g′V
− V ′′V ′

g′V 2

)

′
= −

(
(

f ′′+2f U′′

U
−2f ′ U

′

U

)

′

f ′

)′

(

U (3)

f ′U
− U ′′U ′

f ′U2

)

′
= C (70)

Where C ∈ R. Separating and integrating

(

g′′ + 2g V ′′

V
− 2g′ V

′

V

)′

g′
=
C

g′

(

V ′′

V

)

′

+ C1 (71)

(

f ′′ + 2f U ′′

U
− 2f ′U ′

U

)′

f ′
= −

C

f ′

(

U ′′

U

)

′

+D1 (72)

The case where one of
(

U (3)

f ′U
− U ′′U ′

g′U2

)

′

,
(

V (3)

g′V
− V ′′V ′

g′V 2

)

′

vanish corresponds to

setting C = 0 in one of the above equations. Multiplying through by f ′ and g′

respectively and integrating once again we obtain

g′′ + 2g
V ′′

V
− 2g′

V ′

V
= C

V ′′

V
+ C1g + C2 (73)

f ′′ + 2f
U ′′

U
− 2f ′

U ′

U
= −C

U ′′

U
+D1f +D2 (74)

Where C1, C2, D1.D2 ∈ R. Or more compactly
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(2g − C)
V ′′

V
− 2g′

V ′

V
+ g′′ − C1g − C2 = 0 (75)

(2f + C)
U ′′

U
− 2f ′

U ′

U
+ f ′′ −D1f −D2 = 0 (76)

We can now separate (48)

U (4)

U
+ C1

U ′′

U
− 3λf 2 = αf + β (77)

V (4)

V
+D1

V ′′

V
− 3λg2 = −αg + γ (78)

The condition K = 0 separates into

f (3)

f ′
= −

g(3)

g′
= k (79)

Where k ∈ R is a separation constant. Integrating once

f ′′ = kf +D g′′ = −kg +D (80)

These are extra conditions that have to be taken into account. We also need
to account for the derivatives of equation (75) and (76)

U ′′

U
=

2f ′

2f + C

U ′

U
+
D1f +D2 − f ′′

2f + C
(81)

U (3)

U
=
D1f +D2 + f ′′

2f + C

U ′

U
+
D1 − k

2f + C
f ′ (82)

U (4)

U
=

D1

2f + C
f ′′ +

D1f +D2 + f ′′

2f + C

U ′′

U
−

2f ′

2f + C

U (3)

U
(83)

=
(D1 − k)f ′′

2f + C
+

(D1f +D2)
2 − f ′′2

(2f + C)2
−

2f ′2

(2f + C)2
(D1 − k) (84)

V ′′

V
=

2g′

2g − C

V ′

V
+
C1g + C2 + g′′

2g − C
(85)

V (3)

V
=
C1g + C2 + g′′

2g − C

V ′

V
+
C1 + k

2g − C
g′ (86)

V (4)

V
=

C1

2g − C
g′′ +

C1g + C2 − g′′

2g − C

V ′′

V
−

2g′

2g − C

V (3)

V
(87)

=
(C1 + k)g′′

2g + C
+

(C1g + C2)
2 − g′′2

(2g − C)2
−

2g′2

(2g − C)2
(C1 + k) (88)
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Using (81) to eliminate higher derivatives in (77)

(C1 +D1)
2f ′

2f + C

U ′

U
− 2

f ′2

(2f + C)2
(D1 − k) + (D1 − k)

f ′′

2f + C
+

(D1f +D2)
2 − f ′′2

(2f + C)2
+

+C1
D1f +D2 − f ′′

2f + C
− 3λf 2 = αf + β (89)

(C1 +D1)
2g′

2g − C

V ′

V
− 2

g′2

(2g − C)2
(C1 + k) + (C1 + k)

g′′

2g − C
+

(C1g + C2)
2 − g′′2

(2g − C)2
+

+D1
C1g + C2 − g′′

2g − C
− 3λg2 = −αg + γ (90)

Substituting (77) into (49) we have the following

−2f ′
U (3)

U
− 2g′

V (3)

V
+ ((k − C1)f + C2 +D)

U ′′

U
+ (D2 +D − (k +D1)g)

V ′′

V

+2λ(f 3 + g3) + α(f 2 − g2) + (β + γ)(f + g) = 0 (91)

Separating this equation we have

−2f ′
U (3)

U
+ ((k − C1)f + C2 +D)

U ′′

U
+ 2λf 3 + αf 2 + (β + γ)f = δ (92)

−2g′
V (3)

V
+ (−(k +D1)g +D2 +D)

V ′′

V
+ 2λg3 − αg2 + (β + γ)g = −δ (93)

For some δ ∈ R. Eliminating the derivatives from (92) we have the following

2f ′
C2 −D2 − (C1 +D1)f

2f + C

U ′

U
− 2

(D1 − k)

2f + C
f ′2 (94)

+ ((k − C1)f + C2 +D)

(

(D1 − k)f +D2 −D

2f + C

)

+2λf 3 + αf 2 + (β + γ)f = δ (95)

Isolating for 2f ′

2f+C
U ′

U
from (89) assuming C1 +D1 6= 0 and using this to elimi-

nate derivatives in (94)

(C2 −D2 − (C1 +D1)f)

C1 +D1

(

αf + β + 3λf 2 −
(k + C1)(D1 − k)f + C1(D2 −D) +D(D1 − k)

2f + C

+ 2
f ′2

(2f + C)2
(D1 − k)−

(D1f +D2)
2 − f ′′2

(2f + C)2

)

− 2
(D1 − k)

2f + C
f ′2

+ ((k − C1)f + C2 +D)

(

(D1 − k)f +D2 −D

2f + C

)

+ 2λf 3 + αf 2 + (β + γ)f = δ

(96)
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When C1 +D1 = 0, (89) implies λ = 0.

