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To be submitted to ApJ Letters.

On the convergence of Magnetorotational turbulence in stratified

isothermal shearing boxes

G. Bodo1, F. Cattaneo2, A. Mignone3, P. Rossi1

ABSTRACT

We consider the problem of convergence in stratified isothermal shearing boxes

with zero net magnetic flux. We present results with the highest resolution to-

date–up to 200 grid-point per pressure scale height–that show no clear evidence

of convergence. Rather, the Maxwell stresses continue to decrease with increasing

resolution. We propose some possible scenarios to explain the lack of convergence

based on multi-layer dynamo systems.

Subject headings: accretion disc - MRI - MHD - dynamos - turbulence

1. Introduction

The magneto-rotational instability (MRI) and magneto-rotational turbulence (MRT)

provide an elegant framework to study the origin of enhanced angular momentum transport

in accretion discs. Much effort has been devoted to understanding the nonlinear develop-

ment of the MRI and the processes that control the saturation amplitude of the instability,

since, ultimately this controls the transport efficiency. Because of the difficulties inherent in

approaching a strongly nonlinear problem analytically, much of the work on MRT has relied

on numerical simulations with all their attendant idealizations and approximations. By far

the most popular is the shearing-box approximation in which the computational domain is

restricted to a region of small radial extent at a large radius in the disc. Under reasonable

assumptions this can be mapped into a Cartesian layer with shearing-periodic boundary

conditions in the radial direction. Because the shearing-box approximation conserves verti-

cal magnetic flux it is important to distinguish two types of simulations: those with finite
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initial (vertical) flux and those with zero initial flux. If the flux is finite there is a linear

instability with a well defined growth rate and wavelength of maximum growth whose values

are determined by the amount of flux (Balbus & Hawley 1991). In the nonlinear regime the

amplitude of the Maxwell stresses–primarily responsible for angular momentum transport–is

controlled by the amount of magnetic flux, and most crucially, remains finite in the ideal

limit of vanishing dissipation. If, on the other hand, the initial flux is zero, the domain could

in principle de-magnetize completely and relax to a state of uniform shear. If after a long

time it does not, it must be because the magnetic field is being regenerated by turbulent

motions. In this case, the MRI does not manifest itself as an exponentially growing linear

instability, rather it is a subcritical dynamo process. In this case, the spatial scales of the

dominant magnetic structures and the efficiency of the angular momentum transport are de-

termined by the dynamo itself. Two questions naturally arise: what kind of dynamo action

can be sustained in a shearing-box, namely small-scale or large-scale, and what happens to

the dynamo when the diffusivity, numerical or otherwise, becomes vanishingly small. Ad-

dressing these issues has turned out to be a major and complex undertaking, even within

the idealized framework of the shearing-box approximation.

The first question is not specific to MRI driven dynamos but to dynamos in general.

Under what circumstances does a dynamo generate substantial amount of magnetic flux

has been a long standing problem in astrophysical dynamo theory. Large-scale dynamos

are often associated with flows lacking reflectional symmetry, or incorporating large scale

shear, or a net flux of magnetic helicity through the boundaries, or any combination of the

above. The second question was originally posed by Fromang & Papaloizou (2007) within

the framework of unstratified, homogeneous shearing boxes and it has since become known as

the problem of convergence. Simply stated, a family of solutions of the MRI equations does

not converge if the Maxwell stresses tend to zero as the dissipation tends to zero. Although,

superficially, the convergence problem might seem mostly a matter of numerics, and indeed

originally it was framed that way, actually it is not. Understanding why some shearing-box

models converge and some do not is a fundamental question about nonlinear dynamo action

in centrifugally stable systems. It is now commonly accepted that homogeneous, unstrat-

ified shearing boxes without explicit dissipation–these were the cases originally considered

by Fromang & Papaloizou (2007) do not converge (for recent reviews, see Fromang 2013;

Turner et al. 2014). The reason for the lack of convergence may be related to the small-scale

nature of the dynamo operating in these systems, or to the lack of a characteristic outer

scale or to a combination of these two factors (Bodo et al. 2011). All other cases are not as

clear.

In the present paper we address the problem of convergence, or lack thereof, in the

stratified isothermal case without explicit dissipation. This is the simplest shearing-box
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model with nontrivial stratification. Despite the simplicity of the models, the dynamo that

operates in these systems is far from simple. In an isothermal atmosphere with linear gravity

reversing in the middle, hydrostatic balance gives rise to a density stratification with an

approximately Gaussian profile and most of the mass concentrated near the mid-plane. A

seemingly turbulent dynamo operates in this dense, central region while propagating wavelike

magnetic activity patterns are observed in the tenuous overlying layers (Gressel 2010). A

resolution study by Davis et al. (2010) with resolution up to 128 grid-points per scale height

concluded that there was strong evidence for convergence. This led several authors to declare

this case as settled in favor of convergence (Shiokawa et al. 2012; Fromang 2013; Turner et al.

2014). Here, we extend this study to 200 grid-points with a similar, but not identical, setup

and numerics to that of Davis et al. (2010) and find no evidence for convergence, at least

up to these resolutions. Our conclusion is, therefore, that the problem of convergence for

stratified, isothermal shearing-boxes is very much still an open issue.

