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A B S T R A C T   

Despite its promise, the adoption of index insurance has been hindered by the extent of basis risk, the additional 
variability introduced by its reliance on a signal correlated with losses rather than losses themselves. We examine 
the feasibility of substantially reducing basis risk by accounting for heterogeneity in production conditions via 
clustering data into more homogeneous groups. We exemplify this approach using data from a sample of rice 
producers in northern Laos, using Normalized Difference Vegetation Index (NDVI) data as the index on which the 
contract is defined. Our results show that accounting for landscape heterogeneity substantially improves the 
insurance contracts that can be offered to rice producers.   

1. Introduction 

Risk is ubiquitous in agriculture, influencing a variety of production 
decisions (Moschini and Hennessy, 2001). In the absence of formal in-
surance, agricultural households in developing countries adopt a variety 
of strategies to reduce consumption variability, in the face of a large 
variation in income (Morduch, 1995). Such strategies come with two 
limitations. 

The first is that, in general, they are not capable of insuring against 
covariate shocks, even when effective to smooth consumption against 
idiosyncratic shocks (Townsend, 1994; see, however, Riley (2018) for a 
recent discussion of the feasibility of insuring against covariate shocks). 
The second is that these strategies may come at a large cost that may 
perpetuate poverty (Dercon and Christiaensen, 2011; Hoddinott and 
Kinsey, 2001; Zimmerman and Carter, 2003). In developing countries, 
where the importance of agriculture is still large in terms of both growth 
and poverty reduction (Ligon and Sadoulet, 2018; Ravallion and Datt, 
2002), uninsured risk may then contribute to poverty persistence (Bar-
nett et al., 2008). 

The recognition that multi-peril insurance, adopted throughout the 
20th century in developed countries (Smith and Glauber, 2012) has 
important practical shortcomings (including problems of moral hazard 
and adverse selection, compounded by high transaction costs; see Hazell 
(1992) for an early discussion) led to the relatively recent development 
of index insurance products. The promise of index insurance is to reduce 

high transaction costs and informational asymmetries by structuring 
insurance payments as a function of an easily measurable and objective 
index correlated with losses rather than as a function of losses them-
selves. Since the early 2000s several pilot studies have attempted to 
determine first the feasibility of this approach, and then their uptake and 
impact. Several recent reviews (for example, Carter et al., 2017; Cole 
and Xiong, 2017; De Leeuw et al., 2014) converge on two conclusions: 
insurance can unlock investment and promote growth, but its effec-
tiveness as a poverty reduction strategy is severely diminished by the 
low demand for insurance by potential beneficiaries. 

In understanding the puzzle of low demand, it is important to 
recognize that the imperfect correlation between index and losses im-
plies that there will be states of the world that should correspond to 
payments (because insured losses occurred), but in which payments will 
not occur (because losses were not predicted), and vice-versa. These two 
states of the world may impact on demand for insurance in different 
ways. The first, negative basis risk, can explain why a risk averse deci-
sion maker who maximizes his/her expected utility and faces an upfront 
payment may rationally not buy insurance, given that in those states of 
the world s/he is worse off than without insurance (Clarke, 2016). The 
second, or positive basis risk, leads to higher premiums and a lower 
quality of the insurance product which may compound difficulties in 
understanding its functioning and utility (Carter 2009). 

Empirically, the importance of negative basis risk as an explanation 
for lower demand has been shown by Mobarak and Rosenzweig (2013), 
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who experimentally estimate the positive effect of locating weather 
stations (on which contracts will be based) at village level on demand for 
index insurance in India. Similarly, using longitudinal data for Index 
Based Livestock Insurance, Jensen, Mude, and Barrett (2018) found that 
such risk is negatively related to insurance uptake.1 

This paper is concerned with one way to improve the design of index 
insurance, by exploring the value of considering the heterogeneity of the 
landscape, when it may plausibly shape production conditions and the 
strength of the correlation between the index and yield. We illustrate 
this possibility through the definition of different contracts that insure 
rice producers in northern Laos against production losses, building on 
recent attempts to explore the use of time and site-specific satellite data 
on Normalized Difference Vegetation Index (NDVI) to predict output.2 

The rest of this article is structured as follows. Section 2 presents the 
geographic context and the data used. Section 3 discusses the approach 
followed to address the potential importance of landscape heterogeneity 
and estimate different yield prediction models used to construct a 
satellite-based index insurance. Using those results, we then discuss the 
properties of different contracts based on estimates of basis risk and cost. 
Our results, presented in Section 4, suggest that accounting for hetero-
geneity in natural conditions allows for substantial improvements in the 
design of the insurance product, leading to either substantial reductions 
in premiums paid for the contract, reductions in negative basis risk or 
both. We conclude with a discussion of the policy implications of these 
results. We emphasize that, despite these improvements, index insur-
ance is likely to still require substantial subsidies, or other changes in 
contract design, to be attractive. 

2. Rice in northern Laos: Context and data 

Rice production and consumption stands out in the context of the 
economic activity of Laos, with almost half of the total cultivated land 
allocated to this crop.3 Following the introduction, in 1986, of economic 
reforms that aimed to switch from a planned economy to a market- 
oriented one, overall rice productivity increased since the nineties, 
with the country experiencing an increasing rice surplus in the 2000s 
(Goto and Douangngeune, 2017). Such improvements in productivity 
were achieved through the adoption of modern cultivation techniques 
including the use of inorganic fertilizer, mechanization and the intro-
duction of improved rice varieties (Goto and Douangngeune, 2017; 
Newby et al., 2013). 

Along with this national picture, it emerged a scenario of regional 
differentiation: productivity gains were largely concentrated in the 
central and southern regions of the country, particularly in the plains 
along the Mekong (Eliste and Santos, 2012; Sacklokham, 2014; World 

Bank, 2018) while bypassing the northern region, which is still reliant 
on an integrated rice market to overcome any local production deficit 
(Newby et al., 2013; Sacklokham, 2014) and where the production 
system is characterized by manual labor and low use of chemical inputs, 
leading to relatively low yields (Schiller et al., 2006; World Bank, 2018). 

