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A UNIFIED THEORY OF TRUTH AND PARADOX

LORENZO ROSSI

Abstract. The sentences employed in semantic paradoxes display a wide range of se-

mantic behaviours. However, the main theories of truth currently available either fail to

provide a theory of paradox altogether, or can only account for some paradoxical phe-

nomena by resorting to multiple interpretations of the language, as in (Kripke [1975]).

In this paper, I explore the wide range of semantic behaviours displayed by paradoxical

sentences, and I develop a unified theory of truth and paradox, that is a theory of truth

that also provides a unified account of paradoxical sentences. The theory I propose here

yields a threefold classification of paradoxical sentences – liar-like sentences, truth-teller-

like sentences, and revenge sentences. Unlike existing treatments of semantic paradox, the

theory put forward in this paper yields a way of interpreting all three kinds of paradoxical

sentences, as well as unparadoxical sentences, within a single model.

§1. Introduction. Semantic predicates such as truth, satisfaction, and deno-
tation play a crucial role in several contemporary theories of meaning.1 However,
semantic predicates are famously problematic: simple and intuitive assumptions
about the principles governing them, together with a modicum of logic and syn-
tax theory, yield well-known paradoxes. Consider the self-applicable predicate

Key words and phrases. Semantic paradoxes; Truth predicate; Näıve truth; Non-classical

Logics; Revenge Paradoxes.
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2 LORENZO ROSSI

‘. . . is true’. An apparently compelling intuition suggests that it should obey
the following informal principle:

(näıveté) For every sentence ϕ, ϕ and “ϕ’ is true’ are equivalent.

But now consider a liar sentence λ equivalent to “λ’ is not true’. If the truth
predicate obeys näıveté, then λ is true if and only if λ is not true, a contradic-
tion. But (in classical logic, and several other logics) everything follows from a
contradiction, whereby every sentence is true.

The Liar Paradox is not an isolated phenomenon. Semantic notions can be
used to form several kinds of sensu lato paradoxical sentences, which display a
wide range of semantic behaviours. For instance, a truth-teller sentence τ equiv-
alent to “τ ’ is true’ can be consistently validated, falsified, or assigned any other
semantic value by any semantics compatible with näıveté. Revenge paradoxes
show that certain semantic notions, related to näıve truth, are inexpressible in a
target theory. Analogous paradoxes arise for satisfaction, denotation, and other
semantic notions. For simplicity, I focus on the truth predicate and on relatively
simple languages, which are however expressive enough to encode some basic
syntactic mechanisms.2

The aim of this paper is to investigate the semantics of sentences involving
the truth predicate, including liar sentences, truth-teller sentences, revenge sen-
tences, and the like. More specifically, the paper provides a theory of truth that
also accounts for and classifies all the paradoxical sentences involving truth. The
motivation behind the theory offered here is that, if a semantics for a natural
language employs a self-applicable truth predicate, then that semantics is going
to have to interpret all kinds of sentences involving the truth predicate, whether
they are ‘unproblematic’, or in some sense ‘paradoxical’. To my knowledge,
the modern systematic analysis of paradoxes was initiated by fixed-point theo-
ries of truth (Kripke [1975]) and revision theories of truth (Herzberger [1982a],
[1982b], Gupta [1982]).3 Recent years have seen a growth of graph-theoretical
approaches, which are very successful at identifying structural features of para-
doxical sentences.4 Nevertheless, the theories of truth and paradox currently
available do not seem to provide a unified semantics for paradoxical and non-
paradoxical sentences. For one thing, existing approaches resort to several mod-
els to account for the semantics of certain paradoxical sentences – this includes
Kripke’s approach and the Hezberger-Gupta approach. More precisely, existing
theories cannot provide an interpretation of unproblematic sentences, such as
‘snow is white’ or t = t, and of all the various kinds of paradoxical sentences

2The theory I am going to propose can be easily extended to other semantic predicates and

richer languages. See McGee [1991], pp. 31-37, for details on the relations between truth,
satisfaction, and denotation.

3See also Burgess [1986], [1988], Gupta and Belnap [1993], Kremer [2009].
4See e.g. Davis [1979], Hazen [1981], Barwise and Etchemendy [1987], Gaifman [1988],

[1992], Yi [1999], Gaifman [2000], Cook [2004], Maudlin [2004], Cook [2006], Schlenker [2007],

Walicki [2009], Rabern, Rabern, and Macauley [2013], Cook [2014], Dyrkolbotn and Walicki
[2014], Hansen [2015], Walicki [2017], Beringer and Schindler [2017].
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within one single model.5 For another, existing semantic theories typically do
not treat revenge-paradoxical sentences, since adding revenge-breeding notions
to their target language would make them trivial. Revenge-breeding notions are
therefore also relegated to the meta-theory.6

In this paper, I propose a unified theory of truth and paradox, i.e. a single
model that interprets both non-paradoxical and paradoxical sentences. The in-
terpretation of paradoxical sentences consists in assigning them special semantic
values, encoding (as much as possible) their semantic behaviour. The theory
I develop differentiates between three main kinds of paradoxical cases: liar-like
sentences, truth-teller-like sentences, and revenge sentences. As I will argue,
these cases exhaust all the main paradoxes of truth. More precisely, the theory
I present here can accommodate any compositional interpretation of the logical
vocabulary, without affecting the resulting classification of paradoxes. The pro-
posed classification of paradoxes is therefore robust, and should be shared by
any compositional approach to näıve truth.7

The plan of the paper is as follows. In §2, I present some representative se-
mantic paradoxes, and I explore the challenges their account poses to a semantic
theory of truth. I argue that the kinds of paradoxes presented in §2 yield an
exhaustive taxonomy of semantic antinomies. In §3, I provide some heuristics.
In §4 I develop the proposed theory of truth and paradox. Technically, this the-
ory employs a combination of graph-theoretic tools, fixed-point constructions,
and revision sequences. I argue that the proposed theory satisfactorily accounts
for the semantics of the paradoxical sentences classified in §2, and I sketch some
prospects for further developments. §5 concludes. The main proofs are given in
the Appendix.

§2. Näıveté and paradoxes. Näıveté about truth – the idea that ϕ and “ϕ’
is true’ are equivalent – can be made precise in a number of ways. For present

5Consider the treatment of liar and truth-teller sentences in fixed-point and revision theories:
in both approaches, several models have to be considered to differentiate liar sentences, truth-

teller sentences, and truths or falsities of the base language.
6For discussion, see Field [2007], Leitgeb [2007], Rossi [2019].
7The interest of the study of paradoxes goes well beyond the goal of interpreting the sen-

tences of a language featuring a self-applicable truth predicate. The study of paradoxes has
led to discover new limitative results and to determine which logical principles and evaluation
schemes are compatible with näıveté (see e.g. Kripke [1975], Friedman and Sheard [1987],
McGee [1985], Restall [1992], Hájek, Paris, and Shepherdson [2000], Field [2002], [2003], Hal-

bach, Leitgeb, and Welch [2003], Halbach and Horsten [2006], Priest [2006], Cieśliński [2007],

Field [2008], Beall [2009], Horsten [2009], Zardini [2011], Cobreros, Égré, Ripley, and van
Rooij [2013], Field [2013], Nicolai and Rossi [2018], Murzi and Rossi [2019]). Moreover,
the analysis of paradoxes has been instrumental to determine the expressive power of the-

ories of truth (see e.g. Ketland [2003], Beall [2006], [2007], [2007], Cook [2007], Field [2007],

Leitgeb [2007], Maudlin [2007], Priest [2007], Restall [2007], Scharp [2007], Simmons [2007],
Shapiro [2011], Scharp [2013], Rossi [2019]). Finally, the investigation of semantic para-

doxes has revealed connections between theories of truth and questions concerning coding,
circularity, self-reference, and non-well-foundedness (see e.g. Yablo [1985], Gaifman [1988],
McCarthy [1988], Visser [1989], Gaifman [1992], Yablo [1993], Priest [1997], Yi [1999],

Gaifman [2000], Beall [2001], Leitgeb [2002], Bueno and Colyvan [2003], Ketland [2004],
Cook [2004], [2006], Yablo [2006], Schlenker [2007], Cook [2014], Halbach and Visser [2014a],

[2014b], Beringer and Schindler [2017]).
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purposes, I characterise it in semantic terms. An evaluation is a function from
the sentences of the target language to a non-empty value space V , including
some designated values. Let Tr(pϕq) abbreviate “ϕ’ is true’, where pϕq is a name
of ϕ. At first approximation, an evaluation e is said to be näıve if one of the
following requirements is satisfied:

- (inter-substitutivity) e(ϕ) = e(ϕTr)

where ϕTr is the result of substituting (possibly non-uniformly) a subfor-
mula ψ of ϕ with Tr(pψq) or vice versa.

- (t-schema) e(Tr(pϕq)↔ ϕ) = d

where d is a designated value of V .

I generically speak of näıveté when it makes no difference whether an evaluation
function satisfies inter-substitutivity or the t-schema. I now briefly present
some important paradoxical sentences, outlining the challenges that capturing
their semantics poses.

2.1. Liar-like sentences. The Liar Paradox features a sentence that, roughly
speaking, says that that very sentence is not true. For instance, consider the fol-
lowing sentence:

(λ) The sentence labelled with ‘(λ)’ is not true.

