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Detecting the Presence of a Random
Drift in Brownian Motion

P. Johnson, J. L. Pedersen, G. Peskir & C. Zucca

To appear in Stochastic Process. Appl.

Consider a standard Brownian motion in one dimension, having either a zero drift,
or a non-zero drift that is randomly distributed according to a known probability law.
Following the motion in real time, the problem is to detect as soon as possible and
with minimal probabilities of the wrong terminal decisions, whether a non-zero drift
is present in the observed motion. We solve this problem for a class of admissible laws
in the Bayesian formulation, under any prior probability of the non-zero drift being
present in the motion, when the passage of time is penalised linearly.

1. Introduction

Imagine the motion of a Brownian particle in one dimension, having either a zero drift, or
a non-zero drift µ that is randomly distributed according to a known probability law. Given
that the position X of the Brownian particle is being observed in real time, the problem is
to detect as soon as possible and with minimal probabilities of the wrong terminal decisions,
whether a non-zero drift is present in the observed motion. The purpose of the present paper is
to derive the solution to this problem in the Bayesian formulation, under any prior probability
of the non-zero drift being present in the motion, when the passage of time is penalised linearly.

The loss to be minimised over sequential decision rules is expressed as a linear combination of
the expected running time and the probabilities of the wrong terminal decisions. This problem
formulation of sequential testing dates back to [26] (see [27], [15], [30]) and has been extensively
studied to date (see [11] and the references therein). The linear combination represents the
Lagrangian and once the optimisation problem has been solved in this form it will also lead to
the solution of the constrained problem where upper bounds are imposed on the probabilities
of the wrong terminal decisions. The constrained problem itself will not be considered in the
present paper as this extension is somewhat lengthy and more routine.

Standard arguments show that the initial optimisation problem can be reduced to an optimal
stopping problem for the posterior probability process Π of the drift being non-zero given X .
A classic example of X is obtained when the non-zero drift µ is deterministic (see [16] and
[23]). This problem has also been solved in finite horizon (see [10]). Books [24, Section 4.2] and
[20, Section 21] contain expositions of these results and provide further details and references.
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Signal-to-noise ratio (i.e. the non-zero drift divided by the diffusion coefficient) is both constant
and deterministic in these problems. Sequential testing problems for X in one dimension where
the deterministic signal-to-noise ratio is not constant were studied more recently in [11] and
[13]. In these problems Π is no longer Markovian, however, the process (Π, X) is a two-
dimensional Markov/diffusion process. We will see below that the Markov/diffusion process
(Π, X) is no longer time-homogeneous when the constant signal-to-noise ratio is random.

Another classic example of X is obtained when the non-zero drift µ takes either of the two
specified values with strictly positive probabilities (see [25] for a discrete time analogue). One
can then ask which of the three possible values for the drift (the third one being zero) is present
in the observed process X . This problem has been studied more recently in [32] (see also [5]
for a Poisson process analogue and [9] for a closely related problem in three dimensions). The
Markov/diffusion process Π is two-dimensional in this case. Allowing further values for the
non-zero drift µ to enter the scene, and asking the analogous question, increases the dimension
of Π further and makes the problem closer to intractable. The problem under consideration in
the present paper may be viewed as a finite/infinite-dimensional analogue of the latter problem
(when the range of µ 6= 0 is finite/infinite) where the complicated question of detecting the
exact value of the drift µ is replaced by the simpler question of detecting whether a non-zero
drift µ is present at all.

A closely related problem of detecting the sign of a random drift µ dates back to [3]. The
wrong terminal decisions in that problem formulation are multiplied by the modulus of µ to
account for its size. The probability law of µ in this problem formulation can also be one-sided
(i.e. concentrated on either IR− or IR+ ) in which case the opposite sign is assigned to the zero
value of µ . When µ is normally distributed this problem has been solved in [31]. The paper
[8] studies the analogous problem for a general probability law of µ in the canonical formu-
lation where the wrong terminal decisions are no longer multiplied by the modulus of µ . The
method of proof in [8] makes an essential use of the innovation process associated with X .

In the present paper we abandon the innovation process and apply a measure change instead.
Among other things this enables us to settle the uniqueness question which was left open in [8]
(see Remark 13 below). We focus on the laws of µ for which Π itself is a time-inhomogeneous
Markov process. A simple time change then reduces the posterior probability ratio process
Φ := Π/(1−Π) to a standard Brownian motion process whose initial points are thus expressible
explicitly. Exploiting the latter fact we show that the optimal stopping boundaries for Φ are
monotone functions of time whenever the ratio between the first and second spatial derivative of
the likelihood ratio function is a monotone function of space. The monotone optimal stopping
boundaries then make the optimal stopping problem tractable using established techniques. We
show that the sufficient condition on the ratio between the first and second spatial derivative is
satisfied whenever the probability law of µ is either (i) one-sided ( i.e. concentrated on either
IR− or IR+ ) or (ii) two-point spatially symmetric ( i.e. concentrated on −m and m for m
in (0,∞)) among other possibilities. More general two-sided probability laws of µ can fail to
satisfy the sufficient condition and their closer examination is left for future research.

2. Formulation of the problem

In this section we formulate the sequential testing problem under consideration. The initial
formulation of the problem will be revaluated under a change of measure in the next section.
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1. We consider a Bayesian formulation of the problem where it is assumed that one observes
a sample path of the standard Brownian motion X , having either a zero drift with the prior
probability 1−π , or a non-zero random drift µ with the prior probability π in [0, 1] . The
problem is to detect, as soon as possible and with minimal probabilities of the wrong terminal
decisions, whether a non-zero drift is present in the observed motion. This problem belongs to
the class of sequential testing problems as discussed in Section 1 above.

2. Standard arguments imply that the previous setting can be realised on a probability space
(Ω,F , Pπ) with the probability measure Pπ decomposed as follows

(2.1) Pπ = (1−π)P0 + πP1

for π ∈ [0, 1] , where P0 is the probability measure under which the observed process X
has a zero drift, and P1 is the probability measure under which the observed process X has
a non-zero random drift µ . This can be formally achieved by introducing an unobservable
random variable µ taking value zero with probability 1−π and taking non-zero values with
probabilities determined by πFµ , where Fµ : IR → IR is a probability distribution function
that is continuous at 0 , and assuming that X solves the stochastic differential equation

(2.2) dXt = µdt + dBt

driven by a standard Brownian motion B that is independent from µ under Pπ for π ∈ [0, 1] .
Note that without loss of generality we may assume that X starts at zero in (2.2).

3. Being based upon the continued observation of X , the problem is to test sequentially
the hypotheses H0 : µ = 0 and H1 : µ 6= 0 with a minimal loss. For this, we are given a
sequential decision rule (τ, dτ ) , where τ is a stopping time of X (i.e. a stopping time with
respect to the natural filtration FX

t = σ(Xs | 0 ≤ s ≤ t) of X for t ≥ 0 ), and dτ is an
FX

τ -measurable random variable taking values 0 and 1 . After stopping the observation of X
at time τ , the terminal decision function dτ takes value i if and only if the hypothesis Hi

is to be accepted for i = 0, 1 . With constants a > 0 and b > 0 given and fixed, the problem
then becomes to compute the risk function

(2.3) V (π) = inf
(τ,dτ )

Eπ

[
τ + aI(dτ = 0, µ 6= 0) + bI(dτ = 1, µ = 0)

]

for π ∈ [0, 1] and find the optimal decision rule (τ∗, d∗τ∗) at which the infimum in (2.3) is
attained. Note that Eπ(τ) in (2.3) is the expected waiting time until the terminal decision is
made, and Pπ(dτ = 0, µ 6= 0) and Pπ(dτ = 1, µ = 0) in (2.3) are probabilities of the wrong
terminal decisions respectively.

4. To tackle the sequential testing problem (2.3) we consider the posterior probability process
Π = (Πt)t≥0 of H1 given X that is defined by

(2.4) Πt = Pπ(µ 6= 0 | FX
t )

for t ≥ 0 . Noting that Pπ(dτ = 0, µ 6= 0) = Eπ[(1−dτ )Πτ ] and Pπ(dτ = 1, µ = 0) = Eπ[dτ

(1−Πτ )] , and defining d̃τ = I(aΠτ ≥ b(1−Πτ )) for any given (τ, dτ ) , it is easily seen that
the initial problem (2.3) is equivalent to the optimal stopping problem

(2.5) V (π) = inf
τ

Eπ

[
τ + M(Πτ )

]
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where the infimum is taken over all stopping times τ of X and M(π) = aπ ∧ b(1−π) for
π ∈ [0, 1] . Letting τ∗ denote the optimal stopping time in (2.5), and setting c = b/(a+b) ,
these arguments also show that the optimal decision function in (2.3) is given by d∗τ∗ = 0 if
Πτ∗ < c and d∗τ∗ = 1 if Πτ∗ ≥ c . Thus to solve the initial problem (2.3) it is sufficient to solve
the optimal stopping problem (2.5) and this is what we do in the sequel.