Eliste and Santos (2012) suggest that the main reason for this 
divergence lies in the region’s large heterogeneity in terms of biophys-
ical characteristics. Production technology is largely determined by 
topographic characteristics, leading to three main agro-ecosystems, 
namely irrigated lowland, rainfed lowland, and upland. While lowland 
rice (paddy rice) can grow both during the dry and the wet seasons on 
submerged plots (either rainfed or irrigated), upland rice grows on 
rainfed dry soil, and production is concentrated on the wet season, as 
irrigation is almost never feasible (Goto and Douangngeune, 2017).4 

The production of rice, in particular rainfed rice, in Laos has always 
been affected by weather shocks (Eliste and Santos, 2012). Given that, 
on average, the northern region receives a lower amount of rainfall 
(1566 mm/year) than the rest of the country (with Luang Prabang, one 
of the provinces in our study, registering the second lowest mean annual 
rainfall rate), drought is also the climate shock that most affects rice 
production in northern Laos (Basnayake et al., 2006; Schiller et al., 
2006). The timing of lack of rain also matters (Schiller et al., 2006): at 
the time of seeding, germination and establishment (between the end of 
April to end of May), monthly rainfall needs are fairly high ranging from 
100 mm/month (upland rice) to 200 mm/month (lowland rice), and 
water shortages in that period can dramatically reduce production. At 
later stages of the plant’s development, the impact of eventual droughts 
seems to be less damaging. 

2.1. Data 

We use three types of data. Ground data on rice production over a 
period of three years (2017–2019) was collected as part of a household 
survey fielded in 72 villages across four districts in northern Laos 
(Pakxieng and Viengkham in the province of Luang Prabang province, 
and Kham and Phoukout, in the province of Xiengkhuang province). We 
interviewed 12 households per village, randomly selected from the 
village roster. Attrition is relatively low (9% in 2018 and 8% in 2019), as 
is the percentage of households that do not grow rice (~7.5% per year). 
In each round of the survey, conducted shortly after the end of the 
harvest (typically, December or January) to minimize recall bias, re-
spondents provided information on production (in kg) and area (in ha) 
in the previous wet season. In 2019 we also collected detailed data on 
rice production technology in the previous wet season. 

For each household we have information on rice production (in kg) 
and land area (in hectares) for the period 2017–19. Yield is estimated 
based on recall data, which has known measurement problems (see for 
example the recent discussion in Lobell et al. (2018)) which we address 
in two ways. Firstly, we define yields above 1.5 times the interquartile 
range as outliers, and we remove them from the analysis. The number of 
outliers is relatively small (83 over 2187 observations) and their inclu-
sion in the analysis does not substantially change our conclusions about 
the design of the insurance product (see Appendix C). Secondly, we use 
detailed data at the plot level such as the access to a road, the presence of 
mechanization and the use of inputs during the 2018 wet season, for 
which we collected information to estimate a production function, both 
including and excluding outliers. We computed basis risk and premiums 
on the whole sample by using predicted yields instead of observed ones 

1 Perhaps because negative basis risk undermines the poverty reduction po-
tential of index insurance, it has received relatively more attention than posi-
tive basis risk (see Clement et al. 2018 for a recent review). However, and to the 
extent that overall lower quality on the insurance contract (summarized by the 
sum of both positive and negative basis risk) transforms the understanding of 
the insurance product into essentially a lottery, large positive basis risk may 
reduce the demand for insurance over and above the associated increase in cost. 
For example, lab-in-the-field evidence suggests that the presence of basis risk 
turns the decision of buying insurance against risk into a problem of com-
pounded probabilities (the probability of loss and the probability of payment, 
given a loss). Compound risk can lower demand for insurance (Elabed and 
Carter, 2015), leading to welfare loss, but specific insurance design can over-
come this issue (Harrison et al., 2020). However, we do not know of any study 
that attempts to separately evaluate the effect of positive basis risk over and 
above its effect on cost. 

2 See Vroege et al. (2021) for a recent discussion of the promises and limi-
tations of using satellite data for insurance against drought.  

3 As a reflection of the cultural importance of rice in the country, it is perhaps 
enough to notice that the Laos expression “to eat” also means “to eat rice” 
(Schiller et al., 2006). 

4 Despite what the name may suggest, it is important to emphasize that there 
is no association between this distinction and the field’s slope or elevation: 
paddy rice can be produced in mountainous regions and upland rice can be 
produced in flat fields (Liquist et al., 2006). However, since it is impossible to 
flood steep plots, most of the upland rice is cultivated in plots with a high slope 
while paddy rice is cultivated in flat ones. 
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(Appendix B). In both cases, the predictive power of this relation is 
relatively high, allaying fears that measurement error associated with 
yield may be driving our conclusions about the importance of basis risk.5 

Although relatively concentrated in space (see Fig. 1), there is sub-
stantial variability in agro-ecological conditions that may influence 
production in our sample: for example, village elevation ranges from 
318 to 1493 m above sea level (masl). We characterize this diversity 
using a second dataset of village characteristics, described in Field and 
Odgers (2016). Given the differences in agroecosystems discussed 
before, we are particularly interested in elevation and the relative 
importance of the area under different slope ranges, which determines 
the feasibility of irrigation. We will use these two variables to charac-
terize the heterogeneity of natural production conditions and to deter-
mine clusters. 

In addition, that same dataset provides estimates, at village level, of 
soil’s physical and chemical properties, including data on soil texture 
(clay, sand and silt content), acidity (pH) and soil fertility (cation ex-
change capacity or CEC, and the percentage of organic material in the 
soil) as well as soil depth. One important characteristic of these variables 
is that they are potentially related to yield but are unlikely to change 
significantly over time, hence will not reflect farmers’ technological 
choices in the short-run. We include them as additional covariates in the 
statistical models used to design the index insurance product. 

As an index, we use data on the Normalized Difference Vegetation 
Index (NDVI) from ORNL DAAC website that provides MOD13Q1 
Vegetation Indices from the MODIS satellite every 16 days for each pixel 
at a maximum resolution of 250 m per side.6 We use data for the period 
2001–2019, and define a village as a polygon with 2.25 km per side 
centered on the village coordinates, a choice that reflects the fact that 

most plots are fairly close to the village center.7 We find no evidence that 
NDVI would change significantly when we consider larger areas, sug-
gesting that our analysis is robust to this decision.8 

Fig. 1. Location of surveyed villages in northern Laos.  

