
19 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On the impact of pollution attacks on coding-based distributed storage systems

Published version:

DOI:10.1109/TIFS.2022.3140924

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1848512 since 2023-01-10T09:41:16Z

1

On the impact of pollution attacks on
coding-based distributed storage systems

Rossano Gaeta

Abstract—Coding-based distributed storage systems (DSS) are employed in many diverse heterogeneous settings, e.g., cloud
storage data centers, peer-to-peer systems, wireless sensor networks, fog/edge computing system, to provide better throughput,
latency, reliability, scalability, load adaptation, geographical migration and fault tolerance with respect to traditional monolithic enterprise
storage systems. Despite the undoubted advantages offered by coding, reliability and security are jeopardized by a pollution attack that
can easily disrupt the entire system and degrade performance.
In this paper we take an abstract view of a DSS and we investigate by means of mathematical modeling what are the availability,
robustness, and timeliness of heterogeneous, coding-based DSS when storage nodes (SN) are unreliable and can be malicious. To
this end, we focus on a class of allocations of coded fragments to SNs that we call feasible allocations; the model takes into account
both reliability and reactivity of SNs.
We define robust availability and timeliness of feasible allocations that we use to characterize the overall performance and robustness
of the DSS in a reference scenario. Our analysis reveals that code redundancy is a double-edged sword in a DSS where malicious SNs
come into play and that there exists an optimal value of code redundancy regardless all system parameters that maximizes the number
of malicious SNs that can be tolerated to achieve maximum DSS performance. We also found that larger codes are preferred over
short ones as they yield superior DSS performance in the presence of malicious SNs. Furthermore, when multiple feasible allocations
yield the highest DSS performance timeliness can be used as a guide for the choice. Finally, heterogeneity plays a role in determining
the timeliness of the maximally spread allocations in the case of targeted attacks.

Index Terms—distributed storage, cloud storage, coding, security, integrity, heterogenous, pollution attack.

✦

1 INTRODUCTION

Distributed storage systems (DSS) are employed in many
diverse settings, e.g., cloud storage data centers, peer-to-
peer systems, wireless sensor networks, fog/edge comput-
ing system, to provide better throughput, latency, relia-
bility, scalability, load adaptation, geographical migration
and fault tolerance with respect to traditional monolithic
enterprise storage systems [1], [2], [3], [4], [5], [6], [7].

Coding: Often, coding is exploited to improve many
aspects of DSSs, i.e., to increase throughput, reduce latency,
simplify data collection, and granting reliability [3], [8], [9],
[10]. These systems exploit some sort of linear erasure codes
(n, k, r) whereby a storage object is divided into k source
fragments that are used to compute n coded fragments as
well as r repair fragments. Then, the coded fragments are
spread across the elements of the so called placement group,
i.e., a subset of the components of the DSS known as the
storage nodes (SN). Each storage object can be recovered from
a subset of k ≤ l ≤ n coded fragments obtained from the
SN of its placement group and a lost coded fragment can
be replaced by a new one by using r repair fragments. If
the storage object can be recovered from any k of the n
coded fragments then an erasure code is termed as a MDS
(maximum distance separable) code.

Heterogeneity: Most of the designs and analysis of coding-
based DSS assume SNs are homogeneous, e.g., the respond-
ing probability to a data collector is the same for all SNs

• Rossano Gaeta is with Università degli Studi di Torino, Dipartimento di
Informatica, Torino, Italia. E-mail: rossano.gaeta@unito.it

[11]. Nevertheless, virtually all contexts that are amenable
to the deployment of DSS are inherently heterogeneous. For
instance, peer-to-peer and fog/edge computing systems are
by definition composed of terminals with different storage,
computing, and communications capabilities, while in cloud
storage data centers components with different resource
budgets co-exist due to the periodic upgrades and replace-
ments.

Weakness: Despite the undoubted advantages offered by
coding, reliability and security of DSS are still concerns that
can significantly limit their adoption [12], [13]. In particular,
a data modification attack (a.k.a. pollution attack) can easily
disrupt the entire system and degrade performance since
intentional alteration of even a single coded fragment can
propagate its bogus effects during the decoding process and
damage the original storage object [14].

Our contribution

In this paper we take an abstract view of a DSS and we
investigate by means of mathematical modeling what are
the availability, robustness, and timeliness of coding-based
DSS when SNs can be malicious and could intentionally
modify one or more coded fragments representing a storage
object. To this end, we focus on a class of allocations of
coded fragments to SNs that we call feasible allocations. The
model takes into account both reliability, i.e., the probability
a SN responds to a query for its coded fragments, and
reactivity, i.e., the probability the response from a SN is
received by a data collector within a given time deadline. In
the model SNs are partitioned into reliability and reactivity
classes to represent a heterogeneous DSS.

2

We then define two measures for a feasible allocation: the
first one we call robust availability that we use to analyze the
role of code redundancy, i.e., the amount of coded fragments
generated to represent a storage object in the DSS, and to
investigate the maximum number of malicious SNs that
the DSS can tolerate without affecting the possibility of
decoding the original storage object and without allowing
malicious SNs to collude to recover and modify it. The
second one is called timeliness of a feasible allocation that
we use to characterize the capability of a DSS to provide a
data collector with coded fragments representing a storage
object within a given time deadline.