3. Measure change

In this section we show that changing the probability measure Pπ to P0 for π ∈ (0, 1)
provides important simplifications of the setting which make the subsequent analysis of the
optimal stopping problem (2.5) more transparent. The change of measure argument is presented
in Lemma 1 below. This is then followed by a reformulation of the optimal stopping problem
(2.5) under the new probability measure P0 in Proposition 2 below.

1. To connect the process Π to the observed process X , we see from (2.2) that the
Kallianpur-Striebel formula (see Theorem 3 and its Corollary in [14]) yields

(3.1) Eπ

(
G(µ) | FX

t

)
=

(1−π)G(0) + π

∫ ∞

−∞
G(m) emXt−m2

2
t Fµ(dm)

(1−π) + π

∫ ∞

−∞
emXt−m2

2
t Fµ(dm)

whenever G : IR → IR is a measurable function such that Eπ|G(µ)| < ∞ for π ∈ [0, 1] .
Taking G = 1IR\{0} in (3.1) we see from (2.4) that

(3.2) Πt =

π

∫ ∞

−∞
emXt−m2

2
t Fµ(dm)

(1−π) + π

∫ ∞

−∞
emXt−m2

2
t Fµ(dm)

for t ≥ 0 and π ∈ [0, 1] . Embedded in the right-hand side of (3.2) we recognise the likelihood
ratio process L = (Lt)t≥0 given by

(3.3) Lt :=
dP1,t

dP0,t

= `(t,Xt) =

∫ ∞

−∞
emXt−m2

2
t Fµ(dm)

where P0,t and P1,t denote the restrictions of the probability measures P0 and P1 to FX
t

for t ≥ 0 , and the function ` : (0,∞)×IR → IR is defined by

(3.4) `(t, x) =

∫ ∞

−∞
emx−m2

2
t Fµ(dm)

for (t, x) ∈ (0,∞)×IR with `(0, 0) = 1 . Note that ` is a general non-negative solution to
the backward heat equation, i.e. we have

(3.5) `t + 1
2
`xx = 0
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on [0,∞)×IR (cf. [29], [21]). From (3.2) and (3.3) we thus see that

(3.6) Πt =
π

1−π
Lt

1 + π
1−π

Lt

=
Φt

1 + Φt

where Φ = (Φt)t≥0 is the posterior probability ratio process given by

(3.7) Φt :=
Πt

1−Πt

= Φ0Lt

for t ≥ 0 with Φ0 = π/(1−π) for π ∈ [0, 1) .

2. To derive a stochastic differential equation for the process Φ , we may apply Itô’s formula
in (3.3) and use (3.5) to find that

(3.8) dΦt = Φ0 `x(t,Xt) dXt =
`x(t,Xt)

`(t,Xt)
Φt dXt

with Φ0 = π/(1−π) for π ∈ [0, 1) . From (3.1) and (3.4) above we recognise the ratio on the
right-hand side of (3.8) as the mean-square predictor of µ given X under P1 defined by

(3.9) E1(µ | FX
t ) =: µ̂(t,Xt)

for t ≥ 0 where the function µ̂ : [0,∞)×IR → IR is given by

(3.10) µ̂(t, x) =
`x(t, x)

`(t, x)
=

∫ ∞

−∞
memx−m2

2
t Fµ(dm)

∫ ∞

−∞
emx−m2

2
t Fµ(dm)

for (t, x) ∈ [0,∞)×IR . Recalling that ` solves the backward heat equation (3.5) we see that
µ̂ coincides with the Hopf-Cole solution (cf. [12], [4]) to the backward Burgers equation

(3.11) µ̂t + µ̂µ̂x + 1
2
µ̂xx = 0

on [0,∞)×IR (cf. [1], [2]). Using (3.9)+(3.10) in (3.8) we see that Φ solves the following
stochastic differential equation

(3.12) dΦt = µ̂(t,Xt) Φt dXt

with Φ0 = π/(1−π) for π ∈ [0, 1) .

3. Recalling that the innovation process defined by

(3.13) B̄t := Xt −
∫ t

0

Eπ(µ | FX
s ) ds

is a standard Brownian motion under Pπ (which is easily verified using Lévy’s characterisation
theorem), substituting (3.13) in (3.8) and making use of (3.1), we see that the resulting (time-
dependent) system of stochastic differential equations for Φ and X driven by B̄ has a unique

5



weak solution (cf. [22, pp 166-173]). Hence we can conclude that ((t, Φt, Xt))t≥0 is a (strong)
Markov process under Pπ for π ∈ [0, 1) (cf. [22, pp 158–163])). We will see below that
although ((t, Φt))t≥0 can be a Markov process on its own for a large class of distribution
functions Fµ , this is not true in general without some knowledge of X . The probability
measure P0 appears to be especially appealing in this context because X itself is a standard
Brownian motion (with no drift) under P0 . This motivates us to change the probability measure
Pπ to P0 for π ∈ (0, 1) in the setting of the optimal stopping problem (2.5).

4. In the sequel we let Pπ,τ denote the restriction of the measure Pπ to FX
τ for π ∈ [0, 1]

where τ is a stopping time of X .

Lemma 1. The following identity holds

(3.14)
dPπ,τ

dP0,τ

=
1−π

1−Πτ

for all stopping times τ of X and all π ∈ [0, 1) .

Proof. A standard rule for the Radon-Nikodym derivatives based on (2.1) gives

1−Πτ = Pπ(µ=0 | FX
τ )(3.15)

= (1−π) P0(µ=0 | FX
τ )

dP0,τ

dPπ,τ

+ π P1(µ=0 | FX
τ )

dP1,τ

dPπ,τ

= (1−π)
dP0,τ

dPπ,τ

for all τ and π as above due to P0(µ=0) = 1 and P1(µ=0) = 0 . This shows that (3.14) is
satisfied as claimed. ¤

Similarly to (3.14) and (3.15) we find that

(3.16)
dPπ,τ

dP1,τ

=
π

Πτ

which together with (3.14) implies that

(3.17) Lτ :=
dP1,τ

dP0,τ

=
1−π

π

Πτ

1−Πτ

for all stopping times τ of X and all π ∈ [0, 1) . Note that the second identity in (3.17) is
equivalent to the first identity in (3.6) above.

5. We now show that the optimal stopping problem (2.5) admits a transparent reformulation
under the measure P0 in terms of the process Φ defined by (3.7) and solving (3.12) above.
Recall that Φ starts at Φ0 = π/(1−π) and this dependence on the initial point will be
indicated by a superscript to Φ when needed.

Proposition 2. The value function V from (2.5) satisfies the identity

(3.18) V (π) = (1−π) V̂ (π)
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where the value function V̂ is given by

(3.19) V̂ (π) = inf
τ

E0

[
τ
(
1+Φπ/(1−π)

τ

)
+ M̂

(
Φπ/(1−π)

τ

)]

for π ∈ [0, 1) with M̂(ϕ) = aϕ ∧ b for ϕ ∈ IR+ and the infimum in (3.19) is taken over all
stopping times τ of X .

Proof. With π and τ as above, we find by (3.14) in Lemma 1 that

(3.20) Eπ

[
τ +M(Πτ )

]
= (1−π) E0

[ τ

1−Πτ

+
M(Πτ )

1−Πτ

]
= (1−π) E0

[
τ(1+Φτ ) + M̂(Φτ )

]

where in the final equality we use (3.7) above. Taking the infimum over all τ on both sides of
(3.20), we obtain (3.19) as claimed and the proof is complete. ¤

4. Admissible laws

In the previous section we have reduced the initial sequential testing problem (2.3) to
the optimal stopping problem (3.19). In this section we will describe the class of admissible
probability laws of µ for which the latter optimal stopping problem is solvable using a simple
time change technique.

