
30 December 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Parts of Structures

Published version:

DOI:10.1007/s11406-021-00453-0

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1847605 since 2022-03-09T10:28:01Z



 1 

Parts of Structures 
 
Abstract: We contribute to the ongoing discussion on mathematical structuralism by focusing on a 
question that has so far been neglected: when is a structure part of another structure? This paper is a 
first step towards answering the question. We will show that a certain conception of structures, 
abstractionism about structures, yields a natural definition of the parthood relation between structures. 
This answer has many interesting consequences; however, it conflicts with some standard mereological 
principles. We argue that the tension between abstractionism about structure and classical mereology 
is an interesting result and conclude that the mereology of abstract structures is a subject that deserves 
further exploration. We also point out some connections between our discussion of the mereology of 
structures and recent work on non-well-funded mereologies. 
 
Keywords: Structuralism, Mereology, Abstraction 
 

1. Structures as abstractions 
Mathematical structuralism, the view often summarized by the slogan that “mathematics is the science 
of structures”, has received considerable attention in contemporary philosophy of mathematics (see 
e.g. Benacerraf 1965, Awodey 2014, Shapiro 1997, Resnik 1981, Hellman 1989, Leitgeb 2020a,b). One 
issue that divides advocates of different brands of structuralism is how to understand talk of structures: 
are structures special kinds of objects or is talk of structures just a convenient way to talk about systems 
of objects? Eliminativist structuralists like Hellman favour the second option, non-eliminative 
structuralists like Resnik, Shapiro, and Leitgeb the first. In this paper, we offer a new perspective on 
this debate, focusing on a question that is rarely addressed explicitly: assuming that structures are 
objects, how should we define the part-whole relation among structures? Our discussion will reveal 
some fruitful interactions between the debate on mathematical structuralism and recent work on non-
standard mereologies (Cotnoir 2010, Cotnoir and Bacon 2012, Kearns 2011, Effingham 2010).  
 
We will see that a certain way to conceive of structures suggests an apparently plausible and natural 
answer to the question of when a structure is part of another structure. This answer, however, has 
surprising consequences. 
 
There are many reasons why the question of when a structure is part of another structure is an 
important one. One is that in the case of a prototypical example of abstract mathematical objects, i.e. 
classes, there is a standard answer to the question of what are their parts: the parts of a class are its 
subclasses (Lewis 1991). It is natural to wonder whether something similar holds for structures too: 
are the parts of a structure its substructures? When is a structure a substructure of a larger structure? 
Different conceptions of structures might yield different answers to those questions. It might be useful 
to compare these answers and test their plausibility.  
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More generally, just as it is natural to claim “[T]here is no room for a view that takes structures seriously 
as objects and leaves the identity relation between structures indeterminate.” (Shapiro 2006, p. 140), 
one might claim that “there is no room for a view that takes structures seriously as objects and leaves 
the parthood relation between structures indeterminate”.  
 
A further reason to find the question of what makes a structure a part of a larger structure interesting 
is that we already know that one conception of structures has problems explaining their mereological 
composition. David Lewis’ attacked structured universals (Lewis 1986) because they violate standard 
mereological principles. Hence, the conception of abstract mathematical structures as structured 
universals conflicts with classical mereology. In this paper, we will not assume that abstract 
mathematical structures are structured universals but will rather adopt a different conception of abstract 
mathematical structures. We will show that also this conception is in conflict with classical mereology.1 
This suggests that the problem of accounting for the mereology of structures cannot simply be solved 
by denying that they are structured universals. 
 
Finally, sometimes mathematicians make some surprising claims about structures. Kurt Gödel, in a 
passage that we will comment on section 3, claims that some structures are proper parts of themselves. 
Gödel’s claim seems to contradict the standard mereological principle that proper parthood is irreflexive 
(a proper part is a part that is distinct from the whole). We will show that within a certain conception 
of structures (what we call “abstractionism about structures”) there is a natural way to define the 
parthood relation among structures that vindicates Gödel’s claim. However, we also point out that the 
natural definition of parthood between structures that vindicates Gödel’s claim violates standard 
mereological principles. We submit that this is interesting and good to know. 
 