We consider a reference scenario and we use the model
predictions to provide answers to the following questions:

• what is the role of code redundancy?
• what is the impact of average DSS reliability?
• what is the impact of limiting the size of the place-

ment groups?
• is there an optimal code redundancy?
• which feasible allocations are best for optimal code

redundancy?
• what is the role of code and DSS size?
• what is the impact of DSS heterogeneity?
• how does the timeliness of optimal feasible alloca-

tions depend on DSS heterogeneity?

Paper organization

The paper is organized as follows: Section 2 describes the
coding-based DSS we consider as well as the attack model of
malicious SN. Section 3 shows the analytical model for DSS
availability, robustness, and overall performance. Section 4
contains the discussion of all values of DSS parameters we
used to define the reference scenario. Section 5 comments
on the results we obtained for both homogeneous and
heterogeneous DSS, while Section 6 discusses the scientific
background of our work. Finally, Section 7 summarizes the
paper contribution, draws conclusions, and outlines possi-
ble future developments of the current research activity.

Notation

To ease the task of the reader Table 1 summarizes the main
notation used throughout the paper. All sets have been
denoted by calligraphic, upper-case letters.

2 SYSTEM MODEL

In this section we consider a very abstract DSS. We focus
on the description of the key components and functions
that can be found and are performed in any kind of DSS.
We describe the DSS components and their interactions in
Section 2.2 and the attack model in Section 2.3.

2.1 The coding

We assume that storage objects are represented by a set of
coded fragments according to a MDS-like coding scheme. In
particular, we assume that an (n, k) erasure code with n ≥ k
is employed such that any subset whose size is k is sufficient
for retrieving the original storage object. We also assume
that storage objects are encoded by generating redundant
coded fragments according to the code redundancy R = n

k
.

TABLE 1: Paper notation.

Symbol Description
Coding parameters

k Number of source fragments
R Code redundancy
n Number of coded fragments

DSS parameters
M Size of the DSS
C Number of reliability classes
ni Size of class i SNs
ri Reactivity of class i
pi Reliability of class i
p Average DSS reliability

Allocations
ai Size of the placement group of class i

xi
Number of coded fragments to each
SN in the placement group of class i

a = (a1, . . . , aC)
Feasible allocation

x = (x1, . . . , xC)

Xi

Overall number of coded fragments
allocated to the placement group of
class i

NS Overall size of the placement group
F(n) Set of feasible allocations

Attack model
mi Number of malicious SNs in class i
m = (m1, . . . ,mC) Feasible attack
NP Overall number of malicious SNs
M(NP) Set of feasible attacks
µ = (µ1, . . . , µC) Actual attack
A(a, x,m) Set of actual attacks
λ = (a1−µ1, . . . , aC−µC) Honest allocation
H(a, x,m) Set of honest allocations
ρ = (ρ1, . . . , ρC) Honest responding set
R(a, x,m, µ) Set of honest responding sets

2.2 The DSS

The DSS model we consider is composed of M SNs and to
account for the heterogeneity of SNs we consider them as
partitioned in C > 0 disjoint subsets called reliability classes.
Each class i (1 ≤ i ≤ C) is composed of ni (ni > 0) SNs
therefore M =

∑C
i=1 ni. The reliability of SNs in class i is

characterized by the parameter 0 < pi ≤ 1, i.e., pi is the
probability that a SN in class i is successfully accessed to
retrieve stored coded fragments. It follows that the DSS is

characterized by the average reliability p =
∑

C

i=1
nipi

M
. The DSS

model also comprises an allocator and a collector:

• upon writing a storage object to the DSS the allocator:

– encodes it by means of a MDS (n, k) erasure
code whose redundancy is R;

– assigns Xi coded fragments to class i propor-
tionally to the class size, i.e., Xi = nni

M
;

– selects a random subset of size ai (1 ≤ ai ≤ ni)
from each class i; it follows that the over-
all size of the placement group is equal to
NS =

∑C

i=1 ai. The identifiers of the selected
placement group are retrieved upon each
read/write operation on a storage object and
they determine where the coded fragments for
that storage object have to be held;

– assigns xi coded fragments to each SN of the
placement group that belongs to class i such
that Xi = aixi. This ensures that an equal
amount of coded fragments is stored on each

3

h(a, x,m, µ) = 1

{
C∑

i=1

xi · µi < k

}

︸ ︷︷ ︸

robustness

·
∑

ρ∈R(a,x,m,µ)

[
C∏

i=1

b(ai − µi, pi, ρi)

]

1

{
C∑

i=1

xi · ρi ≥ k

}

︸ ︷︷ ︸

availability

. (1)

node of the placement group that belongs to
the same reliability class. Furthermore, the se-
lection of random subsets of SN within each
class also guarantees that, on average, each SN
is included in the same number of placement
groups.

We formalize the description of how an allocation is
organized by the following:

Definition 2.1. A feasible allocation of n coded frag-
ments in a DSS composed of C reliability classes is
represented by a pair of vectors of positive integers
(a, x) where a = (a1, . . . , aC) and x = (x1, . . . , xC)
whose components are such that ∀i, ai ≤ ni ∧ xi ≤ n

and n =
∑C

i=1Xi =
∑C

i=1 xiai.

We denote the set of all feasible allocations of n coded
fragments in a DSS composed of C reliability classes
as F(n)1.

• upon reading a storage object the collector queries the
SNs of its placement group to obtain at least k coded
fragments to recover it. Recovery of the requested
storage object can only occur with some probability
because SNs:

– are assumed to respond to requests only with
a given probability, and

– can be malicious and hence modify coded
fragments before responding to the collector.