1. To tackle the optimal stopping problem (3.19) we need to enable the underlying Markov
process to start at arbitrary points in its state space under P0 . We could consider (3.19) as an
optimal stopping problem for the two-dimensional Markov process ((t,Xt))t≥0 upon recalling
that X coincides with the standard Brownian motion B under P0 but this would only give
a solution for a single prior π in [0, 1) . Instead, to exploit the natural grouping of the time
and space variables, we will consider (3.19) as an optimal stopping problem for the three-
dimensional Markov process ((t, Φt, Xt))t≥0 which is reducible to a two-dimensional Markov
process ((t, Φt))t≥0 under P0 when the probability law of µ satisfies additional conditions.
For this, recall from (3.3)+(3.7) that

(4.1) Φt = Φ0 `(t, Xt)

for t ≥ 0 where X is a standard Brownian motion under P0 . Noting that

(4.2) x 7→ `(t, x) is strictly convex on IR

for all t ≥ 0 , it is well known (cf. [28, p. 516]) that Φ of the form (4.1) defines a (time-
inhomogeneous) Markov process if and only if either

(4.3) x 7→ `(t, x) is strictly increasing or decreasing on IR

for all t ≥ 0 , or the following identity holds

(4.4) `(t, x) = k(t, |x−z|)
for all (t, x) ∈ [0,∞)×IR+ with some continuous function k : [0,∞)×IR+ → IR and z ∈ IR
such that y 7→ k(t, y) is strictly increasing on IR+ for all t ≥ 0 . From (4.2) we see that z

7



in (4.4) is the (unique) point at which the infimum of x 7→ `(t, x) is attained on IR and the
function x 7→ `(t, x) is symmetric around z for every t ≥ 0 given and fixed. Note that (4.3) is
satisfied if and only if the probability law of µ is one-sided ( i.e. concentrated on either IR− or
IR+ ) and (4.4) is satisfied (with z = 0) if the probability law of µ is two-sided and symmetric
(around zero). More generally, it is easily verified that (4.4) is satisfied if the probability density
function fµ of µ is expressible as fµ(m) = e−zmgµ(m) for m ∈ IR and some z ∈ IR where
gµ : IR → IR is an even function. For example, this is true if µ ∼ N(ν, σ2) with ν ∈ IR and
σ2 > 0 . Thus, if either (4.3) or (4.4) holds, then ((t, Φt))t≥0 is a two-dimensional Markov
process under P0 and the optimal stopping problem (3.19) extends as follows

(4.5) V̂ (t, ϕ) = inf
τ

E0
t,ϕ

[
τ
(
1+Φt+τ

)
+ M̂

(
Φt+τ

)]

for (t, ϕ) ∈ [0,∞)×IR+ with P0
t,ϕ(Φt = ϕ) = 1 , where the infimum in (4.5) is taken over all

stopping times τ of Φ , and we move 0 from the subscript to a superscript for notational
reasons. In this way we have reduced the initial sequential testing problem (2.3) to the optimal
stopping problem (4.5) for the time-inhomogeneous Markov process Φ defined in (3.7) and
solving (3.12) under P0

t,ϕ for (t, ϕ) ∈ [0,∞)×IR+ .

2. In addition to either (4.3) or (4.4) being satisfied, we will also assume throughout that
one of the following two conditions is satisfied

x 7→ `x(t, x)

`xx(t, x)
is decreasing on IR(4.6)

x 7→ `x(t, x)

`xx(t, x)
is increasing on IR(4.7)

for all t ≥ 0 . We now show that these conditions are equivalent to the fact that the diffusion
coefficient squared in the stochastic differential equation (3.12) for Φ is a monotone function
of time. This in turn will imply that the optimal stopping boundaries in (4.5) are monotone
functions of time as it will be shown below.

Let us focus on the first identity in (3.8), which is equivalent to (3.12), and let us assume that
(4.3) is satisfied. Note that focusing on the second identity in (3.8) instead, or assuming that
(4.4) is satisfied, would lead to exactly the same conclusions and only the notation would be
somewhat more complicated. Note that if Φ solves (3.8)/(3.12) with Φ0 = 1 then Φϕ := ϕΦ
solves (3.8)/(3.12) with Φ0 = ϕ for ϕ ∈ IR+ . Hence there is no loss of generality in assuming
that Φ0 = 1 in what follows. Denoting the inverse function of x 7→ `(t, x) by ϕ 7→ `−1(t, ϕ)
for t ≥ 0 given and fixed, we see that the diffusion coefficient in the stochastic differential
equation (3.8) is given by

(4.8) σ(t, ϕ) := `x(t, `
−1(t, ϕ))

for (t, ϕ) ∈ [0,∞)×IR+ . Note that when (4.4) is satisfied then ϕ 7→ `−1(t, ϕ) denotes the
inverse function of x 7→ `(t, x) = k(t, x−z) for x ≥ z . Since the arguments used in the proofs
are analogous we will only focus on the case when (4.3) is satisfied in the sequel.

Proposition 3. The mapping t 7→ σ2(t, ϕ) is decreasing or increasing on [0,∞) for every
ϕ ∈ IR+ if and only if (4.6) or (4.7) holds respectively.
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Proof. Omitting the function arguments for simplicity we see from (4.8) that

(4.9) (σ2)t = 2σ
(
`xt + `xx(`

−1)t

)
.

Since `(t, `−1(t, ϕ)) = ϕ we see by differentiating with respect to t that `t + `x(`
−1)t = 0

from where we find that (`−1)t = −`t/`x upon recalling that `x > 0 (strictly above z when
(4.4) holds). Inserting this expression back into (4.9) we obtain

(4.10) (σ2)t = 2σ
(
`x`xt − `xx`t

)
/`x .

Noticing that the right-hand side of (4.10) has a familiar differential form, this shows that

(4.11) sign
(
(σ2)t

)
= −sign

(
(`x/`t)x

)
= sign

(
(`x/`xx)x

)

where in the final identity we use that `t = −1
2
`xx by (3.5) above. Both equivalence claims

now follow directly from (4.11) and the proof is complete. ¤

Definition 4 (Admissible laws). The probability law of a random drift µ is said to be
admissible, if (i) either of the conditions (4.3) and (4.4) holds and (ii) either of the conditions
(4.6) and (4.7) holds.

If the probability law associated with the probability distribution function Fµ of a random
drift µ is admissible, we will also say that Fµ or µ itself is admissible. The following
proposition shows that the family of admissible laws is sufficiently large to be of theoretical
and practical interest.

Proposition 5.

If µ is one-sided (i.e. concentrated on either IR− or IR+), then µ is admissible.(4.12)

If µ takes values −m and m with probabilities 1−p and p respectively for(4.13)
some m > 0 and p ∈ (0, 1), then µ is admissible.

Proof. (4.12): If µ is one-sided, then clearly (4.3) is satisfied. Moreover, we claim that
(4.6) holds when µ is one-sided. For this, with (t, x) ∈ [0,∞)×IR given and fixed, note that

(4.14) Q(A) =

∫ ∞

−∞
1A(m) emx−m2

2
t Fµ(dm)

∫ ∞

−∞
emx−m2

2
t Fµ(dm)

(A ∈ B(IR))

defines a probability measure on the Borel σ -algebra of IR . Note also that the identity
mapping M defined by M(m) = m for m ∈ IR is a random variable on the probability
space (IR,B(IR), Q) and we will denote the expectation of Mp with respect to Q by EMp

for p > 0 . From (4.10) and (4.11) we see that

(4.15) sign
(
(`x/`xx)x

)
= sign

(
`x`xt − `xx`t

)

9



where the function argument is omitted for simplicity. Differentiating under the integral sign
in (3.4), which is justifiable by standard means, we find that

(4.16) `x`xt − `xx`t = −1
2
EM EM3 + 1

2
(EM2)2 .

From (4.15) and (4.16) we see that establishing (4.6) is equivalent to showing that

(4.17) (EM2)2 ≤ EM EM3 .

To show that (4.17) holds, let us first assume that µ is concentrated on IR+ . Then M ≥ 0
and we can therefore define a probability measure PM by setting

(4.18) PM(A) =
1

EM

∫

A

M dP

for A ∈ F . Hence by Jensen’s inequality we find that

(4.19)
EM2

EM
= EM(M) ≤ (

EM(M2)
)1/2

=
( 1

EM
EM3

)1/2

where EM denotes the expectation with respect to PM . Squaring both sides in (4.19) we
see that (4.17) holds and hence we can conclude that (4.6) is satisfied as claimed. If µ is
concentrated on IR− then M ≤ 0 and replacing M by −M in (4.17) with the inequality
unchanged, we see that the first part of the proof above when −M ≥ 0 implies that (4.6) is
satisfied in this case as well.

