Turning Renewable Feedstocks into a Valuable and Efficient Chiral Phosphate Salt Catalyst

This work is dedicated in loving memory of Achille Antenucci Sr.

Abstract: Solketal, the chiral acetonide of glycerol, has been employed as the starting material in the design of a novel punctually chiral phosphate sodium salt for catalytic applications in organic and asymmetric synthesis. The racemate and the two enantiomers of the substrate are economic and commercially available, straightforwardly prepared in high yields from naturally occurring feedstocks. Therefore, remarkably, both enantiomers of the final catalyst can be synthesized by simple procedures in high yield and in compliance with several principles of green chemistry. To further demonstrate the usefulness of the novel catalyst, its application in a solventless protocol for cyanohydrin synthesis from a series of aldehydes has been presented.

1. Introduction

Glycerol (IUPAC name 1,2,3-propanetriol) is one of the first organic compounds isolated, through saponification of fats in the presence of alkaline ashes; the earliest evidences of this reaction date back to ancient Mesopotamia.[1] While around the middle 20th century its industrial scale production was mainly carried out from fossil fuel sources (propylene derivative epichlorohydrin, Scheme 1a), the growing demand for saving non renewable resources has driven to a reassessment of triglyceride alkaline hydrolysis. Nowadays, then, saponification of fats and oils with sodium hydroxide is the preferred strategy for large scale supply of this compound, together with trans-esterification with methanol that occurs during biodiesel production process, for which glycerol is a waste byproduct (Scheme 1b). In light of these well-established processes, glycerol is an abundant renewable resource, whose easy

[a] Dr. A. Antenucci, M. Bertolone, Prof. S. Dughera
Department of Chemistry
University of Turin
Via P. Giuria 7, 10125 Turin (Italy)
E-mail: achille.antenucci@unito.it
[b] Dr. A. Antenucci
NIS Interdepartmental Centre, Reference Centre for INSTM
University of Turin
Via Giovanni Quarello 15/A, 10135 Turin (Italy)
[c] Dr. A. Antenucci, M. Messina, Prof. Dr. M. Bella, Dr. R. Salvio
Department of Chemistry
University of Rome “Sapienza”
P.le A. Moro 5, 00185 Rome (Italy)
[d] Prof. Dr. A. Carlone
Department of Physical and Chemical Sciences
University of L’Aquila
via Vetoio, 67100 L’Aquila (Italy)
[e] Dr. R. Salvio
Department Chemical Sciences and Technologies
University of Rome “Tor Vergata”
Via della Ricerca Scientifica 1, 00133, Rome (Italy)
[f] Dr. R. Salvio
CNR, Institute for Biological Systems, Rome Headquarter- Reaction Mechanisms
Department of Chemistry
University of Rome “Sapienza”
P.le A. Moro 5, 00185 Rome (Italy)

Supporting information for this article is available on the WWW under https://doi.org/10.1002/ajoc.202100624

accessibility and low price make it perfectly suitable as a starting material for the synthesis of several valuable chemical compounds: amino acids, carboxylic acids, among others. Indeed, during the first decade of the 21st century, glycerol chemistry has received considerable attention, partially due to a growing inspiration to the green chemistry perspective, whose principle states that renewable feedstocks and raw materials, most of which are naturally occurring, should be preferred whenever possible within the framework of chemical transformations.

More recently, in compliance to the 5th principle of green chemistry, glycerol has been used as a solvent itself or in the preparation of deep eutectic solvents (DESs), a new generation of green media for chemical synthesis. However, to the best of our knowledge, no application of glycerol has instead been disclosed as the starting material for the design of catalysts. Indeed, naturally occurring chiral backbones (e.g. Cinchona alkaloids, amino acids) are fundamental starting materials to synthesize various chiral organocatalysts and ligands of organometallic catalysts for asymmetric synthesis. Glycerol is, however, prochiral, but its desymmetrization has been performed either by biocatalysis or organocatalysis, including peptide catalysis, in order to provide low cost chiral building blocks. Alternative synthetic approaches, including the use of chiral auxiliaries, are also available, while direct asymmetric acetalization/ketalization of glycerol still remains a major challenge. Nevertheless solketal, the acetonide of glycerol, is a non expensive and easily accessible chiral derivative, and both of its enantiomers derive from chiral pool compounds, namely D-mannitol (extracted from the cortex of Fraxinus Ormus) and D-erythrose (extracted from red raspberries)