2.3 The attack model

We consider a system where mi SNs in reliability class i are
malicious and intentionally alter coded fragments they store.
The collector is thus able to recover the requested storage
object only if at least k coded fragments are provided by
honest SNs. Therefore, we define:

Definition 2.2. A feasible attack launched by NP ≤ M
malicious SNs is represented by a vector of non-negative
integers m = (m1, . . . , mC) whose components are such that
∀i, 0 ≤ mi ≤ ni ∧NP =

∑C

i=1 mi.

We denote as M(NP) the set of all feasible attacks
launched by NP malicious SNs on a DSS composed of C
reliability classes. We also define:

Definition 2.3. An actual attack for a feasible allocation (a, x)
and a feasible attack m is represented by a vector of non
negative integers µ = (µ1, . . . , µC) whose components are
such that ∀i, 0 ≤ µi ≤ min(ai,mi).

Definition 2.4. For a given actual attack µ its corresponding
honest allocation is represented by the complement vector of

1. Henceforth we drop the explicit dependence on the number of
classes C to avoid cluttering the notation.

non negative integers λ = (a1 − µ1, . . . , aC − µC). Further-
more, an honest responding set is represented by a vector of
non negative integers ρ = (ρ1, . . . , ρC) whose components
are such that ∀i, 0 ≤ ρi ≤ ai − µi.

We denote as A(a, x,m) the set of all actual attacks that
can realize for feasible allocation (a, x) under feasible attack
m and as H(a, x,m) the set of all honest allocations. Finally,
for an actual attack µ ∈ A(a, x,m) we denote as R(a, x,m, µ)
the set of all honest responding sets.

3 THE MATHEMATICAL MODEL

In this section we define the concepts of robust availability
and timeliness of a feasible allocation. Robust availability
characterizes the ability to recover a storage object when
SNs can be unreliable while minimizing the possibility that
malicious SNs collude to recover a storage object and forge
a fake one. Timeliness is the probability the data collector re-
covers a storage object within a pre-specified time deadline.
Based on these indicators we define the concept of optimal
allocations of coded fragments representing a storage object.

3.1 Preliminaries

If we consider a feasible allocation (a, x), a feasible attack m,
and an actual attack µ then we can express the probability
that µi SNs in class i are malicious as

g(ni,mi, ai, µi) =

(
mi

µi

)(
ni−mi

ai−µi

)

(
ni

ai

) ,

that is, the hyper-geometric distribution with parameters
ni, mi, and ai. We also assume that allocations in different
classes are independent therefore the realization probability
of an actual attack scenario µ is given by

G(a, x,m, µ) =

C∏

i=1

g(ni,mi, ai, µi).

Furthermore, we use the symbol 1 {} for the indicator func-
tion that is equal to 1 if the argument is a true statement and
0 otherwise.

3.2 Robust availability of a feasible allocation

To characterize the robust availability of a feasible allocation
(a, x) under a feasible attack m, we consider an actual attack
µ ∈ A(a, x,m) and a honest responding set ρ ∈ R(a, x,m, µ).
The probability ρi honest SNs respond to the data collector
follows a binomial probability distribution whose parame-
ters are ai − µi and pi that we denote as b(ai − µi, pi, ρi).
Thanks to the independence assumptions we made, the
probability that honest responding sets ρ ∈ R(a, x,m, µ)
provide at least k clean coded fragments to the data collector
and malicious SNs are not able to forge a fake storage object
is given by Equation 1. Then, the probability to recover

4

a clean storage object for feasible allocation (a, x) under
feasible attack m while avoiding fatal collusion of malicious
SNs is given by

S(a, x,m) =
∑

µ∈A(a,x,m)

G(a, x,m, µ)h(a, x,m, µ). (2)

Finally, the robust availability of a feasible allocation (a, x)
when attackers take control of NP out of N SNs can be
defined as:

A(NP , a, x) =

∑

m∈M(NP)

S(a, x,m)

|M(NP)|
. (3)

Robust availability represents the average value of the prob-
ability malicious SNs cannot collude to alter a storage object
and it is possible to recover a clean storage object for the
feasible allocation (a, x) over all possible feasible attacks of
NP malicious SNs.

3.3 Timeliness of a feasible allocation

We consider a feasible allocation (a, x), a feasible attack m,
and an actual attack µ. We further assume that:

• the data collector has a time deadline td to be met
before recovering the original storage object, and

• the probability a response from a SN in class i is
received within td time units when a response is
provided is equal to ri. We call ri the reactivity of
SNs in class i.

In this case, simple theory of order statistics [15] yields
the probability that ji honest SNs in placement group i
provide a response within td time units as b(ai − µi, piri, ji),
i.e., a binomial probability distribution with parameters
ai − µi and piri. It then follows that the probability the data
collector receives at least k clean coded fragments within td
time units (that we denote as T (NP , a, x)) can be obtained
from availability A(NP , a, x) by considering piri instead of
pi in the derivation of Equation 1.

3.4 DSS overall performance

We define the concept of overall performance of the DSS as
the highest value of the robust availability over all possible
feasible allocations, i.e.,

P (n,NP) =max
(a,x)∈F(n)

A(NP , a, x), (4)

along with the set of feasible allocations yielding P (n,NP)
that is given by

P(n,NP) =argmax
(a,x)∈F(n)

A(NP , a, x). (5)

The optimal size of the placement group when NP malicious
SNs are part of the DSS is given by

N∗
S(n,NP) = min

(a,x)∈P(n,NP)

C∑

i=1

ai. (6)

Finally, also consider the maximum tolerable attack load as

N∗
P (n) = max

NP

1 {P (n,NP) ≥ 1− ǫ} . (7)

i.e., the maximum value of NP that yields the DSS highest
performance. In all our experiments we used ǫ = 10−9.