(4.13): Firstly, we claim that (4.4) is satisfied in this case. Indeed, using (3.4) we find that

(4.20) `(t, x) = e−
m2

2
t
[
(1−p)e−mx+pemx

]

for (t, x) ∈ [0,∞)×IR . It is easily verified that the function x 7→ (1−p)e−mx+pemx attains its
infimum at z = (1/2m) log((1−p)/p) on IR and that `(t, z+x) = `(t, z−x) for all x ∈ IR+

with t ≥ 0 given and fixed. Setting k(t, x) := `(t, z+x) for x ∈ IR+ with t ≥ 0 given and
fixed, this shows that (4.4) holds as claimed. Secondly, we claim that (4.7) holds in this case.
For this, differentiating in (4.20) we find that

`x(t, x)

`xx(t, x)
=
−(1−p)me−mx + pmemx

(1−p)m2 e−mx + pm2 emx
(4.21)

=
1

m

(
pe2mx − (1−p)

pe2mx + (1−p)

)
=

1

m

(
1− 2(1−p)

pe2mx + (1−p)

)

which clearly is increasing in x belonging to IR for t ≥ 0 so that (4.7) holds as claimed and
the proof is complete. ¤

5. Lagrange formulation

The optimal stopping problem (4.5) is Mayer formulated. In this section we derive its La-
grange reformulation (see [20, Section 6] for the terminology) which is helpful in the subsequent
analysis of the problem.
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Proposition 6. The value function V̂ from (4.5) can be expressed as

(5.1) V̂ (t, ϕ) = inf
τ

E0
t,ϕ

[ ∫ τ

0

(1+Φt+s) ds− a

2
`b/a
τ (Φ)

]
+ M̂(ϕ)

for (t, ϕ) ∈ [0,∞)×IR+ where `
b/a
τ (Φ) is the local time of Φ at b/a and τ given by

(5.2) `b/a
τ (Φ) = P- lim

ε↓0
1

2ε

∫ τ

0

I
(

b
a
−ε ≤ Φt+s ≤ b

a
+ε

)
d〈Φ,Φ〉s

and the infimum in (5.1) is taken over all stopping times τ of Φ .

Proof. Integration by parts gives

(5.3) sΦt+s =

∫ s

0

Φt+r dr +

∫ s

0

r dΦt+r

for s ≥ 0 where the final term defines a continuous local martingale under P0
t,ϕ in view of

(3.12) above for (t, ϕ) ∈ [0,∞)×IR+ given and fixed. Making use of a localising sequence of
stopping times for this local martingale if needed, and applying the optional sampling theorem,
we find from (5.3) that

(5.4) E0
t,ϕ

[
τ Φt+τ

]
= E0

t,ϕ

[ ∫ τ

0

Φt+s ds
]

for any (bounded) stopping time τ of Φ . Moreover, noting that ϕ 7→ M̂(ϕ) = aϕ ∧ b is
a concave function on IR+ with M̂ ′(dϕ) = −aδb/a(dϕ) where δb/a is the Dirac measure at
b/a , we find by the Itô-Tanaka formula using (3.12) that

M̂(Φt+s) = M̂(ϕ) +

∫ s

0

M̂ ′
±(Φt+r) dΦt+r +

1

2

∫ ∞

−∞
`ψ
s (Φ) M̂ ′(dψ)(5.5)

= M̂(ϕ) +

∫ s

0

M̂ ′
±(Φt+r) µ̂(t+r,Xt+r) Φt+r dXt+r − a

2
`b/a
s (Φ)

for s ≥ 0 where the second term on the right-hand side defines a continuous local martingale
under P0

t,ϕ . Making use of a localising sequence of stopping times for this local martingale if
needed, and applying the optional sampling theorem, we find from (5.5) that

(5.6) E0
t,ϕ

[
M̂(Φt+τ )

]
= M̂(ϕ)− a

2
E0

t,ϕ

[
`b/a
τ (Φ)

]

for any (bounded) stopping time τ of Φ . Inserting the right-hand sides of (5.4) and (5.6) into
(4.5) we obtain (5.1) as claimed and the proof is complete. ¤

The Lagrange reformulation (5.1) of the optimal stopping problem (4.5) reveals the under-
lying rationale for continuing vs stopping in a clearer manner. Indeed, recalling that the local
time process s 7→ `

b/a
t+s(Φ) strictly increases only when Φt+s is at b/a , and that `

b/a
t+s(Φ) ∼ √

s
is strictly larger than

∫ s

0
(1+Φt+r) dr ∼ s for small s , we see from (5.1) that it should never be

optimal to stop at ϕ = b/a and the incentive for stopping should increase the further away Φt+s

gets from b/a for s ≥ 0 . We will see in the next section that these informal conjectures can be
formalised and this will give a proof of the fact the straight line { (t, ϕ) ∈ [0,∞)×IR+ | ϕ = b/a }
is contained in the continuation set of the optimal stopping problem (4.5).
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6. Properties of the optimal stopping boundaries

In this section we establish the existence of an optimal stopping time in (4.5) and derive
basic properties of the optimal stopping boundaries for admissible laws (cf. Definition 4).

1. Looking at (4.5) we may conclude that the (candidate) continuation and stopping sets in
this problem need to be defined as follows

C = { (t, ϕ) ∈ [0,∞)×IR+ | V̂ (t, ϕ) < M̂(ϕ) }(6.1)

D = { (t, ϕ) ∈ [0,∞)×IR+ | V̂ (t, ϕ) = M̂(ϕ) }(6.2)

respectively. The process Φ can be realised (semi-explicitly) as a stochastic flow under P0

using (3.3) and (3.7) above. This gives

(6.3) Φt,ϕ
t+s =

π

1−π

∫ ∞

−∞
emx−m2

2
t emXs−m2

2
s Fµ(dm)

for s ≥ 0 so that P0(Φ
t,ϕ
t = ϕ) = 1 where

(6.4) ϕ =
π

1−π

∫ ∞

−∞
emx−m2

2
t Fµ(dm)

for x ∈ IR standing in one-to-one correspondence with ϕ ∈ IR+ when t ≥ 0 is fixed (with
x ≥ z when (4.4) holds). Recall that π ∈ [0, 1] is a prior probability (cf. Section 2) and X is
a standard Brownian motion under P0 . Yet another (semi-explicit) stochastic flow realisation
of Φ under P0 can be obtained by solving the stochastic differential equation (3.12). One can
verify by Itô’s formula that this leads to the following expression

(6.5) Φt,ϕ
t+s = ϕ exp

( ∫ s

0

µ̂(t+r, x+Xr) dXr − 1

2

∫ s

0

µ̂2(t+r, x+Xr) dr
)

for s ≥ 0 so that P0(Φ
t,ϕ
t = ϕ) = 1 where ϕ ∈ IR+ is given by (6.4) above for x ∈ IR

and t ≥ 0 . From (6.5) we see that the time-space flow of Φ is continuous as a (Markovian)
functional of the initial point (t, ϕ) in [0,∞)×IR+ . This implies that the expectation in (4.5)
defines a continuous function of the initial point (t, ϕ) in [0,∞)×IR+ for every (bounded)
stopping time τ given and fixed. Taking the infimum over all (bounded) stopping times τ we
can thus conclude that the value function V̂ is upper semicontinuous on [0,∞)×IR+ . The
loss function (t, ϕ) 7→ t(1+ϕ)+M̂(t, ϕ) in (4.5) is continuous on [0,∞)×IR+ and hence lower
semicontinuous as well. It follows therefore by [20, Corollary 2.9] that the first entry time of
the time-space process ((t+s, Φt+s))s≥0 into the closed set D defined by

(6.6) τD = inf { s ≥ 0 | (t+s, Φt+s) ∈ D }

is optimal in (4.5) whenever P0
t,ϕ(τD < ∞) = 1 for all (t, ϕ) ∈ [0,∞)×IR+ . In the sequel we

will establish this and other properties of τD by analysing the boundary of D .

2. We first show that the horizontal line ϕ = b/a is contained in C . Motivated by the
Lagrange reformulation (5.1) of (4.5) we now give a proof of this fact based on the local time
as discussed following the proof of Proposition 6 above.
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Lemma 7. The set { (t, ϕ) ∈ [0,∞)×IR+ | ϕ = b/a } is contained in the continuation set
C of the optimal stopping problem (4.5).