2. Formulation

We perform a convergence study for a three-dimensional compressible, isothermal, strat-

ified shearing box (for a description of the shearing box model see Hawley et al. 1995). The

simulations start from a layer in hydrostatic equilibrium. Assuming the vertical gravity of

the form −Ω2z, where Ω is the orbital frequency and z is the vertical coordinate, the density

distribution takes the form

ρ = ρ0 exp(−z2/H2), (1)

where ρ0 is the value of density on the equatorial plane, H is the scale height given by

H =

√
2cs
Ω

, (2)

and cs is the isothermal sound speed. Taking 1/Ω as the unit of time, H as the unit of length

and ρ0 as the unit of density, the ideal MHD equations for a keplerian shearing box, can be

written in dimensionless form as

∂ρ

∂t
+∇ · (ρv) = 0, (3)

∂v

∂t
+ v · ∇v + 2êz × v =

B · ∇B

ρ
− 1

ρ
∇

(

B2

2
+ P

)

−∇
(

−3

2
x2 +

1

2
z2
)

, (4)
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∂B

∂t
−∇× (v ×B) = 0, (5)

where B, v, ρ and P denote, respectively, non-dimensional magnetic field intensity, velocity,

density and pressure. In addition we assume an isothermal equation of state. Note that we

absorbed a factor of
√
4π into the definition of B.

The simulation domain covers the region

− 0.5 < x < 0.5, 0 < y < π, −3 < z < 3. (6)

The boundary conditions are periodic in y–the azimuthal direction, shear periodic in

x–the radial direction, and impenetrable and stress-free in z. On the horizontal planes at

z = ±3 we assume hydrostatic balance, and that the magnetic field is purely vertical. We

note that these conditions allow a net flux of magnetic helicity through the boundaries unlike

those in Davis et al. (2010) who adopt periodic conditions in z. Generically, it is found that

in these stratified, isothermal models the “vertical” boundary conditions have little effect on

the qualitative structure of the solutions (Davis et al. 2010; Shi et al. 2010; Oishi & Mac Low

2011; Gressel 2010)

We carried out a series of simulations at different resolutions with, respectively, 32, 64,

128 and 200 grid-points per scale height. The largest grid is, thus, 200×600×1200. Initially

the magnetic field has the form

B = B0 sin

(

2πx

H

)

êz, (7)

where B0 is chosen so as to give a ratio between thermal and magnetic pressure of 1600.

Clearly there is no net magnetic flux threading the box. A small random perturbation

in the azimuthal component of the velocity is introduced to trigger the instability. The

simulations were carried out with the PLUTO code (Mignone et al. 2007) which allows the

choice between several different numerical schemes. For the present work we opted for third

order accurate parabolic reconstruction, constrained transport method for the magnetic field

evolution and HLLD Riemann solver (Miyoshi & Kusano 2005; Mignone 2007).

3. Results

It is helpful to introduce the following notation: if f is a generic function of space

and time, we indicate a volume average by f̄ , an average over horizontal planes by f̃ and

a time average by 〈f〉. The main result of our study is summarized in Fig. 1, where
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we show the time history of the volume averaged Maxwell stresses, i.e. −BxBy, for the

four simulations with increasing resolution. As it is usual in these type of simulation, we

observe that, after an initial transient that lasts about 50 units of time, the stresses fluctuate

around some average value. The amplitude of the fluctuations strongly decreases in the

highest resolution simulation, similarly to what happens in the homogeneous periodic case

(Bodo et al. 2011). For the three simulations up to 128 points per scale height the value of

Maxwell stresses seems to fluctuate around similar values and if we had limited ourselves to

these results we would have reached the same conclusion as in Davis et al. (2010), i.e. that

the stratified simulations seem to converge and give an efficiency of the transport independent

from resolution. However, if we look at the curve corresponding to a resolution of 200 points

per scale height, it is systematically lower than the other ones.
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Fig. 1.— Volume averaged Maxwell stresses as a function of time (measured in units of 1/Ω)

We can get a more precise evaluation on how the efficiency of the transport changes

with resolution by considering the horizontal plane time averaged (computed excluding the

initial transient phase) Maxwell stresses, i.e. 〈−B̃xBy〉, shown as a function of z in Fig. 2.

The stresses decrease from the resolution of 32 points to 64 points, stay constant at 128

points and decrease again at the highest resolution of 200 points. In addition, looking at the

behavior as a function of z, we see that the stresses are concentrated in a region around the

equatorial plane and have a strong decrease in the high altitude regions.

A major difference between the homogeneous, periodic case and the present one is the

presence of an average magnetic field mostly in the toroidal direction. If we represent the

distribution of B̃y as a function of t and z, as we do in the top panel of Fig. 3, we can observe

cyclic patterns propagating away from the equatorial plane, that become more evident at

high altitudes and have been observed in all previous isothermal stratified simulations. The
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Fig. 2.— Horizontal plane and time average of Maxwell stress as a function of z.

bottom panel of the same figure shows the r.m.s. value of the fluctuations of By, i.e.

