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ABSTRACT 

Background: Processing longitudinal data is a computational issue that arises in many applications, such as in 
aircraft design, medicine, optimal control and weather forecasting. Given some longitudinal data, i.e. scattered 
measurements, the aim consists in approximating the parameters involved in the dynamics of the considered process. 
For this problem, a large variety of well-known methods have already been developed.
Results: Here, we propose an alternative approach to be used as effective and accurate tool for the parameters 
fitting and prediction of individual trajectories from sparse longitudinal data. In particular, our mixed model, that uses 
Radial Basis Functions (RBFs) combined with Stochastic Optimization Algorithms (SOMs), is here presented and tested 
on clinical data. Further, we also carry out comparisons with other methods that are widely used in this framework. 
Conclusion: The main advantages of the proposed method are the flexibility with respect to the datasets, meaning 
that it is effective also for truly irregularly distributed data, and its ability to extract reliable information on the evolution 
of the dynamics. 
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INTRODUCTION 

Longitudinal data are often object of study in many 
fields, e.g. sociology, meteorology and medicine. In 
medicine, repeated measurements are used to monitor 
the patients’ behaviours and also to adjust the therapies 
accordingly. However, many problems occur when these 
data are analysed. Indeed, each time series could have a 
different number of observations and not equally spaced. 
In addition, the sampling period could vary from patient 
to patient, measurement errors and also missing data 
often occur. Thus, since in these cases common methods, 

such as linear regression, usually fail, the recent research 
is directed towards more robust statistical methods. 
For instance, longitudinal data are commonly analysed 
using parametric models such as Bayesian ones [1] and 
Functional Data Analysis (FDA) [2,3]. In both cases, many 
data are required in order to model the behaviour of the 
studied variable(s). These methods, in fact, try to find an 
‘average curve’ using all the data, including truncated 
series and observations with missing information.

However, in clinical applications the estimate on the 
future dynamics of a single series, given few previous values, 
could be needed; think for instance to tumour volumes during 

e12881-1



ORIGINAL ARTICLESEpidemiology Biostatistics and Public Health - 2018, Volume 15, Number 2

A new numerical method for processing longitudinal data: clinical applications

a treatment, height/weight of children during growth, 
concentration of some substance in the body. Each patient 
is different and could have different growth behaviour and 
different growth parameters, so an ‘average curve’ could 
not be sufficient. An important information could be, for 
example, the possible future development of the subject, 
given his/her previous growth and the clinical background 
(e.g. treatments). These data could be compared with the 
real dynamics, in order to see if the response of the patients 
to the treatment is stable (the parameters do not vary in the 
future) or not (change in the parameters). 

The aim of our work is to propose our numerical tool 
that can provide information on the future dynamics given 
few follow-up data. Thus, we first model longitudinal data via 
widely used mathematical models in population dynamics. 
Therefore, on one hand we aim at validating such model 
by approximating the parameters involved in the dynamics. 
On the other one, we are also interested in giving reliable 
information on the future dynamics of the curves.

In order to achieve our goal, we propose our 
numerical tool based on optimization methods coupled with 
interpolation techniques. Specifically, we approximate the 
parameters involved in the dynamics by means of Stochastic 
Optimization Algorithms (SOMs) [4-7]. Moreover, for 
each data series, we improve the performances of the 
optimization tools by means of Radial Basis Function (RBF) 
interpolation; see [8] for a general overview and [9,10] 
for particular instances on the topic and applications. In the 
interpolation process, we also take into account the critical 
computational issue of carrying out stable computations. 
For this reason, and since data are subject to noise, we 
adopt a kind of Tikhonov regularization (see [11]).

The method, namely RBF-SOM, is here tested on two 
different datasets:

• Height measurements of children with a diagnosis 
of Growth Hormone Deficiency (GHD) during 
treatment,

• Prostate Specific Antigen (PSA) values of 
prostatectomized patients with a recurrence of 
prostate cancer.

The paper is organized as follows: in Section 2 the 
RBF-SOM technique is described. In Section 3 the two 
datasets used for the validation are presented. Section 
4 is devoted to the numerical results and it is divided 
into two subsections: in the first one, all the data of each 
series are considered in order to reconstruct the curves and 
approximate the parameters, while, in the second one, 
only few initial data of each series are used to predict 
the curve behaviour. In Sections 5 and 6 discussion and 
conclusions are presented.