Proof. From (5.1) we see that

(6.7) V̂ (t, ϕ) = inf
τ

E0

[ ∫ τ

0

(1+Φt,ϕ
t+s) ds− a

2
`b/a
τ (Φt,ϕ)

]
+ M̂(ϕ)

for (t, ϕ) ∈ [0,∞)×IR+ where the infimum is taken over all stopping times τ of Φ . By the
Itô-Tanaka formula we find using (3.12) that

(6.8)
∣∣Φt,b/a

t+s − b/a
∣∣ = Ms + `b/a

s (Φt,b/a)

for s ≥ 0 where (Ms)s≥0 is a continuous martingale. Recalling (3.3) and (3.7) we see that
the left-hand side in (6.8) equals

∣∣Φt,b/a
t+s − b/a

∣∣ =
∣∣∣ π

1−π

∫ ∞

−∞
emx−m2

2
t emXs−m2

2
s Fµ(dm)− b

a

∣∣∣(6.9)

=
π

1−π

∣∣∣
∫ ∞

−∞
emx−m2

2
t
(
emXs−m2

2
s − 1

)
Fµ(dm)

∣∣∣

=
π

1−π

∣∣∣
∫ ∞

−∞
emx−m2

2
t
( ∞∑

n=1

(mXs−m2

2
s)n

n!

)
Fµ(dm)

∣∣∣

=
π

1−π

∣∣∣
∫ ∞

−∞
emx−m2

2
t (mXs − m2

2
s)

( ∞∑
n=1

(mXs−m2

2
s)n−1

n!

)
Fµ(dm)

∣∣∣

for s ≥ 0 where x ∈ IR is chosen so that (6.4) above holds with ϕ = b/a as needed. Taking
E0 on both sides of (6.8)+(6.9) and using that Xs ∼

√
sX1 under P0 we get

E0

[
`b/a
s (Φt,b/a)

]
(6.10)

=
π

1−π
E0

∣∣∣
∫ ∞

−∞
emx−m2

2
t
√

s (mX1 − m2

2

√
s )

( ∞∑
n=1

(m
√

s X1−m2

2
s)n−1

n!

)
Fµ(dm)

∣∣∣

for s ≥ 0 . Dividing both sides of (6.10) by
√

s and letting s ↓ 0 this shows that

(6.11) lim
s↓0

1√
s

E0

[
`b/a
s (Φt,b/a)

]
=

π

1−π

∣∣∣
∫ ∞

−∞
memx−m2

2
t Fµ(dm)

∣∣∣ E0|X1| ∈ (0,∞) .

It means that E0[`
b/a
s (Φt,b/a)] ∼ √

s as s ↓ 0 . On the other hand, it is clear from (6.3) and

(6.4) that E0[
∫ s

0

(
1+Φ

b/a
t+r

)
dr] =

∫ s

0
(1+b/a)dr = (1+b/a)s ∼ s as s ↓ 0 . Combining these

two facts it is evident that the expectation in (6.7) is strictly negative when ϕ = b/a if τ = s
is taken sufficiently small in (0,∞) . This shows that each point (t, b/a) belongs to C for
t ≥ 0 and the proof is complete. ¤

3. Moving from the vertical line ϕ = b/a downwards and upwards let us formally define
the (least) boundaries between C and D by setting

(6.12) b0(t) = sup {ϕ ∈ [0, b/a] | (t, ϕ) ∈ D } & b1(t) = inf {ϕ ∈ [b/a,∞) | (t, ϕ) ∈ D }
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for every t ≥ 0 given and fixed. Clearly b0(t) < b/a < b1(t) for all t ≥ 0 and the supremum
and infimum in (6.12) are attained since D is closed. We now show that admissible laws from
Definition 4 above imply that b0 and b1 are monotone functions of time that separate C and
D entirely. The key fact in this direction will be presented first.

Proposition 8. The mapping t 7→ V̂ (t, ϕ) is increasing or decreasing on [0,∞) for every
ϕ ∈ IR+ if and only if (4.6) or (4.7) holds respectively.

Proof. 1. Recall from (3.8) and (4.8) that Φ solves

(6.13) dΦt = σ(t, Φt) dXt

where X is a standard Brownian motion under P0 . Recall also from Proposition 3 that

(6.14) t 7→ σ2(t, ϕ) is decreasing or increasing on [0,∞)

for every ϕ ∈ IR+ if and only if (4.6) or (4.7) holds respectively. Passing to a stochastic flow
of the process Φ we see that the optimal stopping problem (4.5) reads

(6.15) V̂ (t, ϕ) = inf
τ

E0

[
τ
(
1+Φt,ϕ

t+τ

)
+ M̂

(
Φt,ϕ

t+τ

)]

for (t, ϕ) ∈ [0,∞)×IR+ where the infimum is taken over all stopping times τ of Φ .

2. Motivated by (6.13) consider the additive functional A defined by

(6.16) As = A(t,ϕ)
s :=

∫ s

0

σ2(t+r, Φt,ϕ
t+r) dr

for s ≥ 0 and (t, ϕ) ∈ [0,∞)×IR+ given and fixed. Note that s 7→ As is continuous and
strictly increasing with A0 = 0 and As ↑ A∞ as s ↑ ∞ . Hence the same properties hold for
the inverse T of A defined by

(6.17) Ts = T (t,ϕ)
s := A−1

s

for s ∈ [0, A∞) with Ts ↑ ∞ as s ↑ A∞ . Since A is adapted to (FΦ
t )t≥0 it follows that

each Ts is a stopping time with respect to (FΦ
t )t≥0 so that T defines a time change relative

to (FΦ
t )t≥0 . Define the time-changed process Φ̂ by setting

(6.18) Φ̂ϕ
s = Φ̂t,ϕ

t+s := Φt,ϕ
t+Ts

for s ∈ [0, A∞) . Time changing the stochastic differential equation (6.13) we find that

(6.19) Φ̂ϕ
s = ϕ +

∫ Ts

0

σ(t+r, Φt,ϕ
t+r) dXr = ϕ +

∫ s

0

σ(t+Tr, Φ̂
t,ϕ
t+r) dXTr =: ϕ + B̃s

for ϕ ∈ IR+ where B̃ is a continuous local martingale with 〈B̃, B̃〉s =
∫ Ts

0
σ2(t+ r, Φt,ϕ

t+r) dr =

ATs = s for s ∈ [0, A∞) . Hence by Lévy’s characterisation theorem we can conclude that B̃
is a standard Brownian motion (starting at zero). Note that by changing the initial standard
Brownian motion in (6.13) we can achieve that B̃ does not depend on t . It follows therefore
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that Φ̂ϕ is a standard Brownian motion starting at ϕ in IR+ . From (6.16) it is easily seen
using (6.17) that

(6.20) Ts = T (t,ϕ)
s =

∫ s

0

dr

σ2
(
t+Tr, Φ

t,ϕ
t+Tr

) =

∫ s

0

dr

σ2
(
t+T

(t,ϕ)
r , ϕ+B̃r

)

for s ∈ [0, A∞) . From (6.20) combined with (6.14) we see that

(6.21) ∂
∂s

T
(t1,ϕ)
s Q ∂

∂s
T

(t2,ϕ)
s

whenever T
(t1,ϕ)
s = T

(t2,ϕ)
s for some s and t1 ≤ t2 in [0,∞) (with the same B̃ as above) if

and only if (4.6) or (4.7) holds respectively. From (6.21) combined with T
(t,ϕ)
0 = 0 we see that

(6.22) t 7→ T (t,ϕ)
s is increasing or decreasing on [0,∞)

for every s ∈ [0, A∞) if and only if (4.6) or (4.7) holds respectively. Returning to (6.15) and
applying the time change from (6.17) hence we see that

V̂ (t1, ϕ) = inf
τ

E0

[
TAτ

(
1+Φt1,ϕ

t1+TAτ

)
+ M̂

(
Φt1,ϕ

t1+TAτ

)]
(6.23)

= inf
σ

E0

[
T (t1,ϕ)

σ

(
1+Φ̂ϕ

σ

)
+ M̂

(
Φ̂ϕ

σ

)]

Q inf
σ

E0

[
T (t2,ϕ)

σ

(
1+Φ̂ϕ

σ

)
+ M̂

(
Φ̂ϕ

σ

)]

= inf
τ

E0

[
TAτ

(
1+Φt2,ϕ

t2+TAτ

)
+ M̂

(
Φt2,ϕ

t2+TAτ

)]

= V̂ (t2, ϕ)

for t1 ≤ t2 in [0,∞) and ϕ ∈ IR+ if and only if (4.6) or (4.7) holds respectively. This
completes the proof of the initial equivalence claim. ¤

Corollary 9. We have 0 < b0(t) < b/a < b1(t) < ∞ for all t > 0 with

C = { (t, ϕ) ∈ [0,∞)×IR+ | b0(t) < ϕ < b1(t) }(6.24)

D = { (t, ϕ) ∈ [0,∞)×IR+ | 0 ≤ ϕ ≤ b0(t) or b1(t) ≤ ϕ < ∞} .(6.25)

Moreover, the following implications are satisfied (see Figure 1 below):

If (4.6) holds then the mapping t 7→ b0(t) is increasing and the mapping t 7→ b1(t)(6.26)
is decreasing on [0,∞) .