TABLE 2: Reference scenario.

Symbol Description
Coding parameters

k {8, 16, 64}
R {1.5, 2.0, 2.5, 3.0, 3.5}

DSS parameters
M {128, 512, 1024}
C {1, 2, 3}
p {0.7, 0.8, 0.9, 1}

Attack model
NP [0, M

2
]

TABLE 3: Characteristics or reliability classes.

C Size Reliability
1 n1 = M p1 = p

2
n2 = sM p2 = 1

n1 = M − n2 p1 = p−s

1−s

3
n3 = sM p3 = 1
n1 = sM p1 = 2p− 1
n2 = M − n1 − n3 p2 = p

4 REFERENCE SCENARIO

In this section we define the reference scenario we use to
evaluate how robust availability and timeliness are affected
by system parameters. We identify a few system parameters
that impact on the characteristics of the DSS under a pollu-
tion attack. Table 2 summarizes all the values of the system
parameters we will consider in Section 5 for our analysis.

DSS parameters

The system we consider is composed of M SNs where
M ranges in {128, 512, 1024}. We refer to the cases M =
128,512, and 1024 as the small, medium, and large size DSS,
respectively. We also study the DSS performance for systems
hijacked by NP = 0, 1, . . . , M

2 malicious SNs.

Heterogeneity model

We assume that the M SNs composing the DSS are parti-
tioned in C reliability classes. Without loss of generality, we
choose to consider class 1 as the less reliable (we name it the
unreliable class) and class C as the most reliable (we name
it the reliable class). Table 3 summarizes the characteristics
of reliability classes for the values of C we consider. For
the heterogeneous case, i.e., C > 1, we assume the size of
the reliable class is a fraction s of the size of the DSS (in
our experiments we set s = 1

8 . Furthermore, we assume
the reliability of the reliable class is always pC = 1 while
the reliability of other classes are a function of the desired
average reliability of the DSS p.

Coding parameters

In all our experiments we consider an allocator that uses a
(n, k) MDS erasure code to encode a storage object. We con-
sider k ranging in {8, 16, 64}. We refer to the cases k = 8, 16,
and 1024 as the small, medium, and large codes, respectively.
For each value of k we study the system characteristics for
coding redundancy R ∈ [1.5, 3.5].

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

k=8
k=16
k=64

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

k=8
k=16
k=64

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

k=8
k=16
k=64

M = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

k=8
k=16
k=64

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

k=8
k=16
k=64

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

k=8
k=16
k=64

M = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

–p=1
–p=0.9
–p=0.8
–p=0.7

k = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

–p=1
–p=0.9
–p=0.8
–p=0.7

k = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

–p=1
–p=0.9
–p=0.8
–p=0.7

k = 64

Fig. 1: DSS overall performance P (.) of a homogeneous (C = 1), fully reliable (p = 1) DSS when NP = M
4 as a function of

code redundancy R (top row), when the maximum size of the placement group is limited to M
5

(middle row), and for a
large size (M = 1024), unreliable DSS (bottom row).

5 RESULTS

In this section we exploit the model we developed and the
performance indexes we defined in Section 3 to assess the
overall performance of the DSS we consider. Section 5.1 dis-
cusses the impact of system parameters on a homogeneous
DSS where only one class of SNs exists, i.e., C = 1, while
Section 5.2 deals with a heterogeneous DSS where C > 1.
The discussion of results will be organized as a series of
question and answers and to avoid cluttering the notation
and the graphs we drop the explicit dependence on all
parameters for indexes defined in Section 3.

5.1 Homogeneous DSS

In this section we consider a homogeneous DSS, i.e. C = 1,
whereby all SNs share the same reliability characteristics.
The questions we provide an answer to are:

• What is the role of code redundancy R?
To answer this question we first consider a fully
reliable (p = 1) DSS whereby the number of ma-
licious SNs is NP = M

4 . Figure 1 (top row) shows
DSS overall performance P (.) as a function of code
redundancy for a small (left graph), medium (middle

graph), and large (right graph) size DSS and for all
code sizes k.
We note that regardless both code size k and DSS size
M , the overall performance P (.) is not a monotonic
function of R since while availability is an increasing
function of R robustness to collusion is a decreas-
ing function of R, instead. More precisely, this can
be explained by noting that for a fixed number of
malicious SNs (NP):

– the availability factor in the definition of prob-
ability in Equation 1 is proportional to code
redundancy R through quantities xi, i.e., the
higher R the more (and the higher) the possi-
ble values of xi;

– the robustness factor is inversely proportional
to R through quantities xi therefore making
robustness a decreasing function of R.

The non-monotonicity of P (.) is an intrinsic char-
acteristic regardless all other system parameters. In-
deed, Figure 1 (middle row) shows the same results
in the case the size of the placement group is limited
to M

5
while Figure 1 (bottom row) shows the DSS per-

formance when SNs are not fully reliable: although

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=8
k=16
k=64

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=8
k=16
k=64

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=8
k=16
k=64

M = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=8
k=16
k=64

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=8
k=16
k=64

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=8
k=16
k=64

M = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

–p=1
–p=0.9
–p=0.8

k = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

–p=1
–p=0.9
–p=0.8
–p=0.7

k = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

–p=1
–p=0.9
–p=0.8
–p=0.7

k = 64

Fig. 2: DSS normalized maximum tolerable attack load
N∗

P
(.)