METHODS

This section is devoted to describe the method used to 
fit a given data series and to approximate the parameters 

involved in the dynamics. 
Given several scattered measurements  

sampled at different times , the basic idea of 
the RBF-SOM here proposed consists in considering the 
theoretical function f, depending on the time t and on 
several parameters λ = (λ1,..., λp

), and to approximate such 
parameters in order to obtain reliable information on the 
biological or physical phenomenon. 

In the proposed examples, we use, as theoretical 
growth curve f, the so-called Gompertzian function:

where f
0
 is the measurement at time t

0 
(i.e. the 

first measurement), λ1 is the growth rate and λ2 is the 
carrying capacity, i.e. the maximum value that can be 
asymptotically achieved by f. 

The Gompertzian function is characterized by a fast-
growing initial period and by a progressive slowdown, 
reaching a carrying capacity after a certain time. This 
curve, depending on the values of the parameters, is 
able to model a variety of types of growth, from human 
to cancer cells ones, see [12-16] for details. For this 
reason, we will use in Section 5 the same function for both 
datasets. Moreover, its form is particularly suitable in this 
study because the parameter estimation is not possible via 
simple methods like Least Square Approximation.

Trivially, the parameters are approximated by finding 

Note that we need optimization methods that can be 
used in case of non-linearity of f, as in the considered cases. 
In particular, we direct our research throughout stochastic 
methods. They have been designed by considering 
analogies with natural phenomena. The most popular are 
evolution strategy and genetic algorithms, both based on 
competition among individuals. On the opposite, other 
methods proposed in the last decades mainly focus on 
cooperation. Among them, Particle Swarm Optimization 
(PSO), Cuckoo Search (CS) and ant colony are widely 
used techniques, based on the mutual interaction and 
exchange of information between individuals. In particular, 
here we will consider PSO and CS briefly described in 
what follows.

PSO has been firstly introduced in [4] by Kennedy 
(social psychologist) and Eberhart (electrical engineer) and 
further developed by other researches, see for instance 
[6,7,17]. In order to describe it, let us consider a group 
of particles or birds which are represented as points in 
the space. At first, we need to model their way of flying. 
Then, taking into account that the target of birds consists 
in looking for the maximum availability of food, i.e. the 
minimum of the objective function f, we can easily find its 
minimum.
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The main objective consists in simulating the trajectories 
of the single birds by considering their selfish behaviour 
(which is the ability of a bird of randomly flying away 
from the flock) and their social behaviour (which is the 
ability of a bird of staying in the group). With these simple 
considerations, it is possible to simulate the way of moving 
of a group of birds, taking also into account that particles 
avoid collisions.

To explain how we can find the minimum of the 
objective function interpreting the latter as food, let us first 
suppose that a bird discovers some food. Then, the other 
birds have two alternatives:

• get out of the flock and reach the food (selfish 
behaviour); 

• stay in the flock (social behaviour).
If a good trade-off between the two behaviours is 

allowed, then the flock can reach the minimum. Indeed, if 
a bird can move towards some food then other birds can 
change their directions towards the same place. Acting in 
this way, the flock gradually changes its direction until the 
best place, i.e. the minimum, is reached.

As concerns CS, it was developed by Yang [18] and 
it simulates the behaviour of the cuckoo, a bird that does 
not incubate its eggs but tries to put them in nests of other 
species. The problem of this conduct is that, in some cases, 
the egg is removed by the nest’s owner. The cuckoo, then, 
searches a nest in which its egg can be ‘confused’ with 
the others. Therefore, in this algorithm the minimum of the 
function is the nest in which more cuckoos can put their 
eggs without being discovered. 

As for the PSO, the user needs to give a set of 
possible initial solutions. They are usually randomly 
initialized. Indeed, if the initial solutions are chosen so that 
they are feasible, the stochastic methods do not fail into 
local minima and thus the methods are not truly sensitive 
with respect to the initial conditions. The main difference 
with respect to the PSO approach is that, at each iteration, 
a fraction of nests, which are far from the minimum, are 
abandoned and new ones close to the minimum are built.