Let us start by exposing the conception of structures that we provisionally assume as a guide in our 
search for a definition of parthood among structures. We will label this conception “abstractionism 
about structures”. Shapiro defines a structure as “the abstract form of a system [of objects]” (Shapiro 
1997: 74): for him, a system stands to its structure as a letter token stands to its type (Shapiro 1997: 
84, see also Linnebo and Pettigrew 2014). The conception of structures as the abstract form of systems 
gives us a clue about how to understand the relation of parthood between structures.  If structures are 
introduced via a certain abstraction principle, this helps with the problem of defining parthood for 
structures: every time a domain of abstract objects is introduced by abstraction over a domain of 
objects 𝐷, there is a natural way to use a relation on 𝐷 to define a relation between the newly introduced 
abstract objects. 
 

 
1 See Linnebo 2017, 166-7, for a comparision between the conception of structures that we analyse in this paper 
(abstractionism about structures) and the view that structures are structured universals. 



 3 

Let 𝐴𝑏𝑠(𝑥), 𝐴𝑏𝑠(𝑦) be abstract objects introduced via an abstraction principle of the following form, 
where ∼ is an equivalence relation on a domain of more “concrete” objects, the range of the variables 
𝑥	and 𝑦: 
 

𝐴𝑏𝑠(𝑥) = 𝐴𝑏𝑠(𝑦) ↔ 𝑥 ∼ 𝑦 
 

A natural way to define a relation on the domain of 𝐴𝑏𝑠(𝑥) and	𝐴𝑏𝑠(𝑦) is to start with a relation 𝑅 on 

the domain of 𝑥 and 𝑦 such that ∼ is a congruence over 𝑅 (for all 𝑥, 𝑥!	and 𝑦, 𝑦!: 𝑥 ∼ 𝑥! ∧ 𝑦 ∼ 𝑦! →
(𝑅𝑥𝑦 ↔ 𝑅𝑥!𝑦!)) and define the relation 𝑅∗	on the domain of 𝐴𝑏𝑠(𝑥) and 𝐴𝑏𝑠(𝑦) by setting: 

𝑅∗1𝐴𝑏𝑠(𝑥), 𝐴𝑏𝑠(𝑦)2 ↔ 𝑅(𝑥, 𝑦). A standard illustration of this procedure is the case where 𝐷 is the set 

of lines, ∼ is parallelism (∥), 𝐴𝑏𝑠(𝑎) is the direction of line 𝑎, and the relation of orthogonality among 
directions (⊥∗) is defined from the orthogonality relation among lines (⊥): 
 

d(𝑎) ⊥∗ 𝑑(𝑏) ↔ 𝑎 ⊥ 𝑏 
 
This way of defining the orthogonality relation among directions from the orthogonality relation among 
lines is admissible precisely because parallelism, the equivalence relation figuring in the abstraction 
principle for directions (𝑑(𝑥) 	= 	𝑑(𝑦) 	↔ 𝑥	 ∥ 𝑦), is a congruence with respect to orthogonality: the 

relation does not distinguish between parallel lines, so if 𝑥 ∥ 𝑥! and 𝑦 ∥ 𝑦!, then 𝑥 ⊥ 𝑦 ↔ 𝑥! ⊥ 𝑦!. 
 