M
of a homogeneous (C = 1), fully reliable (p = 1) DSS when

NP = M
4 as a function of code redundancy R (top row), when the maximum size of the placement group is limited to M

5
(middle row), and for a large size (M = 1024), unreliable DSS (bottom row).

quantitatively different, the results show the same
qualitative behavior. Finally, we also observe that
in all cases we considered non-monotonicity of P (.)
appears for any code and DSS size.
Conclusions: Code redundancy R is a double-edged
sword in a DSS where malicious SNs come into play
and a trade-off must be made between availability
and robustness to collusion.

• Is there an optimal code redundancy R∗?
Previous analysis suggests that optimal values for
code redundancy R∗ can be identified to ensure both
maximum availability and robustness to collusion.
To this end, in Figure 2 (top row) we show results
for the normalized maximum tolerable attack load
N∗

P
(.)

M
as a function of code redundancy R for a

fully reliable DSS. Results clearly show that there
exists an optimal value for code redundancy among
those we considered, i.e., R∗ = 2, guaranteeing both
maximum availability and robustness to collusion for
all combinations of code size k and DSS size M .
Again, the same conclusions can be drawn in the
case the size of the placement group is limited to M

5
(Figure 2 middle row) and for unreliable SNs (Figure

2 bottom row).
Conclusions: In the design of a DSS there exists
an optimal value of code redundancy regardless all
system parameters, i.e., R∗ = 2, that maximizes the
number of malicious SNs that can be tolerated to
achieve maximum DSS performance.

• What is the role of code size k and DSS size M?
The analysis of results we presented in Figures 1 and
2 also suggests a role for the code size k since it can
be noted that the higher k the higher both P (.) and
N∗

P
(.)

M
. In particular, the DSS normalized maximum

tolerable attack load
N∗

P
(.)

M
tops 0.5 in the case of small

DSS and k = M
2 , i.e., for M = 128 and k = 64 as

depicted in Figure 2 by the top row leftmost graph.
To verify this limit in Figure 3 we show the DSS

normalized maximum tolerable attack load N∗

P
(.)

M
of

a homogeneous (C = 1), fully reliable (p = 1) DSS
as a function of code redundancy R for large M and
k. It can be noted that regardless the DSS size M
the maximum performance is reached when the code
size is k = M

2
for code redundancy R∗ = 2. Higher

values of k do not improve the DSS performance.
Conclusions: Larger codes are preferred over short

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=256
k=512

k=1024

M = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=512
k=1024
k=2048

M = 2048

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

k=1024
k=2048
k=4096

M = 4096

Fig. 3: DSS normalized maximum tolerable attack load
N∗

P
(.)

M
of a homogeneous (C = 1), fully reliable (p = 1) DSS as a

function of code redundancy R for large M and k.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
S* (.

)/
M

NP/M

k=8
k=16
k=64

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
S* (.

)/
M

NP/M

k=8
k=16
k=64

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
S* (.

)/
M

NP/M

k=8
k=16
k=64

M = 1024

Fig. 4: Normalized optimal size of the placement group
N∗

S
(.)

M
of a homogeneous (C = 1), fully reliable (p = 1) DSS for

optimal redundancy R∗ = 2 as a function of normalized attack load NP

M
.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
(.

)

r1

(a1=128, x1=1)
(a1=64, x1=2)
(a1=32, x1=4)

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
(.

)

r1

(a1=128, x1=1)
(a1=64, x1=2)

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
(.

)

r1

(a1=128, x1=1)
(a1=64, x1=2)

M = 1024

Fig. 5: Timeliness T (.) of equally robust allocations in P(.) for R∗ = 2, k = 64, and NP = M
8

in the case small (left graph),
medium (middle graph), and large (right graph) size DSS as a function of reactivity r1.

ones as they yield superior DSS performance in the
presence of malicious SNs. In particular, code size
k = M

2 for code redundancy R∗ = 2 is the min-
imum value to obtain the highest performance for
the DSS for both robust availability and normalized
maximum tolerable attack load.

• Which feasible allocations are best for optimal code
redundancy R∗?
Results shown in Figure 4 provide information on the
optimal allocations of coded fragments when storage
object are stored with redundancy R∗. The graphs
show the normalized optimal size of the placement

group N∗

S
(.)

M
of a homogeneous (C = 1), fully reliable

(p = 1) DSS for optimal redundancy R∗ = 2 as a
function of normalized attack load NP

M
. First of all

we note that all curves must have an upper bound at

min(1, R
∗
·k

M
) that corresponds to allocations whereby

the maximum possible number of SNs is used to al-
locate coded fragments. We also note that maximally
spreading coded fragments is the key to obtain the
highest values for overall performance P (.), i.e., to
resist to attacks from up to N∗

P (.) malicious SNs.
Results on the normalized optimal size of the place-

ment group
N∗

S
(.)

M
suggest a more detailed analysis of

the elements of set P(.). In Definition 6 we chose to
select the most parsimonious allocation in terms of
number of involved SNs when P(.) contains more
than one element. Nevertheless, alternative defini-
tions can be sought if timing considerations are taken
into account. In particular, we evaluate the timeliness
T (.) of feasible allocations in P(.) in the case R∗ = 2,
k = 64, and NP = M

8 as a function of reactivity r1.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

C=1
C=2
C=3

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

C=1
C=2
C=3

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

P(
.)