Liar sentences can be used to show that no classical evaluation satisfies näıveté.
For suppose that a classical evaluation e satisfies näıveté, let λ be the sentence
¬Tr(pλq), and consider the value of e(¬Tr(pλq)). Since e is classical, V consists
of two semantic values, 1 and 0. And since e is classical, either e(¬Tr(pλq)) = 1
or e(¬Tr(pλq)) = 0. However, if e(¬Tr(pλq)) = 1 then, by the classical semantics
for negation, näıveté, and the definition of λ, e(Tr(pλq)) = 0 = e(¬Tr(pλq)),
which is impossible. Similarly, if e(¬Tr(pλq)) = 0, then e(Tr(pλq)) = 1 =
e(¬Tr(pλq)), which is equally impossible.

The same conclusion is reached with other paradoxical sentences: Curry’s
Paradox employs a sentence κ identical to the sentence ‘if ‘κ’ is true, then ⊥’
(where ⊥ is some conventional falsity); McGee [1985]’s Paradox employs a sen-
tence µ identical to ‘not every iteration of Tr in front of ‘µ’ is true’, and both
can be used to show that classical evaluations do not satisfy näıveté.

The Liar Paradox, Curry’s Paradox, McGee’s Paradox and many others ar-
guably show that, in order to interpret a language with a näıve truth predicate,
a non-classical semantics is required. In order to accommodate näıveté, sev-
eral non-classical semantics expand the value space V with intermediate values
between 0 and 1, generalising the evaluation clauses accordingly. In this way,
the sentences that receive a classical value (0 or 1) obey the principles of clas-
sical logic, while the sentences that are assigned a non-classical value display a
different semantic behaviour. I clarify this point with an example (which will be
useful later).

A partial evaluation is a function that assigns to the sentences of the target
language one amongst the values 1, 0, and 1/2, and that satisfies the following
criteria:8

8For more on partial evaluations, see Kleene [1952] (Chapter XII) and Blamey [2002].
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- The value of ¬ϕ is 1 minus the value of ϕ.
- The value of ϕ ∧ ψ is the minimum of the values of ϕ and ψ.
- The value of ∀xϕ is the infimum of the values of its instances ϕ(t).

Several semantics for näıve truth are based on partial evaluations.9 Liar, Curry,
and McGee sentences can be assigned value 1/2 by partial evaluations, together
with their negation.

2.2. Truth-teller sentences. While the Liar Paradox rules out some eval-
uations for näıve truth, the Truth-teller Paradox presents quite an opposite sce-
nario. The paradox involves a sentence that, roughly, says that that very sentence
is true, e.g.:

(τ) The sentence labelled with ‘(τ)’ is not true.

Let τ be the sentence Tr(pτq). No feature of τ ‘forces’ one value assignment over
another, unlike liar sentences which are forced by näıveté to have the same
value as their negation.

The fact that truth-teller sentences can be assigned any available value might
make them appear to be unproblematic, but this is far from being the case. In
most semantic theories of truth, truth-teller sentences are assigned a semantic
value – be it 1, 0, 1/2, or another intermediate value – exactly as any other
sentence, like ∀x(x = x) or λ. But assigning value 1 to ∀x(x = x) seems
appropriate, for few will doubt of the truths of the theory of identity. And
assigning value 1/2 to λ also seems appropriate, for näıveté forces λ to have
the same value of ¬λ, showing that no classical value is appropriate for liar
sentences. However, no ‘standard’ value seems appropriate for Tr(pτq), because
no such value seems to be ‘the’ right one for τ , in that there are no grounds
for choosing a value over another. No ‘standard’ value (such as 1, 0 or 1/2)
captures the fact that truth-teller sentences can be assigned any value, thus
suitably representing their semantic behaviour. Several theories of truth can
only account for this behaviour resorting to multiple models: for instance, both
fixed-point and revision theories of truth capture the difference between liar and
truth-teller sentences by showing that the latter can be assigned several values
or revision sequences, unlike the former.10

9Examples include strong Kleene semantics (see e.g. Kripke [1975]), the logic of paradox
(see e.g. Asenjo [1966], Priest [1979]), strict-tolerant and tolerant-strict semantics (see e.g.

Cobreros, Égré, Ripley, and van Rooij [2012], Nicolai and Rossi [2018]).
10Albert Visser [1984] (§§3.4-3.5) argues that some four-valued models can distinguish be-

tween liar sentences and truth-teller sentences. As he puts it: ‘[o]ne attractive feature of four

valued logic for the study of the Liar Paradox is the possibility of making certain distinctions
within one single model. [. . . ] I present various models in which the Liar is both true and false
and the [truth-teller] neither true nor false. The intuitive idea here is that the Liar must be
true, must be false; the [truth-teller] need not be true, need not be false.’ Visser [1984](pp.
181-182). Nevertheless, it is not obvious that ‘neither true nor false’ has a better claim to

capture the semantic behaviour of truth-teller sentences than the other values in four valued

semantics. If ‘true’ and ‘false’ (understood as semantic values) are not to be assigned to the
truth-teller because it ‘need not be true, need not be false’, the same could be said of ‘neither

true nor false’ itself, since truth-teller sentences need not be neither true nor false either. This
reasoning generalises easily to any ‘standard’ semantic value.
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2.3. Revenge sentences. Even though truth-teller sentences are puzzling,
they are relatively inoffensive as they do not yield inexpressibility results.11 Re-
venge sentences are much less innocuous. Revenge paradoxes are arguments
to the effect that certain semantic notions, related to näıve truth, are not ex-
pressible in a target theory. Consider again the treatment of liar sentences in
semantics based on partial evaluations (and in which 1 is the only designated
value). In such theories, sentences such as λ are assigned value 1/2. Despite
the fact that liar sentences do not receive value 1, they fail to be declared ‘not
true’, since their negation receives also value 1/2, and not 1. In order to properly
express the fact that liar sentences fail to be true, one could employ a notion
of determinateness that maps both values 0 and 1/2 to 1. Consider therefore a
unary operator D, with the following semantics (for an evaluation function e):

e(D(ϕ)) =

{
1, if e(ϕ) = 1,

0, if e(ϕ) 6= 1

Using D, it should be possible to declare liar sentences ‘not determinate’, assign-
ing value 1 to ¬D(λ). However, such an operator D is inexpressible in the setting
we assumed. For suppose otherwise, and consider the sentence λd identical to
¬D(Tr(pλdq)). If e(λd) = 1, then e(D(Tr(pλdq))) = 1 = e(¬D(Tr(pλdq))), which
is impossible. Similarly, if e(λd) = 0, then e(D(Tr(pλdq))) = 0 = e(¬D(Tr(pλdq))),
which is impossible as well. We have a revenge paradox: (bivalent) determinate-
ness is inexpressible.

Revenge paradoxes pose a serious threat to theories of truth: if successful, they
show that their target theories have severe expressive limitations. Proponents
of revenge-prone theories of truth have typically sought to avoid the problem by
arguing that the revenge-paradoxical notions are not genuine semantic notions.12

And since revenge-breeding notions are not expressible in the theories they are
directed against, existing theories of truth simply do not consider revenge sen-
tences. However, it is very unclear whether there are principled reasons to reject
notions such as bivalent determinateness, while keeping näıve truth and other
notions that breed ‘standard’ paradoxes. If at least some revenge-paradoxical
notions are genuine semantic notions, a theory of truth and paradox needs to
interpret them as well.13

11Mortensen and Priest [1981] and Billon [2013] argue that the peculiar semantic behaviour
of truth-teller sentences can be turned into a proper contradiction (see also Smith [1984]). For

more discussion, see Sorensen [2001], Chapter 11, and Greenough [2011].
12See e.g. Priest [2006], Field [2007], Beall [2009].
13For arguments for the legitimacy of revenge-paradoxical notions, see e.g. Cook [2007], Leit-

geb [2007], Scharp [2007], [2013], Rossi [2019], Murzi and Rossi [2019]. The indefinite extensibil-
ity approach developed by Cook [2007], [2009], Cook and Tourville [2016] and Schlenker [2010]
does not refrain from interpreting revenge sentences. In a nutshell, in this approach semantic

paradoxes are interpreted in an indefinitely extensible succession of evaluations, with an indef-

initely extensible collection of semantic values. Nevertheless, due to its use of an indefinitely
extensible collection of values, this approach also resorts to infinitely many (actually, non-set-

sized many) models in order to characterise certain semantic paradoxes (more specifically, the
phenomenon of revenge).
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2.4. A complete picture. The paradoxes described in §§2.1-2.3 can be be
plausibly argued to cover the main kinds of semantic behaviours that are relevant
to a theory of truth and paradox – that is, those that require different kinds of
semantic value assignments. The idea, roughly, is the following.

Suppose a semantics for the logical vocabulary and a value space have been
selected, and consider an arbitrary sentence ϕ. There are two possibilities: ϕ
is either compatible with exactly one semantic value assignment, or it isn’t. In
the former case, ϕ has either a classical value (as in the case of ∀x(x = x)), or a
non-classical value (as in the case of λ). In the latter case, ϕ is either compatible
with more than one semantic value (as in the case of τ), or it is not compatible
with any semantic value (as in the case of λd).

More systematically, this suggests the following classification:

- Sentences that are compatible with exactly one semantic value:

- Non-paradoxical sentences: they are assigned a classical semantic value.
- Liar-like sentences: they are assigned a non-classical semantic value.

- Sentences that are not compatible with exactly one semantic value:

- Truth-teller-like sentences: they are assigned a special semantic value
that indicates that they are compatible with more than one (standard)
semantic value.

- Revenge sentences: they are assigned a special semantic value that
indicates that they are incompatible with every (standard) semantic
value.

The above taxonomy arguably covers all the possible outcomes of an evaluation
of ϕ. In the next section, I develop a theory that incorporates and makes explicit
all the above cases, thus yielding a theory of näıve truth as well as an account
of paradoxical sentences.