If (4.7) holds then the mapping t 7→ b0(t) is decreasing and the mapping t 7→ b1(t)(6.27)
is increasing on [0,∞) .

Proof. 1. From (6.5) and (6.15) we see that

(6.28) ϕ 7→ V̂ (t, ϕ) is increasing and concave on [0,∞)

for every t ≥ 0 given and fixed. Concavity of ϕ 7→ V̂ (t, ϕ) combined with non-negativity and
piecewise linearity of ϕ 7→ M̂(ϕ) in (4.5) implies that if (t, ϕ) ∈ D with ϕ < b/a and ϕ1 < ϕ
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Figure 1. The optimal stopping boundaries b0 and b1 when (i) µ ∼ Exp(1)
and (4.6) holds along a = b = 20 (upper figure) and (ii) µ takes values ±1 with
probability 1/2 and (4.7) holds along a = b = 10 (lower figure).

then (t, ϕ1) ∈ D as well as that if (t, ϕ) ∈ D with ϕ > b/a and ϕ2 > ϕ then (t, ϕ2) ∈ D .
This shows that b0 and b1 from (6.12) alone separate C and D fully and hence (6.24) and
(6.25) are valid as claimed. Moreover, we know from Proposition 8 that

(6.29) t 7→ V̂ (t, ϕ)−M̂(ϕ) is increasing or decreasing on [0,∞)

for every ϕ ∈ IR+ if and only if (4.6) or (4.7) holds respectively. In the former case (i.e.
when (4.6) holds) we see that if (t1, ϕ) ∈ D and t2 ≥ t1 then 0 = V̂ (t1, ϕ)− M̂(ϕ) ≤
V̂ (t2, ϕ)−M̂(ϕ) ≤ 0 so that V̂ (t2, ϕ)−M̂(ϕ) = 0 and hence (t2, ϕ) ∈ D as well. This
shows that (6.26) holds as claimed. Similarly, in the latter case (i.e. when (4.7) holds) we see
that if (t1, ϕ) ∈ D and t0 ≤ t1 then 0 = V̂ (t1, ϕ)−M̂(ϕ) ≤ V̂ (t0, ϕ)−M̂(ϕ) ≤ 0 so that
V̂ (t0, ϕ)−M̂(ϕ) = 0 and hence (t0, ϕ) ∈ D as well. This shows that (6.27) holds as claimed.

2. We show that b0(t) > 0 for all t > 0 . Clearly, if b0 is increasing then it is sufficient to
disprove the existence of t0 > 0 such that [0, t0)×[0, b/a] ⊆ C , and similarly, if b0 is decreasing
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then it is sufficient to disprove the existence of t1 > 0 such that (t1,∞)×[0, b/a] ⊆ C . Suppose
first that [0, t0)×[0, b/a] ⊆ C for some t0 > 0 . Consider the stopping time

(6.30) τ
(0,ϕ)
b/a = inf { s ∈ [0, t0) | Φ0,ϕ

s ≥ b/a }

under P0 for ϕ ∈ (0, b/a) given and fixed. Then τ
(0,ϕ)
b/a ≤ τ

(0,ϕ)
D where τD := τ

(0,ϕ)
D = inf { s ≥

0 | Φ0,ϕ
s ∈ D } is an optimal stopping time, so that from (6.15) we find that

(6.31) V̂ (0, ϕ) = E0

[
τD

(
1+Φ0,ϕ

τD

)
+ M̂

(
Φ0,ϕ

τD

)] ≥ E0

(
τ

(0,ϕ)
b/a

)
.

Letting ϕ ↓ 0 and using that limϕ↓0 τ
(0,ϕ)
b/a = t0 we see from (6.31) using Fatou’s lemma

that lim inf ϕ↓0 V̂ (0, ϕ) ≥ t0 > 0 . It follows that taking ϕ > 0 sufficiently small we get
V̂ (0, ϕ) > aϕ = M̂(ϕ) which is a contradiction since V̂ ≤ M̂ . This shows that b0(t) > 0
for all t > 0 when b0 is increasing as claimed. Next suppose that (t1,∞)× [0, b/a] ⊆ C
for some t1 > 0 . Consider the same stopping time as in (6.30) with t1 in place of 0 and
t0 = ∞ when ϕ ∈ (0, b/a) is given and fixed. Using the same arguments as above we obtain
the inequality (6.31) with t1 in place of 0 for all ϕ ∈ (0, b/a) . Letting ϕ ↓ 0 and using that

τ
(t1,ϕ)
b/a →∞ we see from the previous inequality that V̂ (t1, ϕ) →∞ which is a contradiction

since V̂ ≤ M̂ . This shows that b0(t) > 0 for all t > 0 when b0 is decreasing as claimed.

3. We show that b1(t) < ∞ for all t > 0 . Clearly, if b1 is decreasing then it is sufficient
to disprove the existence of t0 > 0 such that [0, t0)× [b/a,∞) ⊆ C , and similarly, if b1 is
increasing then it is sufficient to disprove the existence of t1 > 0 such that (t1,∞)×[b/a,∞) ⊆
C . Suppose first that [0, t0)×[b/a,∞) ⊆ C for some t0 > 0 . Consider the stopping time

(6.32) τ
(0,ϕ)
b/a = inf { s ∈ [0, t0) | Φ0,ϕ

s ≤ b/a }

under P0 for ϕ ∈ (b/a,∞) given and fixed. Then τ
(0,ϕ)
b/a ≤ τ

(0,ϕ)
D where τD := τ

(0,ϕ)
D =

inf { s ≥ 0 | Φ0,ϕ
s ∈ D } is an optimal stopping time, so that by (5.4) and (6.15) we find that

(6.33) V̂ (0, ϕ) = E0

[∫ τD

0

(1+Φ0,ϕ
s ) ds + M̂

(
Φ0,ϕ

τD

)]
≥ E0

[∫ τ
(0,ϕ)
b/a

0

(1+ϕΦ0,1
s ) ds

]

where in the final term we use (6.5) above. Letting ϕ →∞ and using that limϕ↑∞ τ
(0,ϕ)
b/a = t0

we see from (6.33) using Fatou’s lemma that V̂ (0, ϕ) → ∞ which is a contradiction since
V̂ ≤ M̂ . This shows that b1(t) < ∞ for all t > 0 when b1 is decreasing as claimed. Next
suppose that (t1,∞)× [b/a,∞) ⊆ C for some t1 > 0 . Consider the same stopping time
as in (6.32) with t1 in place of 0 and t0 = ∞ when ϕ ∈ (b/a,∞) is given and fixed.
Using the same arguments as above we obtain the inequality (6.33) with t1 in place of 0 for

all ϕ ∈ (b/a,∞) . Letting ϕ → ∞ and using that τ
(t1,ϕ)
b/a → ∞ we see from the previous

inequality that V̂ (t1, ϕ) → ∞ which is a contradiction since V̂ ≤ M̂ . This shows that
b1(t) < ∞ for all t > 0 when b1 is increasing as claimed and the proof is complete. ¤

7. Free-boundary problem

In this section we derive a free-boundary problem that stands in one-to-one correspondence
with the optimal stopping problem (4.5). Using the results derived in the previous sections
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we show that the value function V̂ from (4.5) and the optimal stopping boundaries b0 &
b1 from (6.12) solve the free-boundary problem. This establishes the existence of a solution
to the free-boundary problem. Its uniqueness in a natural class of functions will follow from
a more general uniqueness that will be established in Section 8 below. This will also yield
a double-integral representation of the value function V̂ expressed in terms of the optimal
stopping boundaries b0 & b1 .

1. Consider the optimal stopping problem (4.5) where the (time-inhomogeneous) Markov
process Φ solves the stochastic differential equation (6.13) where X is a standard Brownian
motion under P0 . From (6.13) we see that the infinitesimal generator of Φ is given by

(7.1) ILΦ =
1

2
σ2(t, ϕ) ∂ϕϕ

where σ(t, ϕ) is given explicitly by (4.8) for (t, ϕ) ∈ [0,∞)×IR+ . Looking at (4.5), and relying
on other properties of V̂ and b0 & b1 established above, we are naturally led to formulate
the following free-boundary problem for finding V̂ and b0 & b1 :

V̂t + ILΦV̂ = −L in C(7.2)

V̂ (t, ϕ) = M̂(ϕ) for (t, ϕ) ∈ D (instantaneous stopping)(7.3)

V̂ϕ(t, ϕ) = M̂ ′(ϕ) for ϕ = b0(t) & ϕ = b1(t) with t > 0 (smooth fit)(7.4)

where we set L(ϕ) = 1+ϕ for ϕ ∈ IR+ and the (continuation) set C and the (stopping)
set D are given by (6.24) and (6.25) respectively. Clearly the global condition (7.3) can be
replaced by the local condition V̂ (t, ϕ) = M̂(ϕ) for ϕ = b0(t) & ϕ = b1(t) with t > 0 so
that the free-boundary problem (7.2)-(7.4) needs to be considered on the closure of C only
(extending V̂ to the rest of D as M̂ being then evident).