R

C=1
C=2
C=3

M = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

C=1
C=2
C=3

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

C=1
C=2
C=3

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4

N
P* (.

)/
M

R

C=1
C=2
C=3

M = 1024

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
S* (.

)/
M

NP/M

C=1
C=2
C=3

M = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
S* (.

)/
M

NP/M

C=1
C=2
C=3

M = 512

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6
N

S* (.
)/

M

NP/M

C=1
C=2
C=3

M = 1024

Fig. 6: Results for a heterogeneous, unreliable (p = 0.9) DSS are displayed for small (left graphs), medium (middle graphs),
and large (right graphs) size DSS (M) and for large code size k = 64. Top row graphs depict DSS overall performance P (.)
when NP = M

4 as a function of code redundancy R, middle row graphs depict DSS normalized maximum tolerable attack

load
N∗

P
(.)

M
when NP = M

4 as a function of code redundancy R, while bottom row graphs depict normalized optimal size

of the placement group
N∗

S
(.)

M
for optimal redundancy R∗ as a function of normalized attack load NP

M
.

In Figure 5 we present results for T (.) and we note
that in this scenario the set of feasible allocations
yielding the highest P (.) always contains two el-
ements, i.e., P(.) = {(128, 1), (64, 2)}, but the case
M = 128 wherein allocation (32, 4) is also possible.
On the one hand, it can be noted that when reactivity
is r1 < 0.58 the most parsimonious allocations also
maximize timeliness. On the other hand, the maxi-
mally spread allocation (128,1) becomes also optimal
for the timeliness when r1 ≥ 0.58.
Conclusion: When the number of malicious SNs is
fixed and the set of feasible allocations yielding the
highest DSS performance P (.) contains more than
one element timeliness can be used as a guide for
the choice. Indeed, when the probability of SNs
responding within a given time deadline is below
a system dependent threshold parsimonious alloca-
tions are preferred over maximally spread ones while
the opposite is true for more reactive responses.

5.2 Heterogeneous DSS

In this section we consider a heterogeneous DSS, i.e. C > 1,
whereby the average reliability p = 0.9 and whose reliability
classes are defined in Table 3.

• What is the impact of DSS heterogeneity C?
All the observations we made on a homogeneous
DSS are valid in the heterogeneous case, as well. Fig-
ure 6 shows results for a heterogeneous, unreliable
(p = 0.9) DSS for small (left graphs), medium (middle
graphs), and large (right graphs) size DSS (M) and
for large code size k = 64.
Top row graphs depict DSS overall performance P (.)
when NP = M

4
as a function of code redundancy R: it

can be noted that regardless DSS size M , the overall
performance P (.) is not a monotonic function of R.
Also in the heterogeneous case, non-monotonicity of
P (.) is an intrinsic characteristic regardless all other
system parameters therefore to avoid cluttering the
presentation we omit the graphs showing results in
the case the size of the placement group is limited to

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
(.

)

r

C=1
C=2
C=3

mildest attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
(.

)

r

C=1
C=2
C=3

balanced attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
(.

)

r

C=1
C=2
C=3

harshest attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
(.

)

rC

C=1
C=2
C=3

mildest attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
(.

)

rC

C=1
C=2
C=3

balanced attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
(.

)

rC

C=1
C=2
C=3

harshest attack

Fig. 7: Timeliness T (.) of maximally spread allocations for a large size DSS, large code size, optimal redundancy R∗ = 2.5,
and for the highest tolerable number of malicious SNs N∗

P (.). Results for the mildest attack (left graph), the balanced attack
(middle graph), and the harshest attack (right graph) as a function of reactivity homogeneous r (top row) and reliability
class dependent reactivity rC (bottom row).

M
5

. Heterogeneity plays a small role only for low and
high redundancy values R.
Middle row graphs depict DSS normalized maxi-

mum tolerable attack load
N∗

P
(.)

M
when NP = M

4 as
a function of code redundancy R. Optimal values
for code redundancy R∗ can be identified but in the
heterogenous case we observe that R∗ = 2 for a
small size DSS while R∗ = 2.5 for medium and large
size DSS. The value of R∗ is higher in the unreliable
case because a higher redundancy is necessary to
guarantee the collector receives the amount of coded
fragments that are necessary to recover the original
storage object. In this case, the number of reliability
classes almost has no role provided that the average
reliability p is constant.
Bottom row graphs depict normalized optimal size of

the placement group
N∗

S
(.)

M
for optimal redundancy

R∗ as a function of normalized attack load NP

M
.

Also in this case, all curves are upper bounded by
min(1, R

∗

·k
M

) and maximally spread allocations still
yield the highest DSS performance when NP

M
=

N∗

P
(.)

M
. In this case, the number of reliability classes

C has an impact when considering a small size DSS.
Indeed, the normalized optimal size of the placement
group is lower when C = 3 when the number of
malicious SN is NP < M

4 .
Conclusion: All observations we did by analyzing
a homogeneous DSS are still valid in the heteroge-
neous case, i.e., when the number of reliability classes
C > 1. The higher the number of reliability classes
the lower the optimal size of the placement group in
a small size DSS when the number of malicious SN

is NP < M
4

.
• What is the impact of DSS heterogeneity C on

timeliness of maximally spread allocations?
As we discussed, maximally spread allocations are
those that allow the DSS to resist to a pollution attack
brought by the highest number of colluding mali-
cious SNs. To analyze the impact of heterogeneity
on the timeliness of maximally spread allocations we
consider a large size DSS, large code size, optimal
redundancy R∗ = 2.5, and for NP = N∗

P (.). We also
focus on three cases for the pollution attack (two of
them are extreme cases):

– the mildest attack that occurs when all SNs in
the unreliable class (class 1) are malicious and
n2 −N∗

P (.) + n1 SNs in class 2 are too,
– the harshest attack that occurs when all SNs in

the reliable class (class C) are malicious and
nC−1 −N∗

P (.) + nC SNs in class C − 1 are too,
and

– the balanced attack that occurs when mi =
N∗

P (.)
ni

M
.