Note that both PSO and CS approaches can be 
performed in order to minimize the target function, but 
unfortunately the cardinality of the samples in concrete 
applications is really small. Thus, in order to improve 
the performance of the optimization methods, we first 
reconstruct the growth curves by means of a RBF-based 
interpolation scheme; see (Fasshauer and McCourt 2015; 
Wendland 2005)”plainCitation”:”(Cavoretto, de Rossi, 
and Perracchione 2017; Fasshauer and McCourt 2015; 
Wendland 2005. In doing so, we also take into account 
the instability problems arising in applications. An example 
of RBF reconstruction can be seen in Fig.1a-b (big 
coloured dots).

Moreover, the so-reconstructed function can be used to 
estimate λ

l
, l > N, i.e. the evolution of the considered quantity.

As accuracy indicator, we use the following Root 
Mean Square Error:

where denotes the number of patients. This indicator 
represents the standard deviation of the differences 
between predicted and observed values. 

DATA 

In order to assess strength and weaknesses of 
the discussed methods, we use two different datasets 
presented below. Both datasets are real patients’ data. 
Each patient has a different number of irregularly spaced 
measurements in a different time interval. 

Children data

Different problems can occur during growth. Here 
we consider paediatric patients with a diagnosis of 
Idiopathic Growth Hormone Deficit (IGHD), i.e. a low 
or absent production of GH for unknown causes. These 
children are treated with rhGH (a synthetic GH) and 
monitored during growth. 

Our dataset is composed by 121 male IGHD 
patients, treated in “Ospedale Infantile Regina Margherita 
(OIRM)” in Turin between January 2000 and January 2016 
[16,20] few studies analyze the effect of GH therapy on 
height, preferring a more indirect approach, where factors 
influencing the total pubertal and pre-pubertal growth in 
GH-deficient patients are evaluated and subsequently used 
to estimate the overall effect at the end of the therapy; 
unfortunately, this approach does not quantify the real 
growth gain in treated patients. Using a non-parametric 
Empirical Bayes approach, our study analyzes the growth 
response to GH treatment in a homogeneous cohort of 
317 patients with pituitary GH deficiency who were 
enrolled during their pre-pubertal stage in the GH Piedmont 
Registry (Italy. The measurements are collected each 4-6 
months from the beginning of the therapy (age between 
3 and 14 years) to the adulthood (18-20 years old). As 
explained in [12], each period of human growth can be 
modelled with a Gompertzian law. We therefore use, as 
theoretical function, the Gompertz curve explained in the 
section before.

Note that each series is monotonic, strictly growing, 
not (or slightly) affected by measurement errors and it 
has very few missing data. Therefore, we expect robust 
performances of the RBF-SOM method for this clinical test. 

Prostate cancer data

Data released from clinicians about the PSA value 
(which is a mirror of the mass of the prostate cancer) are 
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needed in order to have a reliable estimate the cancer’s 
evolution. After a radical prostatectomy, the PSA turns out 
to be a good biomarker and it could be used to monitor 
a possible relapse. In fact, only prostate cells produce the 
PSA and, after surgery, there should be no prostate cells 
in the body. Hence, the PSA value should be very small, 
close to zero. If its value is bigger than 0.2 ng/mL, then 
PSA-producer cells are present, i.e. a relapse (a local or 
distal metastasis) occurs.

Here we use a subset of the Eureka1 study collection 
[21]. Eureka1 is a retrospective study on Italian patients 
who had a prostatectomy in the last 15 years. Our subset 
contains follow up data (PSA values series) of relapsed 
patients who did not undergo an adjuvant therapy.

In general, cancer growth is very fast and it is 
modelled with an exponential function. However, prostate 
cancer is a very slow-growing tumour, so Gompertzian 
[22-24] and West [25-27] laws are often used. In the 
following section, we will use the Gompertzian one.

Note that these series are not monotonic: PSA values 
can grow, be stable for months or decrease. PSA values 
should be sampled each 4-6 months, while in some series 
only 1-2 values are reported in 1-2 years. The PSA value 
strictly depends on the accuracy of instruments used in 
laboratory: some machines have a precision of 0.1 ng/
mL, while others of 0.01 ng/mL. Moreover, the precision 
could change from value to value in the same series. 
Therefore, for the RBF-SOM method this dataset is more 
challenging than the previous one. 