2. To formulate the existence and uniqueness result for the free-boundary problem (7.2)-(7.4)
we let C denote the class of functions (F ; c0, c1) such that

F belongs to C1(C̄c0,c1) ∩ C2(Cc0,c1) and is bounded on [0,∞)×IR+(7.5)

c0 is continuous and increasing/decreasing on (0,∞) with 0 < c0 < b/a(7.6)

c1 is continuous and decreasing/increasing on (0,∞) with b/a < c1 < ∞(7.7)

when (4.6)/(4.7) holds respectively in (7.6) and (7.7), where we set Cc0,c1 = { (t, ϕ) ∈ [0,∞)×
IR+ | c0(t) < ϕ < c1(t) } and C̄c0,c1 = { (t, ϕ) ∈ [0,∞)×IR+ | c0(t) ≤ ϕ ≤ c1(t) } .

Theorem 10. The free-boundary problem (7.2)-(7.4) has a unique solution (V̂ ; b0, b1) in
the class C where V̂ is given by (4.5) and b0 & b1 are defined in (6.12).

Proof. We first show that the triple (V̂ ; b0, b1) belongs to the class C . For this, if (4.6)
holds then by (6.26) we know that b0 is increasing and b1 is decreasing. Using the fact
visible from (6.13) that Φ is a time-changed Brownian motion, hence we can conclude that
each boundary point between C and D is probabilistically regular for the interior of D .
Similarly, if (4.7) holds then by (6.27) we know that b0 is decreasing and b1 is increasing. In
this case we can use arguments similar to those in the second part of Example 17 in [6] to show
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that b0 and b1 are locally Lipschitz. Hence by the same time-change arguments as above we
can again conclude that each boundary point between C and D is probabilistically regular
for the interior of D . The method of proof outlined in Example 12 and Example 17 of [6] then
enables us to infer the global C1 regularity of the value function V̂ in the sense that

(t, ϕ) 7→ V̂t(t, ϕ) is continuous on [0,∞)×IR+(7.8)

(t, ϕ) 7→ V̂ϕ(t, ϕ) is continuous on [0,∞)×IR+ .(7.9)

Moreover, since the (horizontal) smooth fit holds at each boundary point between C and D
we can apply the general result of Theorem 3 in [19] and conclude that

(7.10) t 7→ b0(t) & t 7→ b1(t) are continuous on [0,∞) .

Combined with properties derived in Section 6 above, this shows that the triple (V̂ ; b0, b1)
belongs to the class C as claimed. The Lagrange reformulation (5.1) of the optimal stopping
problem (4.5) combined with standard arguments (see e.g. the final paragraph of Section 2 in
[6]) shows that V̂ satisfies (7.2). This fact combined with (7.8) implies that

(7.11) V̂ϕϕ admits a continuous extension from C to C̄

where C is the continuation set and C̄ is its closure as defined following (7.7) above (omitting
subscripts for simplicity). Clearly V̂ also satisfies (7.3) while (7.4) follows from the arguments
yielding (7.8) and (7.9) above. This shows that the triple (V̂ ; b0, b1) is a solution to the free-
boundary problem (7.2)-(7.4) in the class C . To derive uniqueness of the solution we will first
see in the next section that any solution (F ; c0, c1) to (7.2)-(7.4) in the class C admits a closed
double-integral representation for F in terms of c0 and c1 , which in turn solve a coupled
system of nonlinear Volterra integral equations, and we will see that this system cannot have
other solutions satisfying the required properties. From these facts we can conclude that the
free-boundary problem (7.2)-(7.4) cannot have other solutions as claimed. ¤

8. Nonlinear integral equations

In this section we show that the optimal stopping boundaries b0 and b1 from (6.25) can
be characterised as the unique solution to a coupled system of nonlinear Volterra integral
equations. This also yields a closed double-integral representation of the value function from
(4.5) in terms of the optimal stopping boundaries b0 and b1 . As a consequence of the existence
and uniqueness result for the coupled system of nonlinear Volterra integral equations we also
obtain uniqueness of the solution to the free-boundary problem (7.2)-(7.4) as explained in the
proof of Theorem 10 above. Finally, collecting the results derived throughout the paper we
conclude our exposition by disclosing the solution to the initial problem.

1. Recalling that X is a standard Brownian motion under P0 we readily find from (4.1)
that the probability density function of Φt,ϕ

t+s under P0 is given by

f(t+s, ψ; t, ϕ) =
1

Φ0

√
2πs

1

`x(t+s, `−1(t+s, ψ/Φ0))
(8.1)

× exp

(
− (`−1(t+s, ψ/Φ0)−`−1(t, ϕ/Φ0))

2

2s

)
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for 0 ≤ t < t+s and ϕ & ψ in IR+ where the inverse function `−1 is defined following (4.8)
above. Having f we can evaluate the expression of interest in the theorem below as follows

(8.2) K(t+s, ϕ0, ϕ1; t, ϕ) = E0

[
L(Φt,ϕ

t+s)I(ϕ0 <Φt,ϕ
t+s <ϕ1)

]
=

∫ ϕ1

ϕ0

L(ψ)f(t+s, ψ; t, ϕ) dψ

for 0 ≤ t < t+s and ϕ & ϕ0 < ϕ1 in IR+ where we recall that L(ψ) = 1+ψ for ψ ∈ IR+ .

Theorem 11 (Existence and uniqueness). The optimal stopping boundaries b0 and
b1 in the problem (4.5) can be characterised as the unique solution to the coupled system of
nonlinear Volterra integral equations

ab0(t) =

∫ ∞

0

K(t+s, b0(t+s), b1(t+s); t, b0(t)) ds(8.3)

b =

∫ ∞

0

K(t+s, b0(t+s), b1(t+s); t, b1(t)) ds(8.4)

in the class of continuous functions b0 and b1 on [0,∞) where t 7→ b0(t) is increas-
ing/decreasing and t 7→ b1(t) is decreasing/increasing with 0 < b0(t) < b/a < b1(t) < ∞
for t > 0 when (4.6)/ (4.7) holds respectively. The value function V̂ in the problem (4.5)
admits the following representation

(8.5) V̂ (t, ϕ) =

∫ ∞

0

K(t+s, b0(t+s), b1(t+s); t, ϕ) ds

for (t, ϕ) ∈ [0,∞)×IR+ . The optimal stopping time in the problem (4.5) is given by

(8.6) τb0,b1 = inf { s ≥ 0 | Φt,ϕ
t+s /∈ (

b0(t+s), b1(t+s)
) }

under P0 with (t, ϕ) ∈ [0,∞)×IR+ given and fixed (see Figure 1 above).

Proof. 1. Existence. We first show that the optimal stopping boundaries b0 and b1 in the
problem (4.5) solve the system (8.3)+(8.4). Recalling that b0 and b1 satisfy the properties
stated following (8.3)+(8.4) as established above, this will prove the existence of the solution
to (8.3)+(8.4). For this, we will first note that Itô’s formula is applicable to V̂ composed with
(t+s, Φt,ϕ

t+s) for s ≥ 0 with (t, ϕ) ∈ [0,∞)×IR+ given and fixed. Indeed, recalling that V̂

is C1,2 on the closure of C and equals M̂ on D (which also is C1,2 since the singularity
line ϕ = b/a of M̂ is contained in C as established in Lemma 7 above) we see that the local
time-space formula from [18] is applicable to V̂ composed with (t+s, Φt,ϕ

t+s) for s ≥ 0 and
moreover this formula reduces to Itô’s formula due to the smooth fit condition (7.4). Using
(7.1) and (7.2) this yields

V̂ (t+s, Φt,ϕ
t+s) = V̂ (t, ϕ) +

∫ s

0

(V̂t+ILΦV̂ )(t+r, Φt,ϕ
t+r) dr + Ms(8.7)

= V̂ (t, ϕ)−
∫ s

0

L(Φt,ϕ
t+r)I

(
b0(t+r)<Φt,ϕ

t+r <b1(t+r)
)
dr + Ms
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where Ms =
∫ s

0
V̂ϕ(t+r, Φt,ϕ

t+r) σ(t+r, Φt,ϕ
t+r) dXr is a continuous local martingale for s ≥ 0 .