Fig. 2. Boxplot of NDVI values per month in Hadkeo village (Authors’ calcu-
lation using data from MODIS and VIIRS Land Products Global Subsetting and 
Visualization Tool (2001–2019)). 

5 Despite their relatively high predictive power, those variables have the 
important limitation that they are either an individual choice and/or too 
difficult or expensive to audit. Although insurance companies can potentially 
collect accurate data at household level by conducting surveys on-site, this 
would lead to high administrative costs and it would typically reintroduce 
problems of information asymmetry, undermining the utility of index insur-
ance. For these reasons, we omit them from the design of the insurance.  

6 Data available at: https://modis.ornl.gov/globalsubset/. We also use Gross 
Primary Production (GPP) data. The results are substantially identical and we 
omit them for the sake of brevity, but they are available from the corresponding 
author upon request. 

7 Given pixel dimensions (6.25ha) and the average plot size (approximately 
1ha) this approach, although perhaps closer to true production shocks, is still 
not perfect. One way to increase prediction accuracy (and reduce basis risk) 
would be to use satellite data at a plot level. Although accessing satellite data at 
that scale is technically feasible, getting data on the exact location of the plot 
would require an inspection by the insurer (with increased costs) and likely 
increase the importance of moral hazard and adverse selection problems, and 
potentially collusion between neighbors. For these reasons we do not use data 
on exact plot location and explain yield variability through the use of satellite 
data measured at the village level.  

8 In one tenth of the villages we extended the area in the analysis to polygons 
with 5km and 7.5km sides. We expected a reduced variability in the NDVI 
(given that areas of permanent vegetation are more important as we move away 
from the village center) but the results of this exercise don’t confirm this hy-
pothesis leading us to conclude that the selected pixel dimension doesn’t seem 
to substantially influence the corresponding NDVI values. 
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Being a measure of vegetation status, NDVI is expected to be lower in 
the first part of the year, and to increase after the transplanting stage 
(April/May, in the case of rice in northern Laos), reaching its peak at the 
end of reproductive stage (September), and decreasing at the time of 
harvest (late November-December) (Turvey and McLaurin, 2012, 
Mosleh et al., 2015). This pattern is shown in Fig. 2 for one village in our 
sample. 

3. Index insurance in the presence of heterogeneity 

In our empirical analysis we adopt the standard train-test split 
approach to inference evaluation (for a detailed description of the pro-
cedure see, for example, James et al., 2013), with 80% of the available 
data randomly allocated to the training set and used to estimate the 
relation between NDVI and yield, while the remaining 20% were allo-
cated to the test set and used to calculate the differences between ex-
pected and observed yield and the associated root mean square error 
(RSME) of the prediction model. 

3.1. Quantifying the importance of landscape heterogeneity 

We use non-hierarchical cluster analysis with cluster centers to 
quantify the potential impact of heterogeneity in biophysical conditions, 
which may determine production technologies, on yield predictions. As 
environmental characteristics that could impact average yield levels, we 
consider elevation and topography (measured by the percentage of the 
village’s area with a slope below 3%, which we take as indication of the 
feasibility of growing paddy rice). We applied both a non-hierarchical 
(k-means) and a hierarchical aggregation procedure using the 
Euclidean distance measure and the Ward’s linkage method to maximize 
the internal homogeneity of clusters (Murtagh and Legendre, 2014). The 
results of the hierarchical clustering are usually presented in dendro-
grams from which the number of clusters is selected by visual inspection. 
This criterion can be inefficient and misleading and, instead, we fol-
lowed Charrad et al. (2014) and used a set of 30 numerical and graphical 
indices. Applying the majority rule, we identified 2 clusters as optimal 
grouping (Charrad et al., 2014). These are represented in Fig. 3, sug-
gesting that elevation is the main determinant of clustering, with ob-
servations split around the value of 870 masl. 

Having defined production conditions that are more homogeneous, a 
natural follow-up question is whether accounting for such clustering 
matters when designing an index insurance contract. We address it by 
estimating the following model: 

Yqvt = f (AYvt) + εqvt (1)  

where Yvqt stands for the yield of plot q in village v at time t, which we 
express as a linear function of average yield in other plots in the village 
(AYvt) and idiosyncratic risk (εqvt). 

This model allows us to understand if plot yield is correlated with 
average yield in the village (as a measure of covariate shocks against 
which index insurance may provide protection). Although useful as a 
preliminary step, this model is not feasible as a basis to define an in-
surance contract, given the lack of inexpensive and credible ways to 
measure average yield in a village. Table 1 presents the empirical pooled 
data estimates of the importance of covariate risk for the whole sample 
and for each of the two clusters identified, allowing for two 
conclusions.9 

The first conclusion is that average yield (at village level) is a good 
predictor of yield at household level in our sample, showing that an 
index insurance product is potentially valuable. The second conclusion 
is that there are substantial differences in the predictive power of 
(village level) average yield, as measured by the adjusted R2 of this 
regression: the strength of this relation in cluster 2 (higher elevation 
villages) being approximately half of the value in cluster 1. In short, 
clustering changes the importance of covariate risk, suggesting that the 
definition of contracts for each group may potentially improve yield 
prediction. In the next section, we further quantify the implications of 
accounting for this heterogeneity when defining a satellite-based index 
insurance for rice. 

Fig. 3. Clustering sampled villages.  

Table 1 
Quantifying the importance of covariate risk.   

Whole sample Cluster 1 Cluster 2 

Village Average Yield 0.935*** 0.949*** 0.895*** 
Constant 0.4953* 0.396 0.800. 
Adj. R2 0.372 0.453 0.232 
N 1683 964 719 

Significance level: ***p ≤ 0.01, ** p ≤ 0.05, *p ≤ 0.10 
Notes: Estimates on pooled data over the three years using OLS model (eq. (1)). 
Estimates are calculated for the whole dataset, as well as for cluster 1 (low 
elevation villages) and cluster 2 (high elevation village). Sample size (N) and the 
adjusted R squared are presented in rows 2 and 3, respectively. 