Figure 7 (top row) shows results for the mildest at-
tack (left graph), the balanced attack (middle graph),
and the harshest attack (right graph) as a function
of reactivity r (here we consider all SNs having the
same reactivity r regardless the reliability class they
belong to). It can be noted that timeliness of the
maximally spread allocation lowers as the number
of reliability classes C increases in both the balanced
and the harshest attack. In the case of the mildest
attack high heterogeneity yields a slightly more reac-
tive DSS.

10

Figure 7 (bottom row) also shows timeliness of maxi-
mally spread allocations in the case reactivity of class
C is an independent parameter rC and reactivity of
other reliability classes are lower, i.e., reactivity of
reliability class i is set to ri = pirC . In this scenario
the same observations can be made and the gap
among timelinesses for different heterogeneous level
are larger.
Conclusion: Heterogeneity plays a role in determin-
ing the timeliness of the maximally spread alloca-
tions, i.e., the allocations that allow the DSS to resist
to a pollution attack launched by N∗

P (.) malicious
SNs. In particular, the higher the number of relia-
bility classes C the worst the responsiveness of the
allocations in the case of a targeted attack to most
reliable SNs, i.e., those in class C .

6 RELATED WORKS

Several papers dealt with the problem of finding allocations
in DSSs with fixed code redundancy where either reliabil-
ities or capacities of SN are not homogeneous, e.g., [16],
[17], [18], [19], [20], [21], [22]. All these papers seek to find
optimal allocations but do not consider attacks to the DSSs
brought by possibly colluding malicious SNs.

Another line of research considers malicious SNs in DSS
that is assumed to always guarantee a certain desired level
of reliability. In these systems SNs are not reliable but when
a SN fails it is replaced by a new node with the same storage
capacity. A repair mechanism is then sought and the focus
is on determining the system capacity for different type of
attacks in both homogenous [23], [24] and heterogeneous
capacities DSS [25]. In this setting optimal erasure codes
[26] have been devised that meet the lower bounds on the
amount of storage and network requirements established
in [23]. Also, the secrecy capacity of Minimum Storage
Regenerating Codes is investigated in [27].

7 CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper we focused on coding-based, heterogeneous
DSS whereby SNs can be unreliable and malicious. In par-
ticular, we considered the so called pollution attack whose
impact can be devastating on the performance, reliability,
and security of DSS. We took an abstract view of a DSS
and we developed a mathematical model to represent the
main characteristics of a DSS whose SNs are characterized
by a certain level of reliability and reactivity. We consid-
ered a special class of allocations of coded fragments to
SNs that we named feasible allocations. We then used the
model to define two measures for a feasible allocation:
robust availability and timeliness. Starting from the indicators
we characterized the overall performance and robustness
of the DSS in a reference scenario. Our analysis revealed
that code redundancy is a double-edged sword in a DSS
where malicious SNs come into play, there exists an optimal
value of code redundancy regardless all system parameters
that maximizes the number of malicious SNs that can be
tolerated to achieve maximum DSS performance, larger
codes are preferred over short ones as they yield superior
DSS performance in the presence of malicious SNs, when

multiple feasible allocations yield the highest DSS perfor-
mance timeliness can be used as a guide for the choice,
and heterogeneity plays a role in determining the timeliness
of the maximally spread allocations in the case of targeted
attacks.

In the current work we considered erasure codes because
of their simplicity and their wide adoption in DSSs. We
basically considered a system where coded fragments are
all functionally equivalent. This means it is possible to focus
only on the number of source (k) and coded (n) fragments.
Furthermore, by assuming a MDS-like coding scheme a
further simplification is possible since successful reading of
the original storage object can be considered whenever any
subset of k fragments are retrieved by the data collector.
Nevertheless, some of the assumptions could be relaxed
to represent other coding mechanisms. For instance, we
could consider modeling of coding algorithms where coded
fragments are not all functionally equivalent. In this case,
the model could be extended with a reasonable effort to
deal with different functional classes of coded fragments that
would add to the partition of storage nodes into reliability
classes.

Another interesting topic to investigate could be the
analysis of robustness of coding mechanisms such as con-
volutional codes to intentional modification of coded data.

Finally, we are currently working on the definition of
malicious SNs identification techniques in the same line as
[28], [29], [30].

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” in ACM SOSP, Oct. 2003.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on. Ieee, 2010, pp. 1–10.

[3] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey
on network codes for distributed storage,” Proceedings of the IEEE,
vol. 99, no. 3, pp. 476–489, 2011.

[4] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin et al., “Erasure coding in windows azure storage.” in
Usenix annual technical conference. Boston, MA, 2012, pp. 15–26.

[5] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang et al., “f4: Facebook’s warm blob
storage system,” in Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation, 2014, pp. 383–398.

[6] Y. Xiang, V. Aggarwal, Y. R. Chen, and T. Lan, “Differentiated
latency in data center networks with erasure coded files through
traffic engineering,” IEEE Transactions on Cloud Computing, vol. 7,
no. 2, pp. 495–508, 2019.