Here is the abstraction principle encapsulating the conception of structures as abstract forms of systems 
(Linnebo and Pettigrew 2014 and Awodey 2014): 
 

Frege’s Abstraction: [𝑆] = [𝑆!] if and only if 𝑆 is isomorphic to 𝑆!2 

 
𝑆 and 𝑆! are systems of objects, i.e. sequences ⟨𝐷, R#, … , R$⟩ where 𝐷 is a set and each 𝑅% is a relation 
on 𝐷 (Linnebo and Pettigrew 2014); [𝑆] denotes the structure of 𝑆; 𝑆 is isomorphic to 𝑆! if there is a 
bijective function 𝑓:𝐷 → 𝐷!such that for all 𝑥 … , 𝑥' ∈ 𝐷 and all 𝑅%: 𝑅%(𝑥#, … , 𝑥') ↔ 𝑅%!(𝑓𝑥#, … , 𝑓𝑥'). 

 
2. Parts of structures as structures of parts 

To define parthood among structures using the method exposed above, we need to find a relation 
among systems such that isomorphism is a congruence with respect to that relation. 
 
To simplify our discussion, from now on we will deal with just one kind of systems of objects: graphs, 
i.e. ordered pairs ⟨𝐷, 𝑅⟩, where 𝐷 is a set and 𝑅 is a binary relation on 𝐷.3 A natural way to define 

 
2 See Linnebo and Pettigrew (2014: 274) on how to formulate Frege’s abstraction consistently, avoiding the Burali-Forti paradox.  
3 Graphs are important systems of objects. Other systems of objects, like lattices, can be represented by a graph, their Hasse 
diagram. See also Leitgeb (2020a, 2020b). 
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parthood among graphs is to let the parts of a graph 𝐺 be the subgraphs of 𝐺 (𝐺! = ⟨𝐷!, 𝑅!⟩ is a 
subgraph of 𝐺 = ⟨𝐷, 𝑅⟩ just in case 𝐷! ⊆ D and 𝑅! ⊆ 𝑅). An alternative choice is to identify the parts of 
𝐺 with the induced subgraphs of 𝐺 (𝐺! = ⟨𝐷!, 𝑅!⟩ is an induced subgraph of 𝐺 = ⟨𝐷, 𝑅⟩ just in case 𝐷! ⊆
D and 𝑅! is the restriction of 𝑅 on 𝐷!). The problem is that neither the relation of being a subgraph nor 
the relation of being an induced subgraph are such that isomorphism is a congruence with respect to 
them.4 
 
Luckily, a close cousin of the relation of (induced) subgraph is such that isomorphism is a congruence 
with respect to that relation: the relation of embedding (↪). To see how embedding relates to the 
notion of being an induced subgraph, define embedding in this way: G is embeddable in G’ iff G is 
isomorphic to an induced subgraph of G’.5 If take embedding as the relation for systems of objects in 
terms of which we define parthood among structures following the procedure described above, we 
obtain: 
 

(𝑃𝑆)	[𝑆] ⊑ [S!] ↔ S ↪ S! 
 
Here is an interesting perspective on 𝑃𝑆. Go back to the idea that the parts of a graph are its induced 
subgraphs. S is embeddable in S’ exactly when S is isomorphic to (i.e., has the same structure as) an 
induced subgraph of S’. We can then paraphrase (𝑃𝑆) in this way: the parts of the structure of a system 
are the structures of the parts of that system. 
 

3. Conflict with orthodox mereology 
(𝑃𝑆) is based on a natural idea: structures are abstractions from isomorphic systems, so relations 
among structures should be defined in terms of relations among systems with respect to which 
isomorphism is a congruence. The definition at least respects the standard assumption that parthood 
is transitive, given that embedding is transitive. Yet, it is easy to see that the definition of parthood 
among structures based on (𝑃𝑆) violates many of the standard mereological axioms. 

 
Parthood (⊑) is traditionally assumed to be anti-symmetric: (𝑥	 ⊑ 𝑦	 ∧ 𝑦	 ⊑ 𝑥	 → 𝑥 = 𝑦). Embedding, on 
the other hand, is not antisymmetic: an infinite binary tree 𝑇 is embeddable in 𝑇	 + 𝑇,  the graph that 
contains two copies of 𝑇, and 𝑇	 + 𝑇 is embeddable in 𝑇, but 𝑇 is not isomorphic to 𝑇	 + 𝑇. This means 
that [𝑇	 + 𝑇] ⊑ [𝑇] and [𝑇] ⊑ [𝑇 + 𝑇], but [𝑇	 + 𝑇] ≠ [𝑇].  
 