§3. Heuristics. In this section, I provide some heuristics for the theory to
be developed in §4. I show how certain kinds of graphs, called semantic graphs,
can be used to decompose sentences and assign them semantic values, exemplify-
ing this process with non-paradoxical sentences (§3.1), liar-like sentences (§3.2),
truth-teller-like sentences (§3.3), and revenge sentences (§3.4).

My starting point is a very basic question: what information is needed to eval-
uate a sentence ϕ? The answer depends on the logical form of ϕ. If ϕ is an atomic
sentence of the base (i.e. truth-predicate-free) language, its value is determined
by the selected model of the base language. For instance, if ϕ is P (t0, . . . , tn),
its value is determined by whether the individuals denoted by t0, . . . , tn (in the
selected model) are in the extension of the predicate P (x0, . . . , xn) (in the se-
lected model). If ϕ is a logically complex sentence, compositionality dictates
that the value of ϕ depend on the immediate sub-sentences of ϕ. For instance,
if ϕ is ¬ψ, the value of ϕ depends on the value of ψ; if ϕ is ψ ∧χ, the value of ϕ
depends on the values of ψ and χ, and so on. näıveté suggests how to extend
this compositional picture to the truth predicate: the value of Tr(pψq) depends
on the value of ψ, even though ψ is not a subsentence of Tr(pψq).14

14Versions of the approach to evaluation just sketched can be found, e.g., in Kripke [1975],
Yablo [1982], and Leitgeb [2005] amongst others.
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With this informal picture of semantic value assignments in mind, I look at
the main kinds of non-paradoxical or paradoxical sentences discussed above.

3.1. Non-paradoxical sentences. Consider the sentence Tr(pt = tq). In
order to assign it a value, one needs the value of t = t. I represent this process
via a downward arrow, in a suitable labelled graph:

Tr(pt = tq)

t = t

Figure 1. Graph for Tr(pt = tq)

The semantic value of t = t is unproblematic: being an atomic formula of the
base language, its semantic value is determined by the selected model of the base
language, and it is clearly 1. Once t = t is assigned value 1, näıveté suggests
to assign the same value to Tr(pt = tq).

This process easily handles more complex sentences. Consider Tr(pt = tq) ↔
t = t, that is (Tr(pt = tq) → t = t) ∧ (t = t → Tr(pt = tq)). Decomposing it
iteratively, following the intuition outlined above, the following graph obtains:

(Tr(pt = tq)→ t = t) ∧ (t = t→ Tr(pt = tq))

t = t→ Tr(pt = tq)

Tr(pt = tq)

t = t

t = t

Tr(pt = tq)→ t = t

t = tTr(pt = tq)

t = t

Figure 2. Graph for Tr(pt = tq)↔ t = t

t = t cannot be decomposed any further, so the graph-formation process stops,
and values can be assigned. First, t = t has value 1. Since t = t has value 1,
also Tr(pt = tq) has value 1. But then also (Tr(pt = tq) → t = t) and (t = t →
Tr(pt = tq)) have value 1, because they are conditionals whose antecedents and
consequents have value 1. Finally, (Tr(pt = tq)→ t = t)∧ (t = t→ Tr(pt = tq)),
a conjunction whose conjuncts have value 1, has value 1 as well.

3.2. Liar-like sentences. Consider now a sentence λ identical to ¬Tr(pλq).
It is a negated formula, so in order to evaluate it one should look at Tr(pλq):
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¬Tr(pλq)

Tr(pλq)

And in order to evaluate Tr(pλq), one should evaluate the sentence resulting
by disquotationally eliminating Tr from Tr(pλq). But this sentence is ¬Tr(pλq)
itself. A loop results:

¬Tr(pλq)

Tr(pλq)

Figure 3. Graph for the liar sentence ¬Tr(pλq)

Recognisably, the search for the information that is required to evaluate ¬Tr(pλq)
is finished: in order to evaluate ¬Tr(pλq) one needs the value of Tr(pλq), and
in order to evaluate the latter one needs the value of the former. Can this
information be used to assign values?

In fact it can. Even if the above graph does not bottom out in sentences of
the base language, it provides information about the relation between ¬Tr(pλq)
and Tr(pλq) that can lead to a value assignment once a semantics for the logical
vocabulary has been selected. Suppose we adopt the following semantics for
negation:15

e(¬ϕ) = 1− e(ϕ)

The above graph, in combination with the above clause for negation, indicates
that a constraint should be placed on the possible values of ¬Tr(pλq), which can
be written as an equation:

the value of ¬Tr(pλq) = 1− the value of Tr(pλq)

Moreover, the informal method followed so far employs the following evaluation
clause for truth attributions (which derives from näıveté):

e(Tr(pϕq)) = e(ϕ)

and this also suggests a constraint on the possible values of Tr(pλq), that is the
following equation:

the value of Tr(pλq) = the value of ¬Tr(pλq)

All the relational information provided by the selected semantics and graph 3
has been associated with the sentences appearing in the graph. Such information
determines an equation system which expresses simultaneous constraints on the

15Where e is an evaluation whose range includes 1, and on which subtraction is well-defined.
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possible values of ¬Tr(pλq) and Tr(pλq):

x = 1− y
y = x

It can therefore be checked whether such constraints can be univocally satisfied,
i.e. whether the system has a unique solution. In this case, yes: x = 1/2 = y (if
1/2 is in the chosen value space).16

It is easy to see that the analysis of Curry’s or McGee’s sentences yields similar
outcomes. Consider a Curry sentence κ identical to Tr(pκq) → ⊥. Its graph is
as follows:

Tr(pκq)→ ⊥

⊥Tr(pκq)

Figure 4. Graph for the Curry sentence Tr(pκq)→ ⊥

Clearly ⊥ is assigned value 0, while the remaining two sentences in graph 4 yield
the following system (interpreting → as a material conditional):

the value of Tr(pκq)→ ⊥ = max[1− the value of Tr(pκq),0]

value of Tr(pκq) = the value of Tr(pκq)→ ⊥
Re-writing it with variables we obtain the following system

x = min[1− y,0]

y = x

which has a unique solution, again x = 1/2 = y.
Finally, consider a McGee sentence µ identical to ¬∀nTr(pg. (n, pµq)q), where

g. is the (object-linguistic term representing the primitive recursive) function g
such that:

g(n, ϕ) := Tr(pTr(p. . .Tr(pϕq)q)q)

with n nested truth predicates prefixed to ϕ.17 McGee sentences are, essentially,
infinitary liars (more precisely, ω-liars). µ yields the following graph:

16The idea of analysing semantic paradoxes via equations is already found in Wen [2001].
Walicki [2009], Dyrkolbotn and Walicki [2014], Walicki [2017] combined this idea with a graph-

theoretical analysis of sentences that employs a pointer structure closely related to the one
developed by Gaifman [1988], [1992], [2000]. Their approach differs from the one presented

here in several respects. For instance, the Walicki-Dyrkolbotn approach gives rise to a non-
compositional semantics, while the approach I develop here yields a compositional semantics
(see §4.6). The two approaches make also a very different use of equations. I do not compare
the two approaches any further in the interest of space.

17See McGee [1985]. I follow the formulation in Halbach [2011] (pp. 157 and following).
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¬∀nTr(pg. (n, pµq)q)

∀nTr(pg. (n, pµq)q)

· · ·

Tr(p· · ·Tr(pµq) · · · q)

...

...

Tr(pµq)

· · ·

Tr(pTr(pµq)q)

Tr(pµq)

Tr(pµq)

...

...

Figure 5. Graph for the McGee sentence µ

Once again, only relational information is available. Therefore, one can assign
equations to the (infinitely many) sentences appearing in graph 5, according
to the evaluation clauses associated with their logical form. The graph yields a
single infinitary system, which intuitively works as follows: sentences of the form
Tr(p· · ·Tr(pµq) · · · q) are required to have all the same value, ∀nTr(pg. (n, pµq)q)
is required to be the infimum of their values and to have the same value of its
negation ¬∀nTr(pg. (n, pµq)q). Again, the only solution of the system is easily

seen to be 1/2 for every sentence appearing in graph 5.

3.3. Truth-teller-like sentences. In the case of λ, the relational informa-
tion codified by the equations was turned into a ‘standard’, numerical value
assignment by solving the resulting system. But this is not always possible.
Consider the truth-teller sentence τ identical to Tr(pτq). Here is the graph as-
sociated with it:

Tr(pτq)

Figure 6. Graph for the truth-teller sentence Tr(pτq)

As in the liar case, the only semantic information that can be extracted from
the graph and the evaluation clause for Tr is relational, i.e. equational. Here is
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the equation system associated with Tr(pτq):

value of Tr(pτq) = value of Tr(pτq).

But this system has more than one solution. Indeed, every element of any value
space is a solution. Therefore, in this case it is not possible to proceed from
the relational information determined by graph 6 to an assignment of standard
numerical values. In order to encode and express this peculiar feature of τ , i.e.
that it can be assigned any ‘standard’ semantic value available, one can introduce
special semantic values. Here, I propose to assign the equation system itself to
τ , as its semantic value. Equations are quite informative, as far as the semantics
of τ is concerned: the system ‘expresses’ that the only constraints on τ ’s possible
values is that they have to be identical to themselves, and therefore that τ is
compatible with any assignment of standard semantic values.