√

δ̃By

2,

as a function of t and z, where δBy is defined as

δBy = By − B̃y, (8)

indicating that the fluctuation level decreases away from the equatorial region.

These considerations can be made more quantitative by comparing the behavior of the

total magnetic energy and the magnetic energy of the mean field as a function of height,

which we do in Fig. 4. The energy of the mean field is negligible in the equatorial region,

therefore, in that region, the main contribution comes from fluctuations, on the other hand

it becomes comparable to that of the fluctuations or dominant in the high altitude regions.

In the highest resolution case we have a clear decrease both in the fluctuations and the mean.

4. Conclusions

We have revisited the problem of MRI driven turbulence in isothermal, stratified shear-

ing boxes with zero net (vertical) magnetic flux and no explicit dissipation. We have extended

our study to the highest resolution to date and find that, contrary to previously made claims

based on lower resolution studies, the solutions do not converge, or at any rate, there is no

convincing evidence of convergence. The average Maxwell stresses, principally responsible

for the angular momentum transport, continue to decrease with increasing resolution.

This conclusion can be further elaborated in terms of simple models of the types dis-

cussed by Blackman & Tan (2004) and Gressel (2010) consisting of coupled dynamo systems
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Fig. 3.— The top panel of the figure shows the distribution of B̃y as a function of t and z,

while the bottom panel shows the distribution of the r.m.s. value of the fluctuations
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2

Fig. 4.— Horizontal plane and time average of the total magnetic energy (solid lines) and

of the magnetic energy of the mean field (dashed line) as a function of z
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operating in different regions. One dynamo system is confined to the mid-plane where most

of the mass is concentrated and gravity reverses, the other operating in the tenuous overly-

ing regions. The second dynamo is assumed to be of the mean-field type and be responsible

for the generation of the magnetic structures that appear in the form of upward propagat-

ing dynamo waves. As for the nature of the mid-plane dynamo system two possibilities

readily come to mind. One is that the motions in the mid-plane are driven by small-scale

dynamo action similar to that observed in unstratified shearing-boxes. The justification for

this assumption is that gravity is weak near the mid-plane. In this scenario the overlying

mean-field dynamos are driven by the magneto-rotational turbulence in the mid-plane. The

source of the turbulence is a subcritical dynamo instability. The other possibility is that

the mean-field dynamos generate enough mean toroidal field in the mid-plane to drive an

azimuthal MRI whose non-linear development drives the turbulence that, in turn, drives the

mean-field dynamos. Although the outward manifestation of these two scenarios is the same,

the reason for the apparent non-convergence is different.

In the first scenario, the lack of convergence of the overall system follows from the non-

convergence of the small-scale dynamo operating in the mid-plane, which can plausibly be

reconstructed to the non-convergence of the unstratified homogeneous cases. If this analysis

is the correct one, in the isothermal case, because most of the mass is concentrated in a region

where there is practically no gravity, stratification does not help to resolve the convergence

problem. It is useful to note that the above argument reduces the convergence issue for the

stratified case to the convergence issue for the homogeneous case. In other words, the former

does not converge because the latter does not converge. Contrariwise, it could be argued

that if the homogeneous case were to converge so would the stratified one. At present, there

is convincing numerical evidence from several different groups that in the absence of explicit

dissipation the unstratified, homogeneous case does not converge (Fromang & Papaloizou

2007; Pessah et al. 2007; Guan et al. 2009; Simon et al. 2009; Bodo et al. 2011). The case

in which dissipation is included explicitly is not so clear cut (see, for instance, the comments

in Turner et al. 2014). Although it is often asserted that the homogeneous case with explicit

dissipation converges (Fromang 2013; Shiokawa et al. 2012), as far as we can tell, all the

numerical evidence supporting these assertions originates from a single paper, namely that

of Fromang (2010). And although the simulations described therein remain an impressive

numerical tour de force, we would argue that they are not such as to settle the issue of

convergence unequivocally. We hope however that in the near future other attempt will be

made to settle the issue of convergence in the presence of explicit dissipation conclusively.

In the second scenario the non-convergence derives from the inability of the mean-field

dynamo to operate at high magnetic Reynolds numbers–be they real or numerical. This is

a well known effect that has received much attention and goes back to the original works
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by Vainshtein & Cattaneo (1992); Kulsrud & Anderson (1992) and Gruzinov & Diamond

(1994). In this case as the dissipation decreases so does the generated mean toroidal field

needed to destabilize the azimuthal MRI in the mid-plane regions. Eventually the mean

toroidal field is so weak that the system become indistinguishable from the one in the first

scenario with all its attendant limitations. Should this analysis turn out to be correct it

is interesting that it applies to a case with boundary conditions that allow a net flux of

magnetic helicity.

Undoubtedly other scenarios can be constructed that agree with the numerical evidence,

provide an explanation for the non-convergence and highlight the role of other physical

processes. However, to quote from one of the authors’ favorite poems “whatever the reason

his heart or his shoes” (Seuss 1957) the stratified isothermal shearing-box appears not to

converge.
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