 
4 Suppose we take two structures S and T, such that S is a (induced) subgraph of T. Moreover, suppose that S is isomorphic to 
S’ and T is isomorphic to T’. It’s easy to see that S’ is not necessarily a (induced) subgraph of T’. Therefore, the relation of 
being an induced subgraph is not a congruence with respect to isomorphism.  
5 This definition of embedding is equivalent to the standard one (𝑆 is embeddable in 𝑆! if there is an injective function 𝑓: 𝐷 →
𝐷!such that for all 𝑥 … , 𝑥# ∈ 𝐷 and all 𝑅$: 𝑅$(𝑥%, … , 𝑥#) ↔ 𝑅$!(𝑓𝑥%, … , 𝑓𝑥#)). To see that embedding is a congruence with respect 
to isomorphism (i.e. that 𝑆! ≃ 	S ↪ T ≃ T! entails 𝑆! ↪ 𝑇!) simply note that if 𝑓 is an isomorphism from 𝑆! to 𝑆, 𝑓!	is an 
embedding from 𝑆 to 𝑇 and 𝑓!!is an isomorphism from 𝑇 to 𝑇!, then 𝑓!! ∘ 𝑓! ∘ 𝑓 is an embedding from 𝑆! to 𝑇!. 
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Moreover, weak supplementation (x ⊏ 𝑦 → ∃z(z ⊑ y ∧ ¬z ∘ x) fails if we adopt 𝑃𝑆.6 Let 𝑆 be an omega-
sequence (a graph isomorphic to the natural numbers in their natural order): assuming 𝑃𝑆, the structure 
of any initial finite segment of S is a proper part of the structure of the S; and yet any part of the 
structure of S overlaps the structure of a finite segment of S. For similar reasons, strong 

supplementation 1x  ⋢ 𝑦 → ∃z(z ⊑ 	x ∧ ¬z ∘ y)2	fails too: an omega-sequence is not embeddable in one 

of its finite initial segments, so the structure of the omega sequence is not part of the structure of any 
finite initial segment; however, any part of the structure of the omega-sequence has at least one part 
in common with the structure of any initial segment, because given any two initial segments of an 
omega-structure, one is embeddable in the other.7  
 
That (𝑃𝑆)	introduces a highly non-standard definition of parthood might count as a reason against 
adopting it. However, it is also possible to use (𝑃𝑆) to account for some puzzling claims that are 
sometimes made concerning a structure and its parts. Here is a quote from Gödel: 
 

“Nor is it self-contradictory that a proper part should be identical (not merely equal) to the whole, as 
is seen in the case of structures in the abstract sense. The structure of the series of integers, e.g., 
contains itself as a proper part” (Gödel 1990: 130) 
 

Note that Gödel is explicitly talking about a structure that is “not merely equal” to one of its proper 
parts, but identical to it. How is this possible, if a proper part is by definition a part that is not identical 
to the whole? A small change in (𝑃𝑆) provides a way to make sense of Gödel’s claim.  
 

(𝑃𝑆∗) [𝑆] ⊏ [S!] ↔ S ↪∗ S! 
 
The notation 𝑆 ↪∗ 𝑆! is used to indicate that the embedding from 𝑆 to 𝑆! is not an isomorphism. The 
idea behind (𝑃𝑆∗) is to take proper parthood as a primitive relation and define the proper parts of [𝑆] 
as the structures of systems of objects that are isomorphic to an induced proper subgraph of that 
system. Identity among structures is defined by Frege’s abstraction: the structures of systems 𝑆 and 𝑆! 
are identical just in case 𝑆 and 𝑆!are isomorphic. If we adopt (𝑃𝑆∗) and Frege’s abstraction (see above), 
we can vindicate Gödel’s claim: the natural numbers in their natural order, ℕ, are isomorphic to  ℕ−
{0}, hence [ℕ − {0}] = [ℕ]; on the other hand, [ℕ − {0}] ⊏ [ℕ], because ℕ− {0} is (isomorphic to) a 

proper subgraph of ℕ. A proper part is identical to the whole, as Gödel said. 
 