Taking a localisation sequence of stopping times (τn)n≥1 for M , replacing s on both sides
of (8.7) by s ∧ τn , applying the optional sampling theorem and letting n →∞ , we obtain

(8.8) E0

[
V̂ (t+s, Φt,ϕ

t+s)
]

= V̂ (t, ϕ)− E0

[ ∫ s

0

L(Φt,ϕ
t+r)I

(
b0(t+r)<Φt,ϕ

t+r <b1(t+r)
)
dr

]

for s ≥ 0 . Letting s → ∞ and noting that 0 ≤ V̂ (t+s, Φt,ϕ
t+s) ≤ M̂(Φt,ϕ

t+s) = aΦt,ϕ
t+s ∧ b → 0

P0 -a.s. by (8.11) below, we see that the dominated and monotone convergence theorems yield

(8.9) V̂ (t, ϕ) = E0

[ ∫ ∞

0

L(Φt,ϕ
t+s)I

(
b0(t+s)<Φt,ϕ

t+s <b1(t+s)
)
ds

]

which establishes the representation (8.5) upon recalling (8.2) above. Recalling that V̂ (t, b0(t))
= M̂(b0(t)) = ab0(t) and V̂ (t, b1(t)) = M̂(b1(t)) = b for all t ≥ 0 we see that (8.5) implies
(8.3) and (8.4) as claimed.

2. Uniqueness. To show that b0 and b1 are a unique solution to the system (8.3)+(8.4)
one can adopt the four-step procedure from the proof of uniqueness given in [7, Theorem 4.1]
extending and further refining the original arguments from [17, Theorem 3.1] in the case of a
single boundary. Note that although the present horizon is infinite and any stopping time τ
among the four stopping times used in the four-step procedure can take infinite values as well
in certain situations, the optional sampling theorem is still applicable to τ ∧n for n ≥ 1 given
and fixed, and then letting n → ∞ one obtains the desired conclusions as when the horizon
is finite. The key argument which makes this possible (in the first step) is obtained by noting
that 0 ≤ M̂ ≤ b so that the monotone and dominated convergence theorems yield

lim
n→∞

E0

[
M̂(Φt,ϕ

t+τ )I(τ≤n)
]

= E0

[
M̂(Φt,ϕ

t+τ )I(τ <∞)
]

= lim
n→∞

E0

[
M̂(Φt,ϕ

t+τ∧n)I(τ <∞)
]

(8.10)

= lim
n→∞

E0

[
M̂(Φt,ϕ

t+τ∧n)
]− lim

n→∞
E0

[
M̂(Φt,ϕ

t+n)I(τ =∞)
]

= M̂(ϕ)

for (t, ϕ) ∈ [0,∞)×IR+ , where in the final equality we use (5.6) given that Φt,ϕ spends no
time at b/a up to t+τ (as in the first step), and more crucially the fact that Φt,ϕ

t+n → 0

P0 -a.s. as n →∞ due to (8.11) below combined with the fact that M̂(0) = 0 . Given that the
present setting creates no additional difficulties we will omit further details of this verification
and this completes the proof. ¤

2. We single out the following important consequence of the measure change in Section 3
for establishing the representation (8.9) above.

Proposition 12. We have

(8.11) Φt,ϕ
t+s → 0 P0-a.s.

as s →∞ for (t, ϕ) ∈ [0,∞)×IR+ given and fixed.

Proof. Recall from (6.3) and (6.13) that (Φt,ϕ
t+s)s≥0 is a positive local martingale under P0 .

Since a positive local martingale is a supermartingale and a positive supermartingale converges
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almost surely, it is enough to show that the convergence relation (8.11) holds in P0 -probability.
For this, note from (6.3) with (6.4) that

P0

(
Φt,ϕ

t+s ≥ ε) = P0

( π

1−π

∫ ∞

−∞
emx−m2

2
t emXs−m2

2
s Fµ(dm) ≥ ε

)
(8.12)

= P0

( ∫ ∞

−∞
M(m) em

√
sX1− (m

√
s)2

2 Fµ(dm) ≥ ε
)

for ε > 0 due to Xs ∼
√

sX1 for s ≥ 0 because X is a standard Brownian motion under
P0 and where we set M(m) := (π/(1−π))emx−(m2/2)t for m ∈ IR with x = 0 if t = 0 . Fix
ω ∈ Ω and note that

(8.13) Ns(m) := M(m) em
√

sX1(ω)− (m
√

s)2

2 → 0

as s →∞ for every m ∈ IR . Moreover, we have

(8.14) sup
s≥0

Ns(m) := M(m) sup
s≥0

em
√

sX1(ω)− (m
√

s)2

2 ≤ M(m) sup
s≥0

es |X1(ω)|− s2

2 =: M(m)Z(ω)

for all m ∈ IR where Z(ω) is a constant which does not depend on m ∈ IR . Since
m 7→ M(m)Z(ω) is integrable on the probability space (IR,B(IR), Fµ(dm)) it follows by
the dominated convergence theorem using (8.13) that

(8.15) lim
s→∞

∫ ∞

−∞
M(m) em

√
sX1(ω)− (m

√
s)2

2 Fµ(dm) = 0

for all ω ∈ Ω . Using this fact in (8.12) we see that P0

(
Φt,ϕ

t+s ≥ ε) → 0 as s → ∞ for every
ε > 0 . Thus (8.11) holds in P0 -probability as sufficient and the proof is complete. ¤

Remark 13. The question of uniqueness addressed in Theorem 11 above was left open
in [8, Section 5]. The method of proof in [8] makes an essential use of the innovation process
associated with X under the measure Pπ for π ∈ [0, 1] . Abandoning the innovation process
and changing the measure Pπ to P0 for π ∈ (0, 1) as done in Section 3 above yields the
convergence relation (8.11) which in turn settles the question of uniqueness as explained in the
second part of the proof above (cf. [8, Remark 5.4]).

Remark 14. The coupled system of nonlinear Volterra integral equations (8.3)+(8.4) can
be used to find the optimal stopping boundaries b0 and b1 numerically. Note that the identity
(8.8) can be used to produce a finite horizon approximation to the system obtained by replacing
s with T−t in (8.8) which yields the following extension of (8.9) above

(8.16) V̂ (t, ϕ) = E0

[
M̂(Φt,ϕ

T )
]
+ E0

[ ∫ T−t

0

L(Φt,ϕ
t+s)I

(
b0(t+s)<Φt,ϕ

t+s <b1(t+s)
)
ds

]

for (t, ϕ) ∈ [0, T ]×IR+ . Recalling that V̂ (t, b0(t)) = M̂(b0(t)) = ab0(t) and V̂ (t, b1(t)) =
M̂(b1(t)) = b for all t ≥ 0 we see that (8.16) implies validity of the following extension of the
system (8.3)+(8.4) above

ab0(t) =

∫ ∞

0

M̂(ψ)f(T, ψ; t, b0(t)) dψ +

∫ T−t

0

K(t+s, b0(t+s), b1(t+s); t, b0(t)) ds(8.17)
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b =

∫ ∞

0

M̂(ψ)f(T, ψ; t, b1(t)) dψ +

∫ T−t

0

K(t+s, b0(t+s), b1(t+s); t, b1(t)) ds(8.18)

for t ∈ [0, T ] . Collecting the results derived throughout the paper we now disclose the solution
to the initial problem for admissible laws (cf. Definition 4).

Corollary 15. The value function in the initial problem (2.3) is given by

(8.19) V (π) = (1−π) V̂
(
0, π

1−π

)

for π ∈ (0, 1) where the function V̂ is given by (8.5) above. The optimal stopping time in the
initial problem (2.3) is given by

(8.20) τ∗ = inf
{

t ≥ 0
∣∣ π

1−π

∫ ∞

−∞
emXt−m2

2
t Fµ(dm) /∈ (

b0(t), b1(t)
) }

where b0 and b1 are a unique solution to the coupled system of nonlinear Volterra integral
equations (8.3)+(8.4). The optimal decision function dτ∗ equals 0 or 1 and we conclude that
a non-zero drift is not present or is present in the observed motion if the stopping in (8.20)
happens at b0 or b1 respectively.

Proof. The identity (8.19) follows by combining (3.18)+(3.19) in Proposition 2 with (4.5)
and the result of Theorem 11. The explicit form (8.20) follows from (8.6) in Theorem 11
combined with (3.4) and (4.1). The final claim on the optimal decision function follows from
the general argument invoked following (2.5) above. This completes the proof. ¤
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