9 An alternative specification of equation (1) would include time fixed effects. 
All results are robust to this alternative specification. 
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3.2. Defining the NDVI index 

As suggested by Chantarat et al. (2013), period-specific observed 
NDVI data can be compared with its past distribution to get an index of 
anomalies. This involves obtaining the standardized NDVI by subtract-
ing the mean for the corresponding period over the entire period for 
which we have data (19 years) and dividing it by the corresponding 
standard deviation. 

Zvjt =
NDVIvjt − ENDVIvj

σvj
(2)  

where NDVIvjt is the NDVI value for the village v measured in period j of 
year t, ENDVIvj is its expected value and σvj is the corresponding stan-
dard deviation. The value of Zvjt can be interpreted as a measure of 
anomaly in the vegetation index, expressed in terms of standard de-
viations. Positive values of Zvjt will then represent lusher vegetation than 
the long-term mean for period j, while negative values will represent the 
opposite (Chantarat et al., 2013). 

As the major covariate shock affecting the region is drought, we also 
follow Peters et al. (2002), and investigate whether a NDVI trans-
formation that can be used as an indicator of this shock improves our 
estimates of yield. Knowing the distribution of Z, it is possible to 
calculate the standardized vegetation index (SVI) value for each village 
and each period as: 

SVIvjk = P
(
Z < Zvjk

)
(3) 

This value can be interpreted as the “probability of occurrence of the 
present vegetation condition at a given location relative to the possible 
range of vegetative vigor” (Peters et al. 2002, p.71), which has been 
proved to be a good proxy for major shocks. 

Finally, we use the NDVI data to account for the state of the vege-

tation before the contract period and losses, following Chantarat et al. 
(2013) finding a strong negative correlation between that variable and 
their measure of losses (in their case, livestock mortality). Following 
their study (and adapting the period range to ours) we calculate these 
values (labeled Zprevt) for each village v in year t in the following way: 

Zprevt =
∑

j∈Kpre

Zvjt (4)  

where, in our case, j is the period and Kpre goes from October of the 
previous year to the first half of April. 

In order to obtain the best predictive model for yield, we estimate the 
following model 

Yqvt = f (Svt,Ev)+ εqvt (5)  

where Yqvt is, as above, the yield of plot q in village v in year t, that we 
express as a function of the index Svt (Z or SVI), environmental condi-
tions measured at a village level (Ev, including soil properties at village 
level and Zprevt) and a stochastic component (εqvt) that incorporates 
idiosyncratic risk and design error. 

Finally, we consider different statistical models. The relatively high 
(biweekly) frequency of the satellite data can lead to problems of mul-
ticollinearity, which may result in coefficients with unrealistic magni-
tude (O’Brien, 2007; Yoo et al., 2014). To reduce the importance of this 
problem, we estimated the relation between yield and signal (with and 
without additional controls) using five statistical models: Ordinary Least 
Squares (OLS), Stepwise regression, OLS considering the Variance 
Inflation Factor (O’Brien, 2007), LASSO and Elastic Net regressions 
(Hastie et al., 2015) and OLS using Principal Components (Aguilera 
et al., 2006). 

Table 2 
Predicting (ln) rice yield: different statistical models, all observations.  

ln(yield) OLS STEPWISE VIF LASSO ELASTIC NET PCA 

April − 4th week 0.001 *** 0.001 *** 3.05e− 09 *** − 0.109 − 0.096  
May − 1st week 0.046 * 0.036 * 0.032 * 0.045 0.040  
May − 4th week 1.72e− 11 *** 5.01e− 12 *** 1.63e− 08 *** 0.145 0.124  
June − 1st week 0.000 *** 0.000 *** 0.001 *** − 0.061 − 0.057  
June − 4th week 0.000 *** 0.000 *** 0.006 ** − 0.067 − 0.057  
July − 1st week 0.9100  0.277 0.001 − 0.002  
July − 4th week 0.1560 0.115 0.217 − 0.025 − 0.025  
August − 1st week 0.0790 0.128 0.015 * 0.0323 0.032  
August − 4th week 0.687  0.544 − 0.007 − 0.002  
September − 1st week 0.007 ** 0.003 ** 0.048 * 0.055 0.045  
September − 4th week 0.524  0.090 − 0.016 − 0.020  
October − 1st week 0.269  0.055 0.032 0.007  
November − 4th week − 2.30e− 05 *** 1.15e− 05 ***  − 0.203 − 0.157  
November − 1st week 0.048 * 0.040 *  − 0.090 − 0.103  
Soil pH 0.812  0.053 0.003 0.003  
Cation exchange capacity 0.000 *** 0.000 *** 0.001 *** − 0.060 − 0.056  
Organic concentration 0–50 cm 0.091 0.123 0.083 0.028 0.030  
Clay content 0–30 cm 0.812  0.684 − 0.003 − 0.004  
Clay content 0–50 cm 0.738  0.993 0.006 0.008  
Sand content 0–15 cm 0.812 0.008 ** 0.003 ** 0.044 0.042  
Soil Depth 0.509  0.441 − 0.011 − 0.007  
Zpre 0.343  0.221 0.016 0.013  
Elevation (m) 5.04e− 06 *** 4.34e− 07 *** 0.001 *** 0.109 0.087  
Low Slope (%) 2.12e− 07 *** 1.34e− 08 *** < 2e− 16 *** 0.152 0.142  
PC1      < 2e− 16 *** 
Constant < 2e− 16 *** < 2e− 16 *** < 2e− 16 *** 7.658 7.658 < 2e− +16 *** 
N 1683 1683 1683 1515 1515 1683 
R2 0.309 0.308 0.291 0.304 0.304 0.230 
Adj.- R2 0.299 0.301 0.282 0.293 0.307 0.228 
RMSE 0.547 0.546 0.554 0.544 0.543 0.574 