3.4. Revenge sentences. An opposite scenario is given in the case of re-
venge sentences: their graph determines an equation system with no solutions
(rather than more than one solution). Consider a language featuring a unary
operator D, whose evaluation is governed by the following clause:

e(D(ϕ)) = 1−min(1, 2(1− e(ϕ)))

and assume the following numerical value space V = {1, 1/2,0}.18 Consider a
revenge liar sentence λd identical to ¬D(Tr(pλdq)), which yields the following
graph:

¬D(Tr(pλdq))

D(Tr(pλdq))

Tr(pλdq)

Figure 7. Graph for the revenge liar sentence ¬D(Tr(pλdq))

Here is the associated equation system:19

x = 1− y
y = 1−min(1, 2(1− z))
z = x

This system has no solution in V L = {1, 1/2,0}, although it has a unique solution
in a larger numerical value space: x = 2/3 = z and y = 1/3. Also in this case,
no ‘standard’ value is determined by the equation system: therefore, I assign to
revenge sentences their very equation systems as semantic values.

18This evaluation clause captures the intended semantics of D on the selected value space,
i.e. the value of D(ϕ) is 1 if the value of ϕ is 1, and 0 otherwise.

19Where x stands for the value of ¬D(Tr(pλdq)), y for the value of D(Tr(pλdq)), and z for

the value of Tr(pλdq).
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The idea behind assigning equations as semantic values is that they are ‘as
close as possible’ to numerical values. Equations exhibit all the semantic relations
determined by truth-teller-like and revenge sentences. In turn, the fact that
such semantic relations give rise to equation systems with too many or too few
solutions (in the selected value spaces) accounts for the fact that truth-teller-like
and revenge sentences admit of too many or too few interpretations via ‘standard’
semantic values. In conclusion, directly employing equations as semantic values
makes it possible to represent in one model the semantic behaviour of truth-
teller-like and revenge sentences.20

This completes the informal picture of the possible outcomes of the evalua-
tion method I propose here, and the resulting picture matches the taxonomy
of sentences outlined in §2.4. To begin with, a sentence is either assigned a
numerical semantic value (e.g. Tr(pt = tq)), or an equational value (liar-like,
truth-teller-like, and revenge sentences). If equations are assigned, the corre-
sponding systems can have a unique solutions, in which case standard semantic
values replace equations (this happens with liar-like sentences). Alternatively,
equation systems can either have more than one solution or no solution, in which
case equations are kept as semantic values (this happens with truth-teller-like
sentences or revenge sentences, respectively). In the next section, I develop a
proper semantic theory of truth and paradox, namely an evaluation function (for
sufficiently expressive languages) that systematically yields the classification and
the semantic value assignments just outlined.

3.5. Intermezzo: loops and non-well-foundedness. The evaluation pro-
cedure outlined here implicitly yields a rather non-standard answer to the ques-
tion of whether paradoxical sentences are non-well-founded. The informal eval-
uation procedure described so far pictures sentences such as λ, τ and relevantly
similar ones as well-founded, in that their decomposition (and the search for
information leading to an evaluation) does not lead into an infinite regress. This
is because their structure is modelled via graphs rather than trees, and loops are
admissible in the former but not in the latter. Therefore, λ are τ turn out to be
well-founded in the more precise sense that their graphs do not have infinitely
descending paths. More customarily, λ and τ are decomposed as follows:21

¬Tr(pλq)

Tr(pλq)

¬Tr(pλq)

...

Tr(pτq)

Tr(pτq)

Tr(pτq)

...

20For further discussion, see §4.7.
21See e.g. Yablo [1985] (p. 130). For analyses of semantic paradoxes that employ graphs

(and therefore feature loops as well), see e.g. Barwise and Etchemendy [1987], Gaifman [1988],

[1992], [2000], Schlenker [2007], Walicki [2009], Rabern, Rabern, and Macauley [2013], Cook
[2014], Beringer and Schindler [2017].
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In the present approach, λ and τ are decomposed via loops, that ‘end’, so to
speak, the infinitely descending branches of their tree-theoretical representation
(see Figures 3 and 6). Non-well-founded graphs, that is semantic graphs with
infinitely descending paths, can be easily obtained if one introduces a satisfaction
predicate into the language, or suitable recursive functions that make it definable
in terms of truth.22 Then, Visser-Yablo sentences become formalisable, and give
rise to non-well-founded graphs. Visser-Yablo sentences ascribe truth, untruth,
or some other property to a collection of sentences which in turn ascribe truth,
untruth, or some other property to another collection of sentences, and so on,
without end. Having a satisfaction predicate (whether primitive or definable) in
the language does not alter the evaluation procedure described here.

§4. A unified theory of truth and paradox. The plan of the section is
as follows. In §§4.1-4.2, I introduce some graph-theoretical notions and formally
define semantic graphs. In §4.3, I fix a semantics for the logical vocabulary,
and in §4.4 I provide a semantic construction to assign semantic values to the
nodes of semantic graphs. In §4.5, I prove an isomorphism result about semantic
graphs, and in §4.6 I use this result to construct the evaluation for truth and
paradox that I propose here, called the canonical evaluation. In §4.7, I outline
some possible variations on the canonical evaluation and some possible further
developments.

4.1. Technical preliminaries. Consider a first-order language LTr with iden-
tity and a primitive predicate Tr(x) for ‘x is true’. L is the Tr-free fragment of
LTr. LTr should be rich enough to encode facts about its own syntax, as in
the case of the language of arithmetic. Therefore, I require that LTr satisfy the
following requirements:

- It must be possible to define in LTr a coding function p q such that for every
LTr-formula ϕ, pϕq is a closed LTr-term. Informally, pϕq can be considered
as a name of ϕ.

- For every open LTr-formula ϕ(x) there is a term tϕ such that the term
pϕ(tϕ/x)q is tϕ, where ϕ(tϕ/x) results from replacing every occurrence of
x with tϕ in ϕ.

- LTr has at least one ω-model, i.e. a model isomorphic to the standard model
of natural numbers.23

The primitive logical constants of LTr are ¬,∧,→,∀ (∨,↔,∃ are defined as
usual). CTerLTr

, SentLTr
, ForLTr

indicate the sets of (codes of) closed terms,
sentences, and formulae of LTr, respectively. Lowercase Latin letters are used as
meta-variables for closed terms of LTr (and open terms, if specifically stated).
Lowercase Greek letters are used as meta-variables for sentences of LTr (and
formulae, if specifically stated). ‘ϕ ∈ LTr’ is a shorthand for ‘ϕ ∈ SentLTr

’ and
‘s.t.’ is a shorthand for ‘such that’. Analogous conventions are in place for the
sub-language L

22See e.g. Cook [2014] (p. 22 and ff.).
23Since an ω-model is also acceptable in the sense of Moschovakis [1974] (p. 22), this

requirement ensures that it is possible to add a satisfaction predicate to L.
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I now introduce some basic graph-theoretical notions.24

Definition 4.1. A directed graph is a pair 〈N, S〉, where N is a non-empty set
whose elements are called nodes, and S is a set of ordered pairs of nodes, called
edges. v and w, possibly with indices, range over nodes. For any directed graph
〈N, S〉, define the following notions:

- A directed graph 〈N†, S†〉 is a sub-graph of 〈N, S〉, in symbols 〈N†, S†〉 ⊆g
〈N, S〉, if N† ⊆ N and S† ⊆ S.

- A standard path is a finite, non-empty tuple of alternating nodes and edges,
that begins and ends with nodes, and where every edge connects the two
nodes that precede and follow it. More intuitively, it is an object of the
following form:〈

v1, 〈v1, v2〉, v2, 〈v2, v3〉 . . . , vn−2, 〈vn−2, vn−1〉, vn−1, 〈vn−1, vn〉, vn
〉

A simple path, or just a path, is the tuple of edges P ⊆ S resulting from
removing the nodes in a standard path.25 More intuitively, it is an object
of the following form:〈

〈v1, v2〉, 〈v2, v3〉 . . . , 〈vn−2, vn−1〉, 〈vn−1, vn〉
〉

A path P ⊆ S is from v to w if v is the first element of its first edge and w

is the second element of its last edge. A path P ⊆ S is maximal if there is
no path P′ ⊆ S s.t. P 6= P′ and P ⊆ P′.

- For a set of edges P ⊆ S, let Nodes(P) denote the set of nodes in P. A path
P ⊆ S is a loop if, for every v ∈ Nodes(P), there is a path P′ ⊆ S from v to
v s.t. Nodes(P′) = Nodes(P) where no node except v occurs twice.26

- A path P is straight if no subpath of P is a loop. For P ⊆ S a straight path
from w to v, the set

Predw(v) := Nodes(P minus its last pair)

is the set of the predecessors of v from w. If v1 ∈ Predw(v), then v is a
successor of v1 from w. If 〈v1, v〉 ∈ P, then v is an immediate successor of
v1, and v1 is an immediate predecessor of v.27 I-Precw(v) and I-Succw(v)
denote, respectively, the immediate predecessor and the immediate succes-
sor(s) of v from w.

- A node v ∈ N is a dead end if there is no node w ∈ N s.t. 〈v, w〉 ∈ S.

4.2. Semantic graphs. For every ϕ ∈ LTr, I define one directed, labelled,
rooted graph 〈Nϕ, Sϕ〉 and its labelling function Lϕ, i.e. the function that assign
LTr-formulae to the nodes of 〈Nϕ, Sϕ〉. In order to define semantic graphs, I
start from the definition of three inductive jumps, respectively corresponding
to the operations of extending an arbitrary rooted graph with the results of

24For comprehensive surveys of graph-theoretical notions and results, see Bondy and Murty

[2008], Diestel [2010].
25I give, and use, the simplified notion of path in order to shorten the proof of some results

below, but they could be proven also with the standard definition of path in place.
26What I call ‘loop’ is more commonly referred to as ‘simple cycle’ in graph theory.
27In what follows, I only consider rooted graphs, with the parameter w always being the root

node.
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decomposing sentences whose main operator is unary, binary, or the universal
quantifier.