RESULTS

Curve reconstruction

The tests carried out in this subsection are devoted 
to assess the robustness of the RBF-SOM method as 
descriptive tool. Indeed, we consider each growth curve 
and we approximate the two parameters involved in the 
dynamics, i.e. the growth rate and carrying capacity. We 
remark that, at first, we reconstruct the curve by means of 
RBF interpolants and we then apply PSO or CS methods. 
The aim of these experiments is to obtain a feedback about 
the accuracy of the proposed approach in approximating 
the parameters.

Figure 1 shows two examples of the methods in the 
case of one unknown parameter. In particular, Fig.1a 
shows the reconstruction of a growth curve of one child 
(GH Database), while Fig.1b shows the reconstruction of 
a PSA growth curve. The circles represent real data, the 
big coloured dots are the RBF interpolation and the straight 
and dotted lines are the PSO and CS reconstructions 
respectively.

For both datasets, we consider as theoretical growth 
curve the Gompertzian function. Note that, differently from 
the growth rate, the carrying capacity (the maximum value 

that can be achieved asymptotically) can supposed to 
be fixed and known for all patients in both datasets, i.e. 
only one parameter should be estimated. In what follows, 
we test the methods with both one and two unknown 
parameters. As expected, when only the growth rate needs 
to be estimated, we obtain better results. 

More precisely, as concerns only one unknown 
parameter λ1 (while λ2 is fixed as 200 cm in GH and 
200 ng/mL in PSA database) both RBF-PSO and RBF-CS 
are truly performing and show the same accuracy (e =1.2 
cm in GH and e =0.9 ng/mL in PSA database). Results 
are shown in Table 1. This means that data follow the 
theoretical distribution predicted by the Gompertzian and 
that the parameter is accurately estimated.

As concerns two unknown parameters, RBF-CS is 
more effective than RBF-PSO. In fact, for the former the e 
=0.80 cm and e =0.89 ng/mL in GH and PSA database, 
respectively, while for the latter the e =2.66 cm and e 
=0.91 ng/mL. Results are shown in Table 1. Note that 
this happens also enlarging the basin of possible solutions 
in the CS algorithm.

Dynamics evolution

This subsection is addressed to test the method for 
modelling the evolution of the dynamics. Thus, we apply 
the RBF-SOM using only the first four values of each series. 
We select the first four values for several reasons. First 
of all, the data availability: indeed, only few patients 
(in both databases) have more than six values in their 
series. Then, selecting four data in the databases means 
that they represent about two years of follow-up, that is a 
reasonable period to understand the future dynamics. 

Again, by fixing the carrying capacity, both methods 
give the same results (e =3.01 cm in GH and e =3.20 
ng/mL in PSA database). Results are shown in Table 1. 
Of course, the error is larger than the one shown in the 
previous subsection. However, since here we only take 
four values, such error indicates a meaningful accuracy 
on the estimation, especially as concerns the GH case. In 
fact, it means that, after four measurements, we are able 
to estimate the final height with a precision of about 3 cm. 
Looking at the other dataset, the error seems truly large, is 
e =3.20 ng/mL. But, the majority (73.46%) of estimates 
differ less than 1 ng/mL to the real value. Unfortunately, 
the irregularity of the measurements and the errors due to 
the machine precision might cause problems for several 
series. Indeed, in few cases (6.12%), results differ more 
than 3 ng/mL from the real value. 

Figure 2 shows some examples of the output of the 
method, in case of one unknown parameter: the circles 
are the real data (heights or PSA during visits), dots are 
the RBF interpolation on the first four values and PSO 
and CS provisions are the straight and dotted lines. 
Fig.2a-b concern on GH database, while Fig.2c-d on PSA 
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database. In particular, Fig.2a shows only one growth 
period, while in Fig.2b there is the combination of two 
growth periods. Note in Fig.2d that the estimation error 
grows during time, because of the irregularity of the data.