Significance levels: ***p ≤ 0.01, ** p ≤ 0.05, *p ≤ 0.10. 
Notes: Columns present results of different statistical models (OLS, STEPWISE, VIF, LASSO, ELASTIC NET and PCA). Both Elastic Net and Lasso follow a training-test 
approach that leads to a reduction in sample size (N). The first 14 rows refer to the NDVI signal from mid-April to mid-November (2 values per month). Estimates of the 
effect of environmental conditions (soil conditions, landscape heterogeneity and the state of vegetation before the contract period (Zpre)) are presented in rows 15–24. 
R2 and R2-adjusted are reported along with RMSE in the last rows. 
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4. Results 

4.1. Choice of statistical model 

All models were estimated for the whole sample and for each cluster, 
with the best model selected on the base of the RMSE calculated on the 
test sample. The results of the different models for the whole sample, 
when yield is expressed in natural logarithms and the signal is expressed 
as Zvjt, are presented in Table 2.10 The best results are obtained when 
using the Elastic Net regression (RMSE = 0.543). The same statistical 
model is chosen when splitting the data into clusters (RSME in the first 
cluster = 0.524; RSME in the second cluster = 0.530). 

4.2. Designing index insurance 

Using this information, we can then define a different index insur-
ance for both the entire sample and each cluster separately. This requires 
the definition of the most appropriate trigger level and payout structure, 
which allows us to quantify the associated Basis risk (both positive and 
negative).11 Fig. 4 plots the observed values of yield against predicted 
yield in the whole sample, assuming (as an illustration) a value of the 
trigger at 80% of the average yield (represented by the blue line), 
allowing us to get a visual idea of the importance of prediction error and 
its implications in terms of the effectiveness of the contract. 

Only households to the left of the vertical line (with predicted yield 

below the trigger) will receive an indemnity. The black points, in the 
third quadrant in Fig. 4, represent households that experienced a loss 
and were correctly paid (corresponding to 39.42% of the households in 
our sample over the three years), while red points (in the first quadrant) 
represent those that did not experience a loss and were correctly not 
paid (33.73% of the sample). An ideal index insurance would have all 
observations in these two quadrants. The blue points, in the fourth 
quadrant, represent households that did receive an indemnity even 
though they did not experience a loss (positive basis risk, affecting 
19.00% of the sample), while the green points (in the second quadrant) 
represent households that did not receive any indemnity even though 
they experienced a loss. The size of this last group determines the 
importance of negative Basis risk (7.83% of the sample), on which much 
attention has been placed. 

The definition of the trigger strongly influences the position of each 
household in each of the four quadrants just defined as well as the 
structure of payments and consequently, the conclusions about the value 
of insurance as a poverty reducing policy and the affordability of the 
insurance contract. In Table 3 we present the level of Basis risk (positive 
and negative) for different levels of the trigger ranging from 70% to 95% 
of the average yield, as well as the respective premium to be paid for an 
actuarially fair insurance. These results allow us to conclude that cluster- 
specific contracts can be considered improvements on the contract 
defined for the whole dataset under minimal assumptions regarding 
farmers’ preferences, at least for some values of trigger. 

A more detailed analysis shows that, for trigger values above 0.80, an 
insurance contract tailored to the conditions of cluster 1 always domi-
nates the insurance contract defined on the basis of data for the whole 
sample, as it is characterized by lower negative basis risk at lower 

Fig. 4. Predicted vs observed yield (Note: Yield pre-
dicted on the entire training sample using elastic net. 
Trigger level set at 80% of the average yield). Black 
points represent households who experienced a loss 
and correctly received indemnities, red points repre-
sent households who did not experience a loss and 
received no indemnity. Blue points represent house-
holds who did receive an indemnity even though they 
did not experience a loss. Finally, green points 
represent households who did not receive any in-
demnity even though they experienced a loss. The size 
of this last group determines the importance of basis 
risk. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web 
version of this article.)   

Table 3 
Basis risk and premiums for different trigger levels.   

All Cluster 1 Cluster 2 

Trigger Negative Basis 
risk (%) 

Positive Basis 
risk (%) 

Premium (% 
average yield) 

Negative Basis 
risk (%) 

Positive Basis 
risk (%) 

Premium (% 
average yield) 

Negative Basis 
risk (%) 

Positive Basis 
risk (%) 

Premium (% 
average yield) 

0.70  0.274 0.125 0.059 0.219  0.108  0.080  0.265  0.087  0.007 
0.75  0.142 0.137 0.082 0.199  0.095  0.097  0.213  0.126  0.016 
0.80  0.107 0.215 0.110 0.182  0.109  0.114  0.189  0.182  0.028 
0.85  0.104 0.221 0.138 0.103  0.136  0.132  0.152  0.312  0.045 
0.90  0.099 0.250 0.169 0.075  0.127  0.149  0.126  0.311  0.065 
0.95  0.074 0.260 0.201 0.072  0.134  0.168  0.127  0.325  0.088 
N  1683 964 719      

Notes: Calculations of basis risk and premium are based on elastic net predictions of yield in the test sample at different levels of the trigger. N is the number of 
observations on which the Basis risk and Premium are calculated. Assuming an actuarially fair contract and price normalized to 1, the premium is the sum of the 
differences between the predicted yield and the trigger for all observations for which the expected yield is lower than the trigger (see eq. A.1 in the Appendix). Premia 
are expressed as percentage of the average yield of the sample. 

10 Results for SVI are available from the corresponding author upon request.  
11 See the discussion in Appendix A. 
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premium. The choice is less clear for households in cluster 2: while they 
are now offered a much less expensive insurance contract, this contract 
also exhibits higher levels of negative basis risk. However, even in this 
case, accounting for heterogeneity is potentially beneficial, although 
only for relatively low values of the trigger (0.70), when the insurance 
contract has similar values of negative basis risk but is potentially much 
less expensive. Whether such contracts would provide welfare im-
provements is, ultimately, an empirical question that will depend on 
decision-makers’ utility function, including how they value risk and the 
losses associated with negative basis risk. Similar considerations prevent 
us from attempting to define an “optimal” trigger for those households in 
cluster 1, when considering trigger values above 0.85. 