Definition 4.2. For every directed graph 〈N, S〉 labelled with LTr-sentences
and a root note r, and for every function L : Nϕ 7→ SentLTr

(i.e. every labelling
function), define the following sets by simultaneous induction:28

(I) vi ∈ NU, 〈v, vi〉 ∈ SU and 〈vi, σ〉 ∈ LU if:
(1) vi ∈ N, 〈v, vi〉 ∈ S and 〈vi, σ〉 ∈ L; or
(2) v ∈ N, L(v) = ¬ψ, and

(2.1) for every w ∈ Predr(v), L(w) 6= ψ, and σ = ψ, or
(2.L) for some w ∈ Predr(v), L(w) = ψ, and vi = w; or

(3) v ∈ N, L(v) = Tr(t), t denotes the code of an LTr-sentence ψ, and
(3.1) for every w ∈ Predr(v), L(w) 6= ψ, and σ = ψ, or
(3.L) for some w ∈ Predr(v), L(w) = ψ, and vi = w.

(II) vi, vj ∈ NB, 〈v, vi〉, 〈v, vj〉 ∈ SB and 〈vi, σ0〉, 〈vj, σ1〉 ∈ LB if:
(4) vi, vj ∈ N, 〈v, vi〉, 〈v, vj〉 ∈ S and 〈vi, σ0〉, 〈vj, σ1〉 ∈ L; or
(5) v ∈ N, L(v) = ψ ◦ χ, and

(5.1) for every w ∈ Predr(v), L(w) 6= ψ and L(w) 6= χ, σ0 = ψ and σ1 = χ;
or

(5.L.a) for every w ∈ Predr(v), L(w) 6= ψ, and for a w0 ∈ Predr(v), L(w0) =
χ, σ0 = ψ, w0 = vj, and σ1 = χ; or

(5.L.b) for every w ∈ Predr(v), L(w) 6= χ, and for a w0 ∈ Predr(v), L(w0) =
ψ, σ0 = χ, w0 = vj, and σ1 = ψ; or

(5.L.c) for a w0 ∈ Predr(v), L(w0) = ψ, for a w1 ∈ Predr(v), L(w1) = χ,
w0 = vi, w1 = vj, σ0 = ψ, and σ1 = χ.

(III) vn ∈ NI, 〈v, vn〉 ∈ SI and 〈vn, σn〉 ∈ LI if:
(6) vn ∈ N, 〈v, vn〉 ∈ S and 〈vn, σn〉 ∈ L if; or
(7) v ∈ N, L(v) = ∀xχ(x), and for every n ∈ ω (letting tx be the x-th term

in a non-repeating enumeration of CTerLTr
)

(7.1) for every w ∈ Predr(v), L(w) 6= χ(tn), and σn = χ(tn); or
(7.L) for some w0 ∈ Predr(v), L(w0) = χ(tn), and σn = χ(tn).

Call ‘looping clauses’ the clauses with an ‘L’ in their label. Definition 4.2 specifies
inductively the process of adding edges and labelled nodes to a given graph. For
instance, if 〈N, S〉 has a node v labelled with ¬ψ, clause (I)(2) yields a super-
graph of that also contains a node vi labelled with ψ and the new edge 〈v, vi〉
(if no loop arises), or that contains the new edge 〈v, w0〉 (if a loop arises with a
predecessor w0 of v in 〈N, S〉 that is labelled with ψ).

In order to define semantic graphs, one just needs to put together the clauses
of Definition 4.2. For every ϕ ∈ LTr, the semantic graph 〈Nϕ, Sϕ〉 and its labelling
function Lϕ are the results of applying the clauses of Definition 4.2 to a graph
only consisting of a node r (the root), labelled with ϕ, until a fixed point is
reached.

28The labels U, B, and I are for a unary, binary, and infinitary decomposition of sentences
respectively.
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Definition 4.3. For every ϕ ∈ LTr, the semantic graph generated by ϕ,
〈Nϕ, Sϕ〉, and its labelling function, Lϕ : Nϕ 7→ SentLTr

, are the least fixed points
of the following simultaneous inductive definition:

- At stage 0, put:

N0
ϕ = {r}; S0

ϕ = ∅; L0
ϕ = {〈r, ϕ〉}.

- For an arbitrary successor stage α+ 1, put:

Nα+1
ϕ = (Nαϕ)U ∪ (Nαϕ)B ∪ (Nαϕ)I; Sα+1

ϕ = (Sαϕ)U ∪ (Sαϕ)B ∪ (Sαϕ)I;

Lα+1
ϕ = (Lαϕ)U ∪ (Lαϕ)B ∪ (Lαϕ)I.

- For δ a limit ordinal, put:

Nδϕ =
⋃
α<δ

Nαϕ; Sδϕ =
⋃
α<δ

Sαϕ; Lδϕ =
⋃
α<δ

Lαϕ.

Finally, put (where Ord is the class of all ordinals):

Nϕ =
⋃

α∈Ord

Nαϕ; Sϕ =
⋃

α∈Ord

Sαϕ; Lϕ =
⋃

α∈Ord

Lαϕ.

The above definition simply regiments and generalises the informal process that
was followed when building semantic graphs in §3.1-3.4. The graphs that result
from Definition 4.3 are exactly of the kind employed in §3.1-3.4. The next results
are immediate from Definitions 4.2-4.3: they ensure that, for every ϕ ∈ LTr, the
sets Nϕ, Sϕ, and Lϕ are positive elementary in N0

ϕ, S0
ϕ, and L0

ϕ, and establish their
existence and uniqueness.

Lemma 4.4. Let Predϕ(v) denote the set of predecessors of v from the root
note of the semantic graph generated by ϕ. For every ϕ ∈ LTr and every v ∈ Nϕ,
the set Predϕ(v) is finite.

Corollary 4.5. For every ϕ ∈ LTr and v ∈ Nϕ, there are at most finitely
many vi ∈ Nϕ s.t. vi is a predecessor of v and 〈v, vi〉 ∈ Sϕ.

Corollary 4.6. For every ϕ ∈ LTr, there is exactly one semantic graph
〈Nϕ, Sϕ〉 and exactly one labelling function Lϕ.

4.3. A semantics for the logical vocabulary. The taxonomy of ‘paradox-
ical’ sentences and the characterisation of their semantic behaviour to be offered
here remains structurally unaltered across every compositional semantics for the
logical vocabulary of LTr. However, in order to give a semantic theory of truth
and paradox proper, a semantics for the logical vocabulary must be selected.
Therefore, for the sake of presentation, I adopt  Lukasiewicz logics.29 This choice
is suggested by the fact that revenge paradoxes can be already constructed in
theories of näıve truth interpreted via  Lukasiewicz semantics, without adding
further logical or semantic vocabulary. In fact,  Lukasiewicz logic is incompatible
with näıve truth, unless revenge paradoxes are blocked in some way.30 And this is

29For more on  Lukasiewicz logics and semantics, see Gottwald [2001].
30See Restall [1992], Hájek, Paris, and Shepherdson [2000]. Continuum-valued  Lukasiewicz

logic is merely ω-inconsistent with näıve truth, but since I am assuming some ω-model of the

base language, ω-inconsistency amounts to a proper inconsistency for the models I consider.
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exactly what happens in the proposed semantics, where revenge-theoretical sen-
tences are assigned equations as values, since they cannot be assigned numerical
values (see §2.3 and p. 12).

A  Lukasiewicz numerical value space V L is either {0, 1/n+1, . . . , n/n+1, 1} (for
n an odd positive integer), or the set of reals in the unit interval [0,1]. I use
the boldface letters i, j,k to range over elements of V L. Here are the  Lukasiewicz
evaluation clauses:

value of ¬ψ = 1− value of ψ

value of ψ ∧ χ = min[value of ψ, value of χ]

value of ψ → χ = min[1, (1− value of ψ + value of χ)]

value of ∀xψ(x) = inf[value of ψ(tn) |n ∈ ω]

The  Lukasiewicz clauses for ¬, ∧, and ∀ generalise the clauses of partial evalu-
ations (see p. 4) to larger value spaces, while → can be used to express a com-
parison between the values of antecedent and consequent.31 The above clauses
remain constant for any choice of V L.

I now define a language L L for every numerical value space V L, in order to
represent the equations definable from the clauses of  Lukasiewicz semantics and
näıve truth.

Definition 4.7. The language L L is composed of the following elements:

- Countably infinitely many fresh variables VarL L
:= {uϕ1

, . . . , uϕn
, . . . },

where ϕn is the n-th element of a non-repeating enumeration of SentLTr
.

- A set of fresh constants ConL L
that contains exactly one term for each

element of the numerical value space V L. I use the same meta-variables to
range over both elements of V L and elements of ConL L

.32

- Let s1, . . . , si, sj , sm, sn, . . . be L L-terms. Then, id(sm) (the identity func-
tion), sm − sn, min(sm, sn), min[si, (sj − sm + sn)], inf{s1, . . . , sm, sn, . . . }
are L L-terms (and nothing else is). Let hi range over the term-forming
functions of L L.

- Let sm, sn be L L-terms. Then sm = L sn is an atomic formula of L L (and
nothing else is). Denote this set with E L, and call its element  Lukasiewicz
equations. I use the boldface letter e, possibly with indices, to range over
elements of E L, and E, possibly with indices, to range over elements of
P(E L) (i.e. subsets of E L).