Currently, common phosphoric acid chiral organocatalysts are 7 terms cyclic diesters of H3PO4 derived from biaryl (BINOL, VANOL, VAPOL), spirocyclic (SPINOL) and tartaric acid derived (TADDOL, diethyl tartrate) diols. Known chiral 6 member cyclic PAs (chlocyphos, anycyphos, phenacyphos, etc.) have only been employed as resolution agents for chiral amines. No example of catalysis from 5 member cyclic PAs or their derivatives has been described in the literature yet. Herein, we present the synthesis, for catalytic purposes, of the first member of the family of phosphatidic acids or cycloglycerophosphates (cGPAs), a novel class of punctually chiral phosphates. The main features of this route are: easiness of preparation in high overall yield and in compliance to several principles of green chemistry, the accessibility of both enantiomers and the low cost of their precursors. Furthermore, we demonstrate its practical usefulness in the solventless addition of TMSCN to aldehydes to afford geminal cyanohydrins.

2. Results and discussion

We began our synthesis (Scheme 3) from solketal 1, whose quantitative derivatization into the corresponding tosylate 2 was carried out in DCM in the presence of triethylamine and a catalytic amount of DMAP. Chloroform and pyridine are known suitable alternative solvents for the same reaction; however, in the perspective of designing a fully sustainable route we decided to employ 2-methyltetrahydrofuran (2-MeTHF), a biomass-derived green solvent, which allowed to afford the crude product in quantitative yield as well as in DCM, while avoiding class 2 solvents. Nucleophilic displacement on the crude tosylate 2 with 1-naphthol 3 in DMF in the presence of sodium hydride afforded quantitatively a mixture of 1-naphthyl derivative 4 and the corresponding diol 5a, which is the product of the following reaction. The same reaction gave no conversion to 4 in greener organic solvents, such as 2-MeTHF or CPME, under reflux. The hydrolysis of the subsequent ketal, run on the reaction crude following a known literature procedure (10% aq. HCl), was however disappointingly low (68% over 2 steps).

For this reason, a quick screening was performed in order to replace HCl with an organic acid. p-Toluensulphonic acid (PTSA), (+)-camphorsulphonic acid ((+)-CSA) and o-benzenedisulphonimide (OBS), which was first introduced by our group as a Brønsted acid organocatalyst, were the subject of our screening (Table 1).

While the employment of a large excess of HCl allows to afford the product in satisfactory yield after 24 h (Table 1,
entry 1), better results could be obtained by adding sub stoichiometric PTSA (entries 3–4), as long as the catalyst loading and the reaction time are sufficient; indeed, 20 mol% PTSA yields only 65% of diol 5a after 24 h (entry 2). (+)-CSA and OBS gave inferior results in the same conditions (entries 5–6). The best conditions found showed that the reaction can be directly performed on crude 4, thus avoiding a chromatographic purification. However, complete evaporation of DMF and selective crystallization in methanol of bis (naphthalen-1-yloxy)methane 13, that was formed in the reaction environment as a byproduct, are crucial steps in order to ensure reproducibility, also on a larger scale. The ketal hydrolysis was consequently performed with 40 mol% PTSA at 60°C in ethanol, affording pure 3-(naphthalen-1-yloxy)glycerol 5a in 91% yield over 2 steps after chromatographic purification (Scheme 3). The final phosphorylation step was then performed with an excess of POCl₃ and triethylamine in anhydrous 2-MeTHF at −78°C, by modifying a literature protocol by Timmer et al.[23] Notably, the low temperature was found to be crucial to afford the cyclic 5 member phosphate as the only product, since a multitude of undesired phosphorous containing compounds was observed by ³¹P NMR spectroscopy after reaction of 5a with POCl₃ and triethylamine at room temperature, albeit in anhydrous conditions. Column chromatography was not necessary to isolate cycloglycerophosphate 6a, which was obtained in pure form in 93% yield and 84% overall yield over 4 steps, starting from 1. The E factor of this catalyst has been calculated, and the resulting value of 741 is considerably lower than those of axially chiral phosphates.[24] Some attempts of greener phosphorylation with Stawinski reagent[25] (see SI for further details) resulted in a lower conversion of the substrate 5a and in problematic chromatographic purification (Scheme 4).