 

 
6 x ∘ 𝑦 =&' ∃𝑧(𝑧 ⊑ 𝑥 ∧ 𝑧 ⊑ 𝑦) 
 
 

	 
7 In presence of antysimmetry, strong supplementation entails weak supplementation, so the failure of weak supplementation 
entails the failure of strong supplementation. However, given that in the present context antysimmetry fails, we are not entitled 
to infer the failure of strong supplementation from the failure of weak supplementation.  
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4. A trilemma 
A natural definition of parthood among structures (𝑃𝑆) is incompatible with classical mereology. There 

are two ways to react to this result: 
 

a. Reject (𝑃𝑆) 
b. Accept that the mereology of “structures in the abstract sense” is highly unorthodox 

 
A rejection of (𝑃𝑆) can be motivated in two different ways: (i) one might argue with the problem with 
(𝑃𝑆) is abstractionism about structures, the view discussed in section 1 according to which structures 

are abstractions from systems of objects, introduced via an abstraction principle, and relations among 
structures should be defined in terms of relations among systems of objects with respect to which 
isomorphism is a congruence; (ii) one might accept abstractionism about structures and reject the 
choice of embedding as the base relation, i.e. the relation 𝑅 among systems of objects such that 
parthood among structures should be defined as 𝑅∗ following the procedure described in section 1. So, 
we end up with a trilemma: 
 

i. Reject abstractionism about structures 
ii. Reject embedding as the base relation 
iii. Accept an unorthodox mereology for structures 

 
We will briefly consider these options and point out that each has a cost.  
 
Some philosophers will be inclined to choose option (i). John Burgess, for instance, has claimed that: 
 

“Sometimes [pure structures] are confused with isomorphism types, but this is a mistake: An 
isomorphism type is no more a special kind of system than a direction is a special kind of line” 
(Burgess 1999: 286-7) 

 
However, as Linnebo and Pettigrew (2014: 274): “this is only partially right: in many cases an ‘isomor- 
phism type’ can, in an entirely natural way, be regarded as ‘a special kind of system’.” Moreover, it 
should be kept in mind that Frege’s abstraction has a lot be said in its favor, as Linnebo and Pettigrew 
also stress (see also Wigglesworth 2021 for a defense of Frege’s abstraction). In addition, it should be 
noted that other accounts of ‘structures in the abstract sense’ (to borrow Gödel’s expression) face 
problems too (see for instance Linnebo 2017: 166-7). In light of this, the strengths and weaknesses 
Frege’s abstraction should be carefully compared. The purpose of the present discussion is to highlight 
that Frege’s abstraction is in tension with classical mereology. This might be useful to know, when 
comparing abstractionism about structures with other conceptions of structures, like Shapiro’s ante-
rem structuralism, according to which structures do not depend for their existence on the existence of 
systems of objects exemplifying them, but rather on the presence of coherent sets of axioms. 
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Abstractionism about structures and the Hilbert-inspired view that consistency of an axiomatized theory 
is the only requirement for the existence of a structure described by such a theory are two forms of 
ontological minimalism (see Linnebo 2018, section 1.2, for a definition of ontological minimalism and a 
comparison between the two views). Both are attractive options. Our only claim is that knowing that 
abstractionism is in tension with classical mereology might help to compare it with rival views and 
suggest a further line of inquiry: seeing how different conceptions of structures fare in defining the 
parthood relation between structures. In sum: if the tension with classical mereology that we 
highlighted is a reason to abandon abstractionism about structures, then the present paper has indeed 
contributed to the current debate on mathematical structuralism.  
 