Now that I have formally constructed semantic graphs and defined the seman-
tic values, both numerical and equational, to be employed in the semantics, I
turn to the assignment of semantic values to nodes in semantic graphs, making
the process described in §3 formally precise.

31For the use and relevance of the  Lukasiewicz conditional in theories of truth, see Rossi

[2016].
32ConL L

in effect contains the elements of V L to be used as constants in solving equation
systems definable in L L. I do not put ConL L

= V L to avoid confusion in the definition of L L,

although the two sets are identified in practice. Notice that, if V L = [0,1], then ConL L
is

uncountable, and this makes the language L L itself uncountable. For simplicity, however, I

adopt a countable notation for L L, since only countably many different values are assigned in

the semantics to be developed, as there are only countably many LTr-sentences.
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4.4. Evaluations of nodes in semantic graphs. I start off by distinguish-
ing some kinds of nodes in semantic graphs.

Definition 4.8. For every ϕ ∈ LTr, a node v in Nϕ is:

- a dead end, if there is no edge 〈v, w〉 ∈ Sϕ (no arrow departs from v).
D-Endsϕ denotes the set of dead ends of a semantic graph 〈Nϕ, Sϕ〉.

- a looping end, if there are only edges 〈v, w〉 ∈ Sϕ where w is a predecessor of
v (only looping, upwards arrows depart from v). L-Endsϕ denotes the set
of looping ends of a semantic graph 〈Nϕ, Sϕ〉.

- a simple point if it is not an end and it is not in any loop. S-Pointsϕ
denotes the set of simple points of a semantic graph 〈Nϕ, Sϕ〉.

- a looping point if it is not an end, it is in a loop, and its immediate predeces-
sor is in a loop. L-Pointsϕ denotes the set of looping points of a semantic
graph 〈Nϕ, Sϕ〉.

- a loop top it is in a loop and it is the root or its immediate predecessor is
a simple point. L-Topsϕ denotes the set of loop tops of a semantic graph

〈Nϕ, Sϕ〉. If v is in a loop, w is the loop top of v if w is the only loop top in
Predϕ(v) and there is a path P from w to v such that w is the only loop top
in P.

Lemma 4.9. For every ϕ ∈ LTr, every looping end or looping point in Nϕ has
exactly one loop top in Nϕ.

Using the above classification, I now show how to assign values to nodes in
semantic graphs. Values are assigned in a revision procedure, that replaces
(whenever possible) equational values with numerical values. The assignment of
equational and numerical values, in turn, is given by two inductive definitions.
More specifically, the first inductive construction assigns single equational values,
while the second one assigns numerical values (whenever possible) and sets of
equations.33

I begin with the first inductive construction. It is a ‘top-bot’ construction,
that is it starts assigning an equational value to the root of a graph, and then
moves on to assign equations to its successors. Equations are assigned according
to the logical form of each node.

Definition 4.10. Let M be an ω-model of L. For every ϕ ∈ LTr and A ⊆
(Nϕ × E L), 〈x, y〉 ∈ A+

ϕ if:

x = rϕ or x ∈ Nϕ and there is a w ∈ I-Precϕ(x) and an e ∈ E L s.t. 〈w, e〉 ∈ A
and:

1. Lϕ(x) = P (t1, . . . , tn), P (t1, . . . , tn) is an atomic L-sentence,M |= P (t1, . . . , tn),
and y = (uψ = L 1); or

2. Lϕ(x) = P (t1, . . . , tn), P (t1, . . . , tn) is an atomic L-sentence and M 6|=
P (t1, . . . , tn), or Lϕ(x) = Tr(t) and t does not denote the code of a LTr-
sentence in M, and y = (uψ = L 0); or

3. Lϕ(x) = ¬ψ, and y = (u¬ψ = L 1− uψ); or

33I am grateful to Emmanuel Chemla, whose observations suggested to employ two distinct
inductive constructions, simplifying the previous version of the semantics.
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4. Lϕ(x) = ψ ∧ χ, and y = (uψ∧χ = L min(uϕ,uψ)); or
5. Lϕ(x) = ψ → χ, and y = (uψ→χ = L min[1, (1− uϕ + uψ)]); or
6. Lϕ(x) = ∀xχ(x), and y = (u∀xχ(x) = L inf{utk | k ∈ ω}); or
7. Lϕ(x) = Tr(pψq), and y = (uTr(pψq) = L uψ).

Lemma 4.11. For every ϕ ∈ LTr and every A ⊆ (Nϕ × E L), the definition of
A+
ϕ is positive elementary in the following sets: E L, 〈Sϕ, Nϕ〉, Lϕ, VarL L

, ConL L
,

{Im-Precϕ(v) | v ∈ Nϕ}.

I now re-write Definition 4.10 via an operator on subsets of (Nϕ×E L), which will
be useful later.

Definition 4.12. For every ϕ ∈ LTr, let Qϕ indicate the sets in which the

definition of A+
ϕ is positive elementary, as per Lemma 4.11. For ϕ ∈ LTr and

S ⊆ (Nϕ × E L), let ζϕ(x, y, S,Qϕ) be the right-hand side of Definition 4.10. Let
Φϕ : P(Nϕ × E L) 7−→ P(Nϕ × E L) be the operator defined as:

Φϕ(S) := {〈x, y〉 ∈ Nϕ × E L | ζϕ(x, y, S,Qϕ)}.

Put, for S ⊆ Nϕ × E L and γ limit:

Φα+1
ϕ (S) := Φ(Φαϕ(S)), Φγϕ(S) :=

⋃
α<γ

Φαϕ(S)

Lemma 4.13. For every ϕ ∈ LTr, the operator Φϕ is monotone.

Let IΦϕ
denote the smallest fixed point of Φϕ, that is:

IΦϕ :=
⋃

α∈Ord

Φαϕ(∅).

I now turn to the second inductive construction, which incorporates IΦϕ
.

Definition 4.14. Let M be an ω-model of L. For every ϕ ∈ LTr and B ⊆
Nϕ × (V L ∪ P(E L)), 〈x, y〉 ∈ B∗ϕ if:

1. 〈x, y〉 ∈ B; or
2. x ∈ Nϕ, Lϕ(x) = P (t1, . . . , tn), P (t1, . . . , tn) is an atomic L-sentence, M |=
P (t1, . . . , tn), and y = 1; or

3. x ∈ Nϕ, Lϕ(x) = P (t1, . . . , tn), P (t1, . . . , tn) is an atomic L-sentence and
M 6|= P (t1, . . . , tn), or Lϕ(x) = Tr(t) and t does not denote the code of a
LTr-sentence in M, and y = 0; or

4. x ∈ Nϕ, Lϕ(x) = ψ ∧χ or Lϕ(x) = ∀xχ(x) and there is a vm ∈ I-Succϕ(x) s.t.
〈vm,0〉 ∈ B, and y = 0; or

5. x ∈ Nϕ, Lϕ(x) = ψ → χ and there is a vm ∈ I-Succϕ(x) s.t. Lϕ(vm) = ψ and
〈vm,0〉 ∈ B, or there is a vn ∈ I-Succϕ(x) s.t. Lϕ(vn) = χ and 〈vn,1〉 ∈ B,
and y = 1; or

6. x ∈ Nϕ, x ∈ S-Pointsϕ, Lϕ(x) = ¬ψ, and there is a vm ∈ I-Succϕ(x), and a
j ∈ V L s.t. Lϕ(vm) = ψ, 〈vm, j〉 ∈ B, and y = 1− j; or

7. x ∈ Nϕ, x ∈ S-Pointsϕ, Lϕ(x) = ψ ∧ χ, and there are vm, vn ∈ I-Succϕ(x)
and j,k ∈ V L s.t. 〈vm, j〉 ∈ B and 〈vn,k〉 ∈ B, and y = min(j,k); or
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8. x ∈ Nϕ, x ∈ S-Pointsϕ, Lϕ(x) = ψ → χ, and there are vm, vn ∈ I-Succϕ(x)
s.t. Lϕ(vm) = ψ and Lϕ(vn) = χ, and there are j,k ∈ V L s.t. 〈vm, j〉 ∈ B and
〈vn,k〉 ∈ B, and y = min[1, (1− j + k)]; or

9. x ∈ Nϕ, x ∈ S-Pointsϕ, Lϕ(x) = ∀xχ(x), and for every m ∈ ω there is a
vm ∈ I-Succϕ(x) and a im ∈ V L s.t. Lϕ(vm) = χ(tm), 〈vm, im〉 ∈ B, and
y = inf{im ∈ V L | 〈vm, im〉 ∈ B and vm ∈ I-Succϕ(x)}; or

10. x ∈ Nϕ, x ∈ S-Pointsϕ, Lϕ(x) = Tr(pψq), and there is a vm ∈ I-Succϕ(x)
and a j ∈ V L s.t. 〈vm, j〉 ∈ B, and y = j; or

11. x ∈ Nϕ, x ∈ L-Topsϕ, and y is the set of e ∈ E L s.t. 〈w, e〉 ∈ IΦϕ and either
w = x or x is the loop top of w; or

12. x ∈ Nϕ, x ∈ L-Pointsϕ or x ∈ L-Endsϕ, there is a E ∈ P(E L) s.t. 〈v,E〉 ∈ B
and v is the loop top of x, and y is the set of e ∈ E L s.t. 〈w, e〉 ∈ IΦϕ

and w

and x have the same loop top; or
13. x ∈ Nϕ, x ∈ S-Pointsϕ and there is a v ∈ I-Succϕ(x) and E ∈ P(E L) s.t.
〈v,E〉 ∈ B, and y is the union of the set of e ∈ E L s.t. 〈x, e〉 ∈ IΦϕ and the
set of e ∈ E L s.t. 〈v, e〉 ∈ IΦϕ ; or