As for the two parameters (carrying capacity and 
growth rate), the estimate on the final height cannot be 
performed with only four values. Indeed, it is well known 
that there are no optimization tools robust enough to 
accurately approximate two parameters given only four 
samples. However, we remark once more that more 
measurements can be added to the model and in this 
sense, after also approximating the carrying capacity, the 
estimate on the final value can be sensibly improved.

DISCUSSION

From the numerical experiments, we note that both 
RBF-CS and RBF-PSO provide reliable approximations, 
even if CS seems to be less affected by the quality of 
input data. 

The novelty of the presented RBF-SOM method is the 
type of output. Indeed, it provides a (continuous) growth 
curve allowing the analysis of each growth function 

independently of the others. This can be an advantage for 
doctors: for example, they can understand if the treatment 
is effective and, if not, change the therapy accordingly. 
In this sense, this approach is opposite to the most used 
techniques such as Bayesian methods or FDA. They 
analyse a (hopefully) large amount of similar data, from 
different patients, and try to find a common behaviour (or 
groups of them), in order to make predictions about new 
‘standard’ patients. RBF-SOM, instead, starts from very few 
data of a single patient and estimates the curve, with a 
‘personalized medicine’ approach.

RBF-SOM and FDA have the same starting point: 
each series is considered as a curve [3,22,28], while 
Bayesian methods take into account data points. RBF-
SOM and FDA find coefficients that describe the growth, 
while Bayesian methods are non-parametric. FDA gives a 
polynomial reconstruction, i.e. the coefficients represent 
velocity, acceleration and other derivatives, while RBF-
SOM finds the biological parameters of the chosen 
theoretical function. In some cases, a simple description of 
the growth velocity could be sufficient. RBF-SOM is more 
problem-specific, but this means that a theoretical function, 
such as the Gompertzian one, needs to be known. 

As concerns the reconstruction, FDA is similar to 

FIGURE 1. One unknown parameter: curve reconstruction of a) the height of a GH patient; b) the PSA values of a prostatectomized patient.

TABLE 1. Summary of the accuracy of the methods on test data

MODEL N° UNKNOWN 
PARAMETERS

DATABASE RBF-PSO (E) RBF-CS (E)

Curve reconstruction 1 GH 1.2 cm 1.2 cm

PSA 0.9 ng/mL 0.9 ng/mL

2 GH 2.66 cm 0.80 cm

PSA 0.91 ng/mL 0.89 ng/mL

Dynamics evolution 1 GH 3.01 cm 3.01 cm

PSA 3.20 ng/mL 3.20 ng/mL
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RBF. Our method introduce in addition errors due to the 
parameter approximation and the adhesion of data to 
the theoretical function. Bayesian methods are flexible 
in clustering and curve reconstruction, because are 
non-parametric techniques and do not need theoretical 
functions like the Gompertzian one. Hence, in order to 
reconstruct the whole curve and/or make clusters, FDA 
and Bayesian methods are preferable to RBF-SOM. 

Concerning the estimate of the future dynamics of the 
curve, RBF-SOM is proved to be reliable and robust even with 
few initial data. Moreover, the result is personalized on the 
single patient, which is not possible using Bayesian methods. 
FDA cannot be used in this way, while it can compare 
different versions of the same phenomenon and distinguish 
phase and amplitude variations (see for example [28]).

CONCLUSIONS

Longitudinal data can be analysed in different ways. 
In the majority of cases, the goal of the analysis is to find 

trend, or cluster, that a new series would follow, given 
many similar series and some additional parameters. 

In this work, the goal is slightly different: to find 
the exact future dynamics of the single curve, given the 
previous data (of the curve) and the theoretical function 
that it should follow. 

This approach could be useful in order to both consider 
biological meaning on the parameters of the curve and 
predict the future of the series without considering a large 
amount of similar data.

Moreover, RBF-SOM is a good tool for the 
reconstruction of curves, given its expected shape. It could 
be used in a large variety of cases, for both analysing 
pre-existent data as well as producing estimates of future 
scenarios, in a personalized medicine framework.

Ethics approval and consent to participate

Informed consent and ethical approvals were obtained 
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FIGURE 2. One unknown parameter: dynamics evolution of a-b) height of GH patients; c-d) PSA values of prostatectomized patients.
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