[7] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
M. Rosa, and P. Samarati, “Dynamic allocation for resource protec-
tion in decentralized cloud storage,” in Proc. of the 2019 IEEE Global
Communications Conference (GLOBECOM 2019), Waikoloa, Hawaii,
USA, December 2019.

[8] Q. Liu, D. Feng, H. Jiang, Y. Hu, and T. Jiao, “Systematic erasure
codes with optimal repair bandwidth and storage,” ACM Trans.
Storage, vol. 13, no. 3, 2017.

[9] Q. Liu, D. Feng, Y. Hu, Z. Shi, and M. Fu, “High-performance
general functional regenerating codes with near-optimal repair
bandwidth,” ACM Trans. Storage, vol. 13, no. 2, 2017.

[10] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg, “On
fault tolerance, locality, and optimality in locally repairable codes,”
ACM Trans. Storage, vol. 16, no. 2, 2020.

[11] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage alloca-
tions,” IEEE Transactions on Information Theory, vol. 58, no. 7, pp.
4733–4752, 2012.

[12] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient
byzantine-tolerant erasure-coded storage,” in International Confer-
ence on Dependable Systems and Networks, 2004, 2004, pp. 135–144.

11

[13] K. K. Rao, J. L. Hafner, and R. A. Golding, “Reliability for net-
worked storage nodes,” IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 3, pp. 404–418, 2011.

[14] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient signature-
based scheme for securing network coding against pollution
attacks,” in INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, 2008.

[15] H. A. David and H. N. Nagaraja, “Order statistics,” Encyclopedia of
Statistical Sciences, 2004.

[16] V. Ntranos, G. Caire, and A. G. Dimakis, “Allocations for heteroge-
nous distributed storage,” in Information Theory Proceedings (ISIT),
2012 IEEE International Symposium on. IEEE, 2012, pp. 2761–2765.

[17] G. Xu, S. Lin, G. Wang, X. Liu, K. Shi, and H. Zhang, “Hero:
Heterogeneity-aware erasure coded redundancy optimal alloca-
tion for reliable storage in distributed networks,” in Performance
Computing and Communications Conference (IPCCC), 2012 IEEE 31st
International. IEEE, 2012, pp. 246–255.

[18] Z. Li, T. Ho, D. Leong, and H. Yao, “Distributed storage allocation
for heterogeneous systems,” in Communication, Control, and Com-
puting (Allerton), 2013 51st Annual Allerton Conference on. IEEE,
2013, pp. 320–326.

[19] M. Noori and M. Ardakani, “Allocation for heterogeneous storage
nodes,” IEEE Communications Letters, vol. 19, no. 12, pp. 2102–2105,
2015.

[20] K. P. Roshandeh, M. Noori, M. Ardakani, and C. Tellambura,
“Distributed storage allocation for multi-class data,” in 2017 IEEE
International Symposium on Information Theory (ISIT), 2017, pp.
2223–2227.

[21] M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, “Memory allo-
cation in distributed storage networks,” in 2010 IEEE International
Symposium on Information Theory, 2010, pp. 1958–1962.

[22] P. Hu, C. W. Sung, S. W. Ho, and T. H. Chan, “Optimal coding and
allocation for perfect secrecy in multiple clouds,” IEEE Trans. on
Information Forensics and Security, vol. 11, no. 2, pp. 388–399, 2016.

[23] S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dy-
namic distributed storage systems against eavesdropping and ad-
versarial attacks,” IEEE Transactions on Information Theory, vol. 57,
no. 10, pp. 6734–6753, 2011.

[24] R. Tandon, S. Amuru, T. C. Clancy, and R. M. Buehrer, “Toward
optimal secure distributed storage systems with exact repair,”
IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3477–
3492, 2016.

[25] T. Ernvall, S. El Rouayheb, C. Hollanti, and H. V. Poor, “Capacity
and security of heterogeneous distributed storage systems,” IEEE
Journal on Selected Areas in Communications, vol. 31, no. 12, pp.
2701–2709, 2013.

[26] K. V. Rashmi, N. B. Shah, K. Ramchandran, and P. V. Kumar,
“Information-theoretically secure erasure codes for distributed
storage,” IEEE Transactions on Information Theory, vol. 64, no. 3,
pp. 1621–1646, 2018.

[27] K. Huang, U. Parampalli, and M. Xian, “On secrecy capacity
of minimum storage regenerating codes,” IEEE Transactions on
Information Theory, vol. 63, no. 3, pp. 1510–1524, 2017.

[28] R. Gaeta and M. Grangetto, “Identification of malicious nodes in
peer-to-peer streaming: A belief propagation based technique,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 10,
pp. 1994–2003, 2013.

[29] L. Buttyan, L. Czap, and I. Vajda, “Detection and recovery from
pollution attacks in coding-based distributed storage schemes,”
IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 6,
pp. 824–838, 2011.

[30] R. Gaeta and M. Grangetto, “Malicious node identification in
coded distributed storage systems under pollution attacks,” ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems, vol. 6, no. 3, pp. 1–27, 2021.

Rossano Gaeta Rossano Gaeta received his
Laurea and Ph.D. degrees in Computer Science
from the University of Torino, Italy, in 1992 and
1997, respectively. He is currently Full Professor
at the Computer Science Department, University
of Torino. His current research interests include
the design and evaluation of coding techniques
in distributed storage systems, the modeling of
information diffusion in online social networks,
and the analysis of popularity and quality impact
in recommender systems.