14. x ∈ Nϕ, x ∈ L-Topsϕ, the equation system given by the set {e ∈ E L | 〈w, e〉 ∈
IΦϕ

and either w = x or x is the loop top of w} has a unique solution in V L,
and y is the solution for x in V L; or

15. x ∈ Nϕ, x ∈ L-Pointsϕ or x ∈ L-Endsϕ, there is a k ∈ V L s.t. 〈v,k〉 ∈ B and v

is the loop top of x, the equation system given by the set {e ∈ E L | 〈w, e〉 ∈ IΦϕ

and w and x have the same loop top} has a unique solution in V L, and y is
the solution for x in V L; or

Definition 4.14 deals with all the possible cases in which a numerical value or
an equation system is assigned to a node, and is therefore somewhat intricate.
However, it merely regiments the heuristics described in §3, and its working is
actually quite simple. First, dead ends are assigned either value 1 or 0, ac-
cording to the selected ω-model of the base language (items 2 and 3). Second,
conjunctions with a 0-valued conjunct, universal quantifications with a 0-valued
instance, and conditionals with a 0-valued antecedent or a 1-valued consequent
are assigned a numerical value (items 4 and 5). Third, simple points whose
immediate successors are assigned a numerical value are also assigned a numer-
ical value, compositionally (items 6-10). Fourth, equation systems are assigned
starting from loop tops, employing the equations assigned in the smallest fixed
point of Φϕ, i.e. IΦϕ

(items 11-13). Finally, equation systems are solved and
numerical values are assigned whenever possible (items 14 and 15).

Lemma 4.15. For every ϕ ∈ LTr and B ⊆ Nϕ × (V L ∪ P(E L)), the defini-
tion of B∗ϕ is positive elementary in the following sets: V L, E L, 〈Sϕ, Nϕ〉, Lϕ,
VarL L

, ConL L
, L-Endsϕ, S-Pointsϕ, L-Pointsϕ, L-Topsϕ, {I-Succϕ(v) | v ∈ Nϕ},

{Predϕ(v) | v ∈ Nϕ}, {〈v, N†〉 ∈ Nϕ×P(Nϕ) | v is the loop top of the nodes in N†},
{E ∈ P(E L) |E has a unique solution in V L}.

I re-write also Definition 4.14 via an operator on subsets of Nϕ × (V L ∪ P(E L)),
to be used later.

Definition 4.16. For every ϕ ∈ LTr, let Rϕ indicate the sets in which the
definition of B∗ϕ is positive elementary, as per Lemma 4.15. For ϕ ∈ LTr and
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S ⊆ Nϕ × (V L ∪ P(E L)), let ϑϕ(x, y, S,Rϕ) be the right-hand side of Definition
4.14. Let Ψϕ : P(Nϕ × (V L ∪ P(E L))) 7−→ P(Nϕ × (V L ∪ P(E L))) be the operator
defined as:

Ψϕ(S) := {〈x, y〉 ∈ Nϕ × (V L ∪ P(E L)) |ϑϕ(x, y, S,Rϕ)}.

Lemma 4.17. For every ϕ ∈ LTr, the operator Ψϕ is monotone and increasing.

A fundamental idea of the heuristics outlined in §3 is that nodes are first
assigned equation systems, and then numerical values (when equation systems
are solved, if they have a unique solution). However, this amounts to revising
a previously assigned value, and cannot be done via an inductive construction
such as the one given in Definition 4.14. Inductive constructions can only add
numbers and equation systems: in order to replace the latter with the former, a
revision construction is required. This is provided by the next definition.

Definition 4.18. For every ϕ ∈ LTr and ordinal δ, let eδϕ be defined as follows
(for γ limit):

e0
ϕ := IΦϕ

eα+1
ϕ := Ψϕ(eαϕ) \ {〈x, y〉 ∈ Nϕ × P(E L) |

〈x, y〉 ∈ Ψϕ(eαϕ) and for some k ∈ V L, 〈x,k〉 ∈ Ψϕ(eαϕ)}
eγϕ := {〈x, y〉 ∈ Nϕ × (V L ∪ P(E L)) | there is an α < γ s.t.

for all α ≤ β < γ, 〈x, y〉 ∈ eβϕ}

The key element of the above revision sequence is the successor case. In short,
whenever Ψϕ(eαϕ) assigns both an equation system and a numerical value to a

node in Nϕ, eα+1
ϕ removes the equation system and keeps only the numerical

value. As it turns out, this suffices to ensure that every set eαϕ is a function, and
that equational values are revised and replaced with numerical values as outlined
in the heuristics of §3. The limit case then ensures that, as ordinals grow, the
functions eαϕ converge to a limit, that is they have fixed points. These facts are
formulated more precisely and collected in the following proposition.

Proposition 4.19.

(I) For every ϕ ∈ LTr and every ordinal α:
1. There is exactly one eαϕ.
2. eαϕ is a function, i.e. for every v ∈ Nϕ and every v0,v1 ∈ V L ∪ P(E L) :

if 〈v,v0〉 ∈ eαϕ and 〈v,v1〉 ∈ eαϕ, then v0 = v1.

I write ‘eαϕ(v) = v’ if 〈v,v〉 ∈ eαϕ, and ‘eαϕ = eβϕ’ if, for every v ∈ Nϕ,

eαϕ(v) = eβϕ(v).
3. For every v ∈ Nϕ, if eαϕ(v) = k for a k ∈ V L, then for every β > α,

eβϕ(v) = k.
4. For every v ∈ Nϕ, if eαϕ(v) = E for E ∈ P(E L), then for every β > α, if

there is no k ∈ V L s.t. eβϕ(v) = k, then eβϕ(v) = E.
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(II) There is exactly one ordinal δ0 s.t. for every ϕ ∈ LTr, e
δ0
ϕ is a fixed point

of the functions eαϕ, i.e. for every δ ≥ δ0 and ϕ ∈ LTr :

eδ0ϕ = eδϕ

I indicate eδ0ϕ simply as eϕ.

4.5. Loop-isomorphisms. We have seen how semantic graphs are precisely
constructed, and how their nodes are assigned a semantic value, formalising
the picture outlined in §3. However, as I argued in §1, in order to provide a
full account of semantic paradoxes, one needs an evaluation function for LTr-
sentences. But so far we only have many evaluation functions for labelled nodes
– one such function per graph. Therefore, the evaluations defined on nodes have
to be turned into a single evaluation defined on sentences.

To see this, consider the nodes in the graph generated by λ (see Figure 3):
they are assigned value 1/2 by the evaluation function associated with that very
graph, i.e. eλ (see §3.2). However, eλ does not tell us anything about the value
assigned to a node labelled with λ occurring in another semantic graph, i.e. in
the graph generated by another sentence. But if one thinks that the sentence λ
should be assigned value 1/2 and adopts a compositional semantics, presumably
one also thinks that the sentence λ ∧ ¬(s = s) should be assigned value 0. But
eλ does not give us this information, because it is not a function that evaluates
LTr-sentences – it evaluates only the nodes of Nλ.

In order to ‘weave together’ the evaluation functions defined on nodes (eϕ1
,

eϕ2
, . . . ) and construct a single evaluation defined on sentences, I show that the

functions eϕ have the following robustness property: all the nodes with the same
label are assigned the same value by their respective evaluation functions (Propo-
sition 4.23). This makes it possible to define a canonical evaluation for sentences
(Definition 4.24), by taking the value of ϕ to be the value of a uniformly chosen
node labelled with ϕ – for simplicity, I will take the root node of 〈Nϕ, Sϕ〉. In
order to prove the robustness property, I show that whenever two nodes v and w

are labelled with the same sentence, they generate sub-graphs of their respective
semantic graphs 〈Nϕ, Sϕ〉 and 〈Nψ, Sψ〉 that are structurally similar (Proposition
4.22). Such similarity is used to ensure that the two evaluations eϕ and eψ
yield the same result on v and w. The relevant notion of structural similarity is
provided by a suitable notion of graph-theoretic isomorphism (Definition 4.21).

To begin with, note that in order to evaluate a node v of Nϕ via the function
eϕ, possibly not all of 〈Nϕ, Sϕ〉 is relevant. Consider for instance the semantic
graph of λ ∧ ¬(s = s):
In order to evaluate some of the nodes of graph 8, not all other nodes need to
be evaluated: for instance, in order to evaluate the node labelled with ¬Tr(pλq),
the value of the node labelled with s = s is not required. More generally, an
inspection of Definitions 4.3 and 4.14 shows that, in order to assign a value to
a node v in Nϕ, only the nodes that can be reached from v in following the
edges, i.e. the arrows, in Sϕ are employed in the construction of eϕ(v). The next
definition makes the notion of reachable nodes more precise.
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¬Tr(pλq) ∧ ¬(s = s)

¬(s = s)

s = s

¬Tr(pλq)

Tr(pλq)

Figure 8. Graph for ¬Tr(pλq) ∧ ¬(s = s)

Definition 4.20 (Reachable nodes and sub-graphs). For every ϕ ∈ LTr and
v ∈ Nϕ, the set Rϕ(v) of nodes reachable from v within 〈Nϕ, Sϕ〉 is defined thus:

Rϕ(v) := {
〈
〈v, w〉, . . . , 〈v′, w′〉

〉
∈

⋃
n∈ω

(Nϕ × Nϕ)n |

there is a path from v to w′ in 〈Nϕ, Sϕ〉}

Let ϕ ∈ LTr and v ∈ Nϕ. The sub-graph of 〈Nϕ, Sϕ〉 reachable from v is the
graph 〈Nvϕ, Svϕ〉 s.t.:

Nvϕ := the nodes in Rϕ(v); Svϕ := the edges in Rϕ(v).