5. Discussion and policy implications 

Index insurance has largely been identified as a promising tool to 
limit the negative effects of weather shocks on household’s income. 
Nevertheless, basis risk can drastically limit index insurance products’ 
uptake rate, undermining their potential to reduce household’s vulner-
ability and to enhance food security (Barnett et al., 2008; Jensen et al., 
2018). Several improvements are potentially possible, and although this 
contribution is not meant as an exhaustive discussion of ongoing work in 
this area, several paths that are directly related to our own work merit 
some discussion. 

The first is that, although elevation and slope emerged as natural 
variables on which to aggregate observations into more homogeneous 
subsets, given what is known about rice production in our context, they 
are not the only possibilities (and, in our analysis, slope turned out not to 
be an important determinant of this heterogeneity). Other variables that 
determine production risk (for example, importance of irrigation at local 
level) are likely candidates for a similar approach, in a close parallel 
with ongoing work that links index insurance with the adoption of (risk 
reducing) technologies, such as drought resistant seeds (see, for 
example, Lybbert and Carter (2015) or Ward et al. (2020)): clusters are 
now homogeneous in terms of adoption of technology that has a direct 
bearing on production risk, and clearly there is no reason to offer such 
producers a contract that is not designed to account for such fact. 
Although the focus of our analysis was reductions in basis risk, to the 
extent that such technologies reduce production risk, the new contracts 
should also have lower premiums. 

A second set of solutions has attempted to improve the link between 
signal and yield, by improving the signal used in the design of the 
contract (for example, Miller et al., 2020, Afshar et al. (2021) and De Oto 
et al. (2019), perhaps coupled with institutional innovations (such as 
audits as suggested in Flatnes and Carter (2015)), which may allow in-
surance contracts to be acceptable in the presence of otherwise low 
quality of the signal.12 

A second way to improve the quality of the insurance contract is to 
use signals with a finer spatial resolution. Although the availability of 
more spatially detailed satellite data may suggest its use as a possible 
refinement of the approach adopted in our work (essentially attempting 
to define finer clusters), the use of such data begs the question of “how 
low should one go?”. In answering this question, it is important to keep 
in mind that, as we get closer to contracts defined at plot/household 
level, the importance of asymmetric information problems is likely to 
increase (see Vroege et al. (2021) for a related discussion). 

Although an empirical evaluation of changes in the importance of 
asymmetric information introduced by accounting for landscape 

heterogeneity is beyond the scope of this paper, we make two remarks. 
The first is that the new contract relies on the same signal, NDVI 
measured at village level. Hence, it is unlikely that there would be large 
differences in the importance of moral hazard (and, potentially, collu-
sion among insurees to manipulate the signal) compared to a situation 
when the contract is defined over the whole sample. 

The second is that the statistical relation between the index and yield 
is estimated in different subsamples, each reflecting specific production 
conditions and its own risk profile. Consequently, the scope for adverse 
selection is now likely to be different from when insurance contracts are 
defined over the whole sample. 

To understand these changes, we follow an approach similar to 
Jensen et al. (2018) and we quantify changes in the scope for cross- 
subsidization by estimating changes in yield variability introduced by 
clustering the data into different landscape categories. The standard 
deviation of yield is lower in cluster 1 (lower elevation rice producers) 
and, although this difference is statistically significant, it is relatively 
small in economic terms (− 49.5 kg, or approximately 3% of the standard 
deviation of yield estimated in the whole sample; bootstrapped 95% 
CI = [− 79; − 23]). The opposite is true in cluster 2 (high elevation rice 
producers), where variability increases compared with the whole sam-
ple (+90 kg, or 6% of the standard deviation in the whole sample; 
bootstrapped 95% CI = [47; 143]). 

Clearly, in this last case, there is a trade-off between lowering basis 
risk and increasing the scope for adverse selection. Nonetheless, as 
shown in the previous section, the scope for reducing basis risk for this 
cluster was itself small. On the contrary, “excising” producers from high 
variability conditions from the definition of insurance contracts targeted 
at areas with better production conditions makes insurance both more 
attractive to households (as basis risk is lower) and to insurers (as the 
scope for adverse selection is potentially lower). 

6. Conclusion 

In this article we investigate the intuitive suggestion that accounting 
for heterogeneity in production conditions, through the use of clustering 
algorithms to split the whole data into more homogeneous subsamples, 
may improve the design of satellite based agricultural-index insurance 
while keeping its advantages (low transaction costs and reduction in 
informational asymmetries). Working with data from a sample of rice 
producers in northern Laos, we developed a satellite-based index in-
surance product using yield data at household level and satellite data 
(NDVI) at village level, using different transformations of this data as 
potential signal (NDVI, SVI, NDVI controlling for the value of NDVI at 
the beginning of the growing season), and a variety of statistical models 
(OLS, Stepwise regression, OLS considering VIF, LASSO, Elastic Net and 
OLS using Principal Components) estimated in a training sample (80% of 
the whole sample) and selected on the basis of their predictive power 
(judged on the base of the lower RMSE between observed and predicted 
yield values) in the testing sample. Villages were grouped on the basis of 
elevation and slope, two geographical conditions that plausibly influ-
ence rice production in our context. Our analysis shows that heteroge-
neity in elevation modifies the importance of covariate risk, a result that 
we explore to understand whether the definition of more homogeneous 
clusters allows us to substantially improve on the design of a contract 
defined for the whole sample. 

Using the best models, we then computed the associated Basis risk as 
the percentage of uncovered losses over the insured loss for different 
trigger levels (ranging from 70% to 95% of the group’s yield average). 
Afterwards, to get an idea of the product affordability, we compute 
expected indemnity values to be paid according to the different levels of 
coverage. In this study we assume a fair contract so that the expected 
premium would be equal to the indemnity paid. 