Option (ii) is an attempt to retain abstractionism about structures and define parthood among structures 
from a base relation among systems different from embedding. The challenge for anyone choosing this 
option is to find a plausible candidate for replacing embedding as base relation. 
 
Option (iii) is to accept that the mereology of structures is highly unorthodox. We have already noticed 
that a consequence of (𝑃𝑆) is that parthood is not antisymmetric. This might not be a fatal problem: 
“the anti-symmetry postulate can hardly be regarded as constitutive of the basic meaning of ‘part’” 
(Varzi 2019, see also Kearns 2011). Some authors have recently worked on “non-well-founded 
mereology” (see Cotnoir 2010, Cotnoir & Bacon 2012, Obojska 2013). The fact that a natural notion of 
part for mathematical structures is not well-founded could make the case for non-well-founded 
mereology much more compelling than it currently is. Indeed, the examples provided in the literature 
of a non-antisymmetric parthood relation might sound exotic and ad hoc. See this example: 

 
Imagine a cube, with each side measuring 10m, made of a homogeneous substance. Not 
only do we take it back to a time that it previously existed at, but we use a shrinking 
machine and miniaturize by a factor of 100.We then remove a cube-shaped portion, with 
edges measuring 10cm, from the earlier, larger version of the cube and replace that 
portion with the miniaturized future version (which now fits perfectly). The cube is now a 
proper part of itself at that time. (Effingham 2010: 335) 
 

It is useful to know that, once we accept 𝑃𝑆 and Frege’s abstraction, the case for non-well-founded 

mereology can be supported by examples of a different kind: the cases, discussed above, of pairs of 
mathematical structures that can each be embedded in the other without being isomorphic. It should 
still be noted that the axioms for non-well-founded mereology discussed by Cotnoir & Bacon 2012 
include strong supplementation, which, as discussed, fails in the mereology for structures based on 𝑃𝑆. 
This shows that the kind of mereology that 𝑃𝑆 produces is highly unorthodox.8 One might wonder 

 
8 It might be worth noticing that mereology for structures based on 𝑃𝑆 validates some composition principles. The disjoint 
union of two graphs 𝐺%, 𝐺( is the graph 𝐺% ∪∗ 𝐺( obtained by taking two isomorphic copies of the two graphs, 𝐺%∗, 𝐺(∗, whose 
domains are disjoint, letting the domain of 𝐺% ∪∗ 𝐺( be the union of the domains of 𝐺%∗	and 𝐺(∗, and the binary relation of 
𝐺% ∪∗ 𝐺( be the union of the binary relations of 𝐺%∗	and 𝐺(∗. The structure of 𝐺% ∪∗ 𝐺( contains as parts the parts of the structure 
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whether a relation that invalidates so many of the standard mereological axioms can still be regarded 
as a relation of parthood.  
 

5. Conclusions 
In this paper, we made a first step in addressing the issue of the mereology of abstract mathematical 
structures. Instead of addressing in full generality the question of what are the parts of a mathematical 
structure, we focused on a sub-question: when is a structure part of another structure? We contributed 
to addressing this question with a negative result. We have presented an account of the parthood 
relation among mathematical structures based on an apparently natural idea: structures are the 
common form of isomorphic systems and relations among structures should be obtained from relations 
among systems over which isomorphism is a congruence. Our contribution has been to highlight that 
taking this idea seriously and using embedding as the relation between systems of objects from which 
the parthood relation between structures is abstracted yields a theory of parthood for structures that 
violates many of the standard mereological axioms. Either we reject abstractionism about structures, 
or we replace embedding with another relation, or we must accept a deviant mereology. This result 
poses an important constraint on attempts to define the parthood relation among structures and 
suggests a line of inquiry: test whether the tension with classical mereology that besets abstractionism 
about structures can be solved by alternative conceptions of structures or whether we should really 
take seriously the idea of developing a highly non-standard mereology for mathematical structures. 
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