Disappointingly, the acidic treatment of 6a with both diluted HCl (10⁻² M to 10⁻⁶ M) or Dowex-50WX8 ion exchange resin revealed the instability of the cyclic structure, as highlighted in the ³¹P-¹H coupled NMR spectrum, which shows the presence of equimolar amounts of 1-glycerophosphoric acid 7a and 2-glycerophosphoric acid 8a, which correspond to a non regiospecific hydrolysis of the cyclic phosphodiester bonds. Indeed, the peaks in the region between 2.1 and 2.7 ppm are characteristic for open chain phosphoric acid monoesters; furthermore, their multiplicity accounts for a J coupling of the phosphorous atom with the proton of the stereogenic centre (compound 7a, doublet) or with two diastereotopic protons (compound 8a, double doublet that collapses in a triplet) (Scheme 5).

Table 1. Optimisation of the acidic hydrolysis of ketal 4 in ethanol at 60°C.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Acid</th>
<th>Loading</th>
<th>Time [h]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HCl 37%</td>
<td>11.5 eq.</td>
<td>24 h</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>PTSA 20 mol%</td>
<td>24 h</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PTSA 40 mol%</td>
<td>24 h</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PTSA 40 mol%</td>
<td>48 h</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(+)-CSA 40 mol%</td>
<td>48 h</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OBS 40 mol%</td>
<td>48 h</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

[a] All the reactions were performed in absolute ethanol and with a 1.5 M concentration with respect to compound 4, if not differently stated. [b] Reaction performed at room temperature in a 1:1 solution of EtOH/HCl 37% with a 1.0 M concentration with respect to compound 4.

Scheme 4. Comparison between the two phosphorylation approaches to the final catalyst 6a.

Scheme 5. Acidic treatment of catalyst 6 and ³¹P-¹H coupled spectrum (600 MHz, MeOD) of the resulting mixture.
As a further indirect evidence of the acidic instability of the phosphatidic acid scaffold, diol 5c, bearing a Brunsted acidic phenylthioureaic pendant, was prepared from commercially available 3-amino-1,2-propanediol 5b and reacted with POCl₃ in the same conditions as compound 5a. However, upon hydrolysis of the intermediate phosphoric acid chloride, an open chain structure (triplet in the ^{31}P-1H coupled NMR spectrum) corresponding to phosphoric acid triethylammonium salt 8c was isolated (Scheme 6).

Given the challenges associated with the isolation of a 5-member cyclic phosphoric acid, we decided to employ the alkali salt 6a as the model catalyst. Indeed, it is well known that catalysis from alkali salts of chiral phosphoric acids represents a parallel research field to catalysis from phosphoric acids themselves. As a matter of fact, we found out that, in the presence of 6, the room temperature addition of TMSCN to aldehydes 10 occurs within a few minutes without the necessity of any solvent. This reaction is indeed very important, as the Strecker reaction is well known for the preparation of synthetic α-amino acids. It must be stressed that some background reactivity has been observed in the absence of catalyst 6a (silylated cyanohydrin 12a from aldehyde 10a, 19% yield); for instance, after 30 minutes partial conversion of benzaldehyde 10a has been verified by TLC and NMR (spectra in the SI). In any case, it must be stressed that the reaction did not reach complete conversion of the substrate even after 24 hours. Because the reaction affords a mixture of unprotected cyanohydrins 11 and silylated cyanohydrins 12, after the removal of the catalyst 6a upon dilution with Et₂O and simple filtration, the crude mixture was treated with 1 M HCl and extracted in EtOAc to afford cyanohydrins 11 without the necessity of any chromatographic purification. In this second step, a catalytic role of hydrochloric acid (desilylation agent) should be excluded. In fact, when substrate 10a was reacted in the absence of catalyst 6a for 5 minutes and then treated with diluted HCl for 2.5 hours, NMR spectra of the crude reaction mixture showed the presence of major amount of unreacted 10a. The E factor of the process is 103; however, to give a more realistic idea of the actual impact of the protocol, the synthesis of the necessary amount of catalyst 6a has been taken into account, thus giving an Eₐ factor value of 270. It is useful to point out that all the reactions have been carried out on a 1 mmol scale and, therefore, less amount of waste could result from optimisation on a larger scale. A small substrate scope has been performed, and the relative results are summarized in Table 2.