The results show that accounting for landscape heterogeneity greatly 
improves the design of the proposed contract, allowing for the definition 
of contracts with lower basis risk and premiums for different values of 

12 Although such audits would likely increase insurance costs (and premia), 
technological innovations such as picture-based insurance contracts (Ceballos 
et al., 2019; Hufkens et al., 2019) may work towards increasing its feasibility, as 
they have the potential to reduce the costs of such audits. In this design, farmers 
regularly take pictures of their fields allowing them to assess damage in case of 
divergence between the claimed yield loss and the estimated loss. 
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the insurance trigger. The less encouraging conclusion is that, even with 
this improvement, the associated costs would likely be too high to be 
entirely paid by the households. This second result suggests that either 
technical (e.g. crop masking) or design innovations (e.g. audits) may be 

further required to improve the effectiveness of insurance products in 
developing countries. 
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Appendix A. Index insurance: a brief summary 

The main distinction between conventional and index insurance is that under index insurance payoffs are based on expected losses, predicted by an 
index correlated with the insured yield, rather than on directly measured losses (Turvey and Mclaurin, 2012; Chantarat et al., 2013; Carter et al., 
2014). When the index is objectively measured and cannot be manipulated, the insurance contract ensures that the probability distribution function of 
the indemnities is independent of farmers’ actions (ruling out problems of moral hazard and adverse selection). In addition, payouts can be made 
automatically and as soon as the index exceeds a pre-determined threshold, avoiding expensive audits and drastically cutting costs and delays in 
receiving the payments (Carter et al., 2014). 

The definition of an index insurance contract can be divided in four steps (Carter et al., 2014). The first, and essential, step is to define a signal that 
can be related with the outcome to be insured. Data availability clearly shaped how intellectual discussions could be translated to actual financial 
services, from the earlier development of area-yield insurance to more current attempts to develop satellite-based insurance. 

Remotely-sensed index-based insurance, which uses satellite data of vegetation status used to predict yield can be seen as a next step in the di-
rection of moving closer to the location of losses. The biggest advantage of this type of data is their global availability, with a good time and spatial 
resolutions, overcoming the lack of ground climate data. For example, the MODIS data that we use are available in almost real time, at a spatial 
resolution of 250 m and relatively high frequency (every 16 days) and can be accessed at low cost. 

The Normalized Difference Vegetation Index (NDVI), which reflects photosynthetic activity (which interferes with the red energy reflected), is one 
of the most widely trialed indexes.13 Peters et al. (2002) showed how the NDVI can be a good estimator of the vegetation response to climatic shocks so 
that this kind of data can be potentially used with good results to predict yield, naturally suggesting its use in the definition of index insurance. 

Having decided on an index, the second step is to determine the underlying statistical relation between signal and yield: if there is no evidence of 
correlation between the two variables, the probability that the insurance contract will not pay for a loss when it does occur would be high (negative 
basis risk) or the index would predict a loss that didn’t occur (positive basis risk). Even though policy holders can see this false positive as a favorable 
index’s characteristic, this failure leads to a lower quality of the insurance product and higher premiums (Carter, 2009). 

The third step is to determine the payoff structure in order to link each index level with the corresponding indemnity. This includes the definition of 
the trigger value, from which the payout structure, premium and associated basis risk then follow. 

The trigger (τ) is defined as the value of the index below which households will receive an indemnity (i), and is usually defined as a percentage θ of 
the observed average yield. With indemnities expressed as a linear function of yield (Martin et al., 2001; Vedenov and Barnett, 2004; Collier et al., 
2009) we obtain: 

i
(̃y,τ)= {0 if ỹ > τp(τ − ỹ) if ỹ ≤ τ (A.1)  

where ỹ is the index value, τ is the trigger, and p is the price of the insured commodity. This relation is represented in Fig. A1. 
This definition of indemnity will ensure that every policyholder will receive an income that is at least equal to the one s/he would have got if his 

yield would have been equal to the trigger. Selecting a proper trigger is crucial since a higher trigger, although it would lead to a lower Basis risk, 
would come at the cost of higher premiums. The trigger then reflects a compromise between insurance cost and basis risk, and in the analysis, we will 

Fig. A1. Indemnity structure.  

13 Higher levels of photosynthetic activity lead to less red energy being reflected (given that the high level of photosynthetic activity leads to the absorption of 
radiation in those wave lengths), while the amount of near-infrared energy reflected will increase (Huete et al., 1999; Chantarat et al., 2013; Turvey and Mclaurin, 
2012). Formally, is then defined as:NDVI=NIR + RedNIR – Red (3)leading to an unitless index ranging from -1 to 1 calculated using vegetation spectral reflectance. A 
high positive value indicates a healthy vegetation, while a high negative value indicates a poor vegetation. Tipically the lowest NDVI values are around zero (and 
they are normally associated with snow, ice, baresoil and water), while an healty vegetation shows values around 0.8. 
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consider values ranging between 70% and 90% of the average yield, as 
used in previous studies (Elabed and Carter, 2014; Elabed and Carter, 
2015; Flatnes and Carter, 2015). 

With this information, we can then compute insurance premiums, 
which allow us to discuss insurance affordability. Assuming an actuar-
ially fair contract, so that the expected premium would be equal to the 
indemnity paid, the premium to be paid to insure one hectare would be 
equal to: 

E(i) = p*
∫ τ

0
(τ − ỹ)h(ỹ)dỹ (A.2)  

where h(y) is the probability of obtaining the estimated yield. 
Finally, for each value of trigger (expressed in percentage of average 

yield), we can quantify negative basis risk as the percentage of uncov-
ered loss over the insured loss: 

negative basis risk =

∑
q(τ − y)I

∑
q(τ − y)F

(A.3)  

while positive basis risk as the percentage of the reimbursed non-losses 
over the non-losses 

positive basis risk =

∑
q(τ − y)G

∑
q(τ − y)H

(A.4)  

where q is quantity, I is an indicator function that takes value 1 if y < τ 
and ỹ > τ (and 0 otherwise); F is an indicator that takes value 1 if y < τ 
(and 0 otherwise); G is an indicator function that takes value 1 if y > τ 
and ỹ < τ (and 0 otherwise); H is an indicator that takes value 1 if y > τ 
(and 0 otherwise). Clearly, if everyone who experienced a loss also 
received a corresponding indemnity, the numerator of equation A.4 (and 
hence the negative basis risk) would be equal to zero. 