B

Case (ii): In this case we have

(

1

f ′

(

U ′′

U

)

′
)′

= 0,

(

1

g′

(

V ′′

V

)

′
)′

6= 0. (97)

Integrating we get

U ′′

U
= α5f + α6, (98)

where α5, α6 are constants. Equation (45) implies that

2f
U ′′

U
− 2f ′

U ′

U
+ f ′′ = α3f + α4 (99)

α3, α4 are constants. Substitution for U ′′

U
from (98) yields

2f ′U ′ = (f ′′ + 2α5f
2 + (2α6 − α3)f − α4)U. (100)

Differentiation of the above equation followed substitution for U ′′ from (98) and
2f ′U ′ from (100) yields after simplification

(2α5f
2 + (2α6 − α3)f − α2

4)
2 − f ′′2 + 2f ′f (3) + 4α5ff

′2 − α3f
′2 = 0 (101)

Using the relations between f and its derivatives

f ′′ = kf +D, f ′2 = kf 2 + 2Df + Λ (102)

Equation (101) becomes a polynomial in f , the coefficient of the highest power
of f is 4α2

5 which implies that α5 = 0. In view of the above equation (45) sepa-
rates, the compatibility of the separated equation for U with (98) and (100) gives
us that λ = α2

5, thus we conclude that λ = 0 in this case as well.

Case (iii): both of the following conditions hold:

(

1

f ′

(

U ′′

U

)

′
)′

= 0. (103)

(

1

g′

(

V ′′

V

)

′
)′

= 0. (104)
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The solutions of (103) and (104) are given by

U ′′

U
= α5f + α6 (105)

V ′′

V
= (β5f + β6) (106)

Computing derivatives of the above equations:

U (3) = (α5f + α6)U
′ + α5f

′U (107)

U (4) = 2α5f
′U ′ + (α5f

′′ + (α5f + α6)
2)U (108)

V (3) = (β5g + β6)V
′ + β5g

′V (109)

V (4) = 2β5g
′V ′ + (β5g

′′ + (β5g + β6)
2)V (110)

With the use of the above derivatives the integrability condition (44) separates
to yield the following equations:

2(β5 − α5)f
′U ′ = ((α5 + β5)f

′′ + α5(α5 + 2β5)f
2 (111)

+ (2α6(α5 + β5)− α)f − 3λf 2 + α2
6 − α7)U, (112)

2(α5 − β5)g
′V ′ = ((α5 + β5)g

′′ + β5(α5 + 2β5)g
2 (113)

+ (2β6(α5 + β5) + α)g − 3λg2 + α2
6 − α7)V, (114)

where α is the separation constant. If β5 = α5, (111) and (113) imply that

λ = α2
5, β5 = α5, β6 = −α6 (115)

We conclude that (115) implies that φ(u, v) = U(u)V (v) defines a separable
solution of the Helmholtz equation (See (40).). If β5 6= α5, one differentiates
(111) and (113) and eliminates all derivatives of U and V . One obtains polynomial
equations in f and g which imply that β2

5 = α2
5. The case β5 = α5 has already

been considered. The case β5 = −α5, yields 3λ = −α2
5, which is un-physical.

This completes the proof of Case (iii).
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plicative separation of the Schr ödinger equation”. I. The completeness and
Robert-son conditions”. In: Journal of Mathematical Physics 43.11 (2002),
pp. 5183–5222.doi:10.1063/1.1506180.

24



[2] M. Chanachowicz and C. M. Chanu and R. G. McLenaghan ”R-separation of
variables for the conformally invariant Laplace-Beltrami equation” Journal
of Geometry and Physics 59 (2009) 876-884.

[3] C. M. Chanu “Geometry of non-regular separation”. In: Symmetries and
Overdetermined Systems of Partial Differential Equations. Ed. by M. East-
wood and W. Miller Jr. The IMA Volumes in Mathematics and its Applica-
tions vols. 144. Springer, 2008.

[4] C. Chanu, L. and G. Rastelli “Fixed Energy R-separation for the Scrödinger
equation”. In: International Journal of Geometric Methods in Modern
Physics 3(3) (2006), 489-508.

[5] G. F. D. Duff and D. Naylor. Differential Equations of Applied Mathemat-
ics.John Wiley & Sons, 1966.

[6] E. G Kalnins and W. Miller Jr. Intrinsic characterization of variable sep-
aration for the partial differential equations of mechanics. In: Proceeding
of IUTAM-ISIMM Symposium on Modern Developments in Analytical Me-
chanics. 172. Atti Accad. Sci. Torino, 1983.

[7] E. G. Kalnins, J. M. Kress and W. Miller Jr. Separation of Variables and
Superintegrability. IOP, 2018.isbn: 978-7503-1314-8.doi:10.1088/978-0-7503-
1314-8.

[8] W. Miller Jr. Symmetries and Separation of Variables, Addison-Wesley, 1977.

[9] P. Moon and D. E. Spencer Field Theory Handbook Springer-Verlag, Berlin,
1961.

[10] P. M. Morse and H. Feshbach Methods of Theoretical Physics, Vols. 1 and 2,
McGraw-Hill, 1953 (cit.on pp. 1).

[11] J. W. Strutt, Baron Raleigh The Theory of Sound. second ed. Vol. 1. Dover,
1945.

25


	1 Introduction
	2 Geometric theory of separation of variables
	3 Application to the bi-Helmholtz equation
	4 Examples
	4.1 Cartesian coordinates on the plane
	4.2 Polar coordinates
	4.3 Parabolic and Elliptic-Hyperbolic coordinates

	5  The circular vibrating plate 
	6 Conclusion
	A 
	B 