![Scheme 6. Phosphorylation of diol 5c, bearing an acidic pendant, affords open chain glycerophosphate 8c.](image)

Table 2. Substrate scope of the solventless addition of TMSCN to aldehydes catalysed by rac-6a.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>TMSCN [eq.]</th>
<th>Time [min]</th>
<th>Product Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₆H₅</td>
<td>1.5</td>
<td>5</td>
<td>11a 99</td>
</tr>
<tr>
<td>2</td>
<td>3-NO₂-C₆H₅</td>
<td>1.5</td>
<td>5</td>
<td>11b 99</td>
</tr>
<tr>
<td>3</td>
<td>4-Cl-C₆H₅</td>
<td>1.5</td>
<td>5</td>
<td>11b 99</td>
</tr>
<tr>
<td>4</td>
<td>4-Thienyl</td>
<td>1.5</td>
<td>5</td>
<td>11d 99</td>
</tr>
<tr>
<td>5</td>
<td>4-CH₃-C₆H₄</td>
<td>1.5</td>
<td>5</td>
<td>11e 99</td>
</tr>
<tr>
<td>6</td>
<td>4-OCH₃-C₆H₄</td>
<td>1.5</td>
<td>60</td>
<td>11f 99</td>
</tr>
<tr>
<td>7</td>
<td>n-C₆H₄</td>
<td>1.5</td>
<td>10</td>
<td>11g 99</td>
</tr>
<tr>
<td>8</td>
<td>2-OCH₃-C₆H₄</td>
<td>1.5</td>
<td>120</td>
<td>11h 99</td>
</tr>
<tr>
<td>9</td>
<td>2-NO₂-C₆H₄</td>
<td>1.5</td>
<td>5</td>
<td>11i 99</td>
</tr>
<tr>
<td>10</td>
<td>2-Ph-C₆H₄</td>
<td>1.5</td>
<td>30</td>
<td>11j 99</td>
</tr>
</tbody>
</table>

[a] Mixture of diastereomers in 1.69:1.00 ratio.

Table 3. Recycling of catalyst rac-6a in the solventless addition of TMSCN to aldehyde 10b.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cycle n.</th>
<th>Time [min]</th>
<th>Yield [%]</th>
<th>Cat. recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>99</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>99</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>99</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>99</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>99</td>
<td>88</td>
</tr>
</tbody>
</table>

It must be stressed that, differently from substrates indicated in Table 2, the above described protocol did not prove suitable for 4-pyridinecarboxaldehyde 10k, which underwent decomposition, or 4-hydroxybenzaldehyde 10l, which gave no conversion over 4 hours. The catalyst could be recycled without any significative loss in the reaction yield (Table 3); given the very fast reaction time, it was not possible to assess any impact on the catalyst activity, e.g.: stopping the reaction at a timepoint equivalent to 50% conversion on the first cycle to show that it doesn't change throughout the recycles.

No enantiomeric excess was observed when catalyst 6a was tested as an enantioselective catalyst (Table SII). In order to develop enantioselective competent catalysts, the design of novel cGPAs decorated with bulkier or coordinating pendants and C_2-symmetric cGPAs is currently under investigation in our laboratory.

3. Conclusion

Herein the first member of a novel class of chiral phosphates to be employed for catalytic purposes, namely cycloglycerophosphates (cGPAs), has been presented. Both the enantiomers of...
cGPAs are easily accessible from inexpensive reagents of the chiral pool. Particularly, desymmetrization of glycerol offers the possibility of realizing their synthesis from glycerol, one of the cheapest renewable sources currently available for organic synthesis. The main part of our synthetic route, starting from inexpensive chiral glycerol derivative solketal 1, is compliant to some of the 12 principles of green chemistry and involves a single chromatographic purification, while the green optimization of the final phosphorylation step is currently underway. The novel catalyst, employed in the neat addition of TMSCN to some of the 12 principles of green chemistry and involves a single chromatographic purification, while the green optimization of the final phosphorylation step is currently underway.

The authors also wish to thank prof. Claudio Medana from University of Turin for HRMS analysis of compound 6a. Open Access Funding provided by Università degli Studi di Torino within the CRUI-CARE Agreement.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: green chemistry · catalyst design · chiral phosphate salt catalysis · Streecker reaction · chiral pool

Manuscript received: September 29 2021
Accepted manuscript online: October 12, 2021
Version of record online: November 10, 2021