Appendix B. Quantifying the importance of measurement error 

As mentioned, yield data was self-reported raising concerns that 
measurement error may be a major determinant of Basis risk (ie, of low 
correlation between declared rice yield and an objective measure of 
vegetation status which, as argued, would mostly reflect rice production 
during wet season). In order to investigate how important such mea-
surement error can be, we use data from the 2018 wet season, for which 
we collected detailed data on rice production technology, to estimate a 
linear production function that relates harvested quantity of rice (Y, in 
kg) with inputs (land A, labor L and capital K) and technological choices 
(subsumed under X: use of fertilizer, rotation & fallow, weeding, as well 
as plot characteristics). 

Y = a+ bA+ cL+ dK+ eX (B.1) 

The results are presented in Table B1, for the entire sample (column 
1), and when we exclude outliers, as defined in the text (column 2) and 
when we restrict the analysis to the trial sample (column 3). 

These results suggest two comments. The first is that there are no 
surprising results in terms of individual coefficients, which are plausible 
in terms of magnitude and statistical significance given what is known 
about rice production in the region. The second is the relatively high R2 
(>0.66). Taken together, they suggest that self-reported values of har-
vested rice are a plausible approximation of the true values of rice 
production. 

Using the estimated parameters of Table B1 we used predicted yields 
to estimate basis risk and premiums in the absence of measurement 
error. Table B2 reports these results on the whole sample computed, 
contrasting observed and predicted yields. The results are quite similar, 
with basis risks slightly higher and premiums lower when using pre-
dicted yields, suggesting that, at least in this application, measurement 

Table B1 
Estimate of linear production function.   

(1) (2) (3) 
Variables Harvest Harvest Harvest 

Area (ha) 1,627*** 1,677*** 1,594***  
(280.7) (285.2) (255.1) 

Access wet season (0/1) 38.23 − 11.65 22.03  
(115.7) (121.4) (131.9) 

Seasonal road (0/1) 84.73 80.80 87.31  
(100.5) (101.7) (123.0) 

Permanent road (0/1) − 76.23 − 12.52 − 99.53  
(143.0) (141.7) (190.6) 

Plot borders river − 55.73 − 0.919 − 10.53  
(105.7) (105.8) (117.4) 

Plot borders forest − 30.13 10.94 45.48  
(103.0) (101.4) (113.4) 

Distance (km) − 23.02 − 13.45 − 13.26  
(23.28) (23.14) (26.00) 

Soil depth (>50 cm) − 236.6* − 285.6** − 278.3**  
(122.4) (120.0) (138.8) 

Soil depth (25–50 cm) − 159.7 − 169.0 − 193.5  
(99.20) (103.3) (117.2) 

Stony soil − 168.4 − 172.2 − 76.58  
(133.7) (127.7) (132.8) 

Slope - moderate 298.3*** 270.3*** 310.2***  
(95.41) (93.67) (106.4) 

Slope - flat 397.7*** 394.2*** 473.1***  
(144.8) (148.1) (169.0) 

Upland rice − 339.4 278.6 − 182.2  
(765.5) (500.3) (427.1) 

Seed (kg) 6.008* 5.438* 5.806*  
(3.149) (3.136) (3.016) 

Transplant (0/1) − 276.7 − 65.29 7.383  
(316.3) (275.7) (281.2) 

Continuous cultivation − 1,187*** − 989.7** − 1,152**  
(445.2) (375.4) (454.3) 

Fallow (wet season 2017) 408.7 369.9 559.4*  
(296.6) (277.3) (320.5) 

Fertilizer (0/1) 495.0*** 437.7** 503.1***  
(168.3) (169.3) (187.9) 

Grazing (0/1) 222.8** 228.6** 362.2***  
(94.38) (96.93) (108.2) 

Manure (0/1) 371.2* 365.0** 331.3  
(193.3) (178.6) (199.0) 

Irrigated (0/1) 30.85 − 59.61 − 85.89  
(182.8) (194.5) (254.8) 

Slash (0/1) − 317.3 − 292.2 − 513.6***  
(205.1) (175.6) (181.1) 

Burn (0/1) − 12.18 − 150.0 − 34.58  
(374.4) (343.2) (470.3) 

Weeded on time (0/1) − 150.2 − 114.2 − 137.7  
(111.8) (110.6) (123.1) 

Land preparation on time (0/1) − 349.3 − 998.1*** − 541.1**  
(598.1) (335.6) (249.4) 

Weed times − 35.86 − 28.91 − 14.31  
(78.41) (79.45) (95.44) 

Weed 115.8 148.5 187.8  
(224.4) (216.2) (243.4) 

Weeding on time (0/1) 223.4* 265.5** 259.2**  
(112.2) (110.9) (125.3) 

Rodent Control (0/1) 108.2 72.35 1.963  
(114.6) (116.4) (128.3) 

Two-wheel tractor (0/1) 254.7* 219.1 211.7  
(136.9) (146.1) (175.9) 

Disease control (0/1) − 99.82 − 78.38 − 86.95  
(123.8) (119.7) (145.9) 

Rodent losses − 51.88 − 139.6 − 223.6  
(152.8) (148.1) (139.0) 

Flooded plot − 408.0*** − 406.3*** − 545.8***  
(126.6) (131.3) (146.6) 

Not enough water − 103.2 − 117.8 − 338.8*  
(187.9) (192.5) (194.4) 

Constant 3,152* 3,603** 3,641**  
(1,581) (1,434) (1,744) 

Observations 700 676 538 
R-squared 0.661 0.668 0.682 

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. 
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error does not affect our conclusions. 
Appendix C. Additional tables and figures 

As mentioned in the main text, we eliminate from the sample the observations reporting zero yields or above 1.5 times the interquartile range. 
Table C1 reports the results with the inclusion of all the data, but the observations reporting zero yields. 

In general, the results confirm that taking into account heterogeneity, by clustering the data, helps to define the index insurance. Nevertheless, we 
notice that in the case of cluster 2 the basis risks are higher with respect to the ones of the whole sample. This outcome is associated with a lower 
predictive capability of the models applied to Cluster 2 (lower R2). In these cases it may not be easy to define the index insurance and further in-
vestigations are needed. 
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