I now define the required notion of isomorphism between semantic graphs.

Definition 4.21 (Loop-isomorphism). Let ϕ,ψ ∈ LTr, 〈N0
ϕ, S

0
ϕ〉 ⊆g 〈Nϕ, Sϕ〉

and 〈N0
ψ, S

0
ψ〉 ⊆g 〈Nψ, Sψ〉. 〈N0

ϕ, S
0
ϕ〉 and 〈N0

ψ, S
0
ψ〉 are loop-isomorphic, in symbols

〈N0
ϕ, S

0
ϕ〉 ∼=l 〈N0

ψ, S
0
ψ〉, if:

(i) for every dead end (simple point) v ∈ N0
ϕ there is a dead end (simple point)

w ∈ N0
ψ s.t. Lϕ(v) = Lψ(w), and vice versa for dead ends and simple points

of N0
ϕ, and

(ii) for every loop P1 ⊆ S0
ϕ there is a loop P2 ⊆ S0

ψ s.t. for every pair 〈v, v′〉 ∈ P2

there is a pair 〈w, w′〉 ∈ P2 s.t. Lϕ(v) = Lψ(w) and Lϕ(v′) = Lψ(w′), and vice
versa for loops in S0

ψ.

Informally, two (sub-)graphs are loop-isomorphic when every dead end (simple
node) of one graph is bijectively mapped to a dead end (simple point) of the
other graph, preserving the identity of labels (item (i)), and every loop of one
graph is bijectively mapped to a loop of the other graph, preserving adjacency
and identity of labels (item (ii)). It follows from Definition 4.21 that if 〈N0

ϕ, S
0
ϕ〉

and 〈N0
ψ, S

0
ψ〉 are loop-isomorphic, then paths of S0

ϕ that only contain simple

points and dead ends are bijectively mapped to paths of S0
ψ that only contain

simple points and dead ends, and that have the same labels in the same order,
while loops of S0

ϕ are bijectively mapped to loops of S0
ψ that have the same labels

with the same adjacencies, but that are possibly rotated.34

34Propositions 4.22 and 4.23 could have been proven employing a more standard notion
of isomorphism between labelled directed graphs, i.e. the existence of a bijection preserving

adjacency of nodes and identity of labels (and only identity of labels in the case of a graph
with empty edges), but this would have made the proofs longer.
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I now state the main fact about the loop-isomorphisms of semantic graphs, that
is that nodes with identical labels yield loop-isomorphic reachable sub-graphs.
In other words, a node labelled with ϕ generates a sub-graph of the graph it
belongs to that is structurally similar (i.e. loop-isomorphic) to the sub-graph
generated by any other node labelled with ϕ, in any other graph.

Proposition 4.22. For every ϕ,ψ ∈ LTr, v ∈ Nϕ, w ∈ Nψ:

if Lϕ(v) = Lψ(w), then 〈Nvϕ, Svϕ〉 ∼=l 〈Nwψ, Swψ〉.

This result, in turn, makes it possible to prove that the evaluations defined
on nodes are robust in the sense described above, that is in the sense that they
assign identical values to nodes with identical labels.

Proposition 4.23. For every ϕ,ψ ∈ LTr, v ∈ Nϕ, w ∈ Nψ, and v ∈ V L∪P(E L),
if Lϕ(v) = Lψ(w):

1. there is an α s.t. eαϕ(v) = v if and only if there is a β s.t. eβψ(w) = v, and

2. eϕ(v) = eψ(w).

4.6. The canonical evaluation. Proposition 4.23 makes it possible to speak
of the value of a sentence ϕ, rather than the value of a node labelled with ϕ in
some semantic graph. More precisely, the value of a sentence ϕ can be taken
to be the value that any evaluation eψ whose domain includes a node labelled
with ϕ assigns to any such node – by Proposition 4.23, all such nodes receive the
same value. So, I define a canonical evaluation that takes the value of ϕ to be
the value of a canonically selected node labelled with ϕ – for simplicity, I take
it to be the value of the root node of 〈Nϕ, Sϕ〉, the graph generated by ϕ.

Definition 4.24. The canonical evaluation is the function C : SentLTr
7−→

V L ∪ P(E L) defined as:

C (ϕ) := eϕ(r)

The canonical evaluation C is the semantic theory of truth and paradox I propose
in this paper. In this section, I review its main properties.

4.6.1. The canonical evaluation as a theory of paradox. To begin with, C
obeys the  Lukasiewicz clauses for introducing and eliminating logical constants.

Proposition 4.25. For every ϕ,ψ ∈ LTr and χ(x) ∈ ForLTr
, the following

holds (⇐⇒ stands for the meta-linguistic ‘if and only if ’, and =⇒ for ‘if . . .
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then’) :

C (¬ϕ) = 1 ⇐⇒ C (ϕ) = 0

C (ϕ ∧ ψ) = 1 ⇐⇒ C (ϕ) = 1 and C (ψ) = 1

C (ϕ→ ψ) = 1 ⇐⇒ C (ϕ) = 0,

or C (ψ) = 1,

or C (ϕ) = j,C (ψ) = k, and j ≤ k

C (∀xχ(x)) = 1 ⇐⇒ C (χ(tk)) = 1 for all tk ∈ CTerLTr

C (Tr(pϕq)) = 1 ⇐⇒ C (ϕ) = 1

In addition, modus ponens holds for the canonical evaluation:

C (ϕ) = 1 and C (ϕ→ ψ) = 1 =⇒ C (ψ) = 1.

The next result generalises Proposition 4.25 to the whole value space V L ∪
P(E L), providing a full picture of how the canonical evaluation interprets LTr-
sentences.

Proposition 4.26. Let M be an ω-model of L. For A ⊆ SentLTr
, let E(A) be

the set {e ∈ E L | e ∈ C (ϕ), for ϕ ∈ A}. For all ϕ ∈ LTr, the following hold:

C (s = t) =

{
1, if M |= s = t,

0, if M 6|= s = t

C (¬ϕ) =

{
1− C (ϕ), if C (ϕ) ∈ V L,

{u¬ϕ = L 1− sϕ} ∪E({ϕ}), if C (ϕ) ∈ P(E L)

C (ϕ ∧ ψ) =



0, if C (ϕ) = 0 or C (ψ) = 0

min(C (ϕ),C (ψ)), if C (ϕ),C (ψ) ∈ V L,

{uϕ∧ψ = L min(sϕ, sψ)} ∪E({ϕ,ψ}),

if


C (ϕ),C (ψ) ∈ P(E L), or

C (ϕ) ∈ P(E L),C (ψ) ∈ V L \ {0}, or

C (ψ) ∈ P(E L),C (ϕ) ∈ V L \ {0}

C (ϕ→ ψ) =



1, if C (ϕ) = 0 or C (ψ) = 1

min[1, (1− C (ϕ) + C (ψ))], if C (ϕ),C (ψ) ∈ V L,

{uϕ→ψ = L min[1, (1− sϕ + sψ)]} ∪E({ϕ,ψ}),

if


C (ϕ),C (ψ) ∈ P(E L), or

C (ϕ) ∈ P(E L),C (ψ) ∈ V L \ {1}, or

C (ψ) ∈ P(E L),C (ϕ) ∈ V L \ {0}
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C (∀xχ(x)) =



0, if C (χ(tk)) = 0 for a k ∈ ω
inf{C (χ(tk)) | k ∈ ω}, if for all k ∈ ω,C (χ(tk)) ∈ V L,

{u∀xχ(x) = L inf{sχ(tk)|k ∈ ω}} ∪E({χ(tn) |n ∈ ω}),
if for all k ∈ ω,C (χ(tk)) ∈ V L ∪ P(E L) \ {0},
and for some n ∈ ω,C (χ(tn)) ∈ P(E L)

C (Tr(pϕq)) =

{
C (ϕ), if C (ϕ) ∈ V L,

{uTr(pϕq) = L sϕ} ∪E({ϕ}), if C (ϕ) ∈ P(E L)

The above result summarises the possible outcomes of applications of C to a
sentence ϕ: either ϕ is assigned a numerical value or an equation system. The
clauses for equation systems may appear strange at first, but they merely for-
malise the heuristics described in §3. For example, the negation clause C (¬ϕ) =
{u¬ϕ = L 1− uϕ} ∪ E({ϕ}) tells us that if the immediate sub-component of ¬ϕ
(that is ϕ) is assigned the equation system E({ϕ}), then ϕ is assigned the equa-
tion system that results from adding an equation corresponding to the logical
form of ¬ϕ to E({ϕ}). Similarly, if at least one of C (ϕ) and C (ψ) is an equation
system, and none of C (ϕ) and C (ψ) is 0, then C (ϕ ∧ ψ) is an equation system
adding to whatever equation systems are associated with ϕ and ψ (whether just
one of ϕ and ψ is associated with an equation systems, or both of them are) the
equation expressing that the value of ϕ ∧ ψ is the minimum of the values of ϕ
and ψ. And so on.

This does not necessarily mean that the equation system assigned to ϕ has
more equations than the system assigned to its sub-components. In fact, the
sub-components of ϕ may be assigned the same equation system as ϕ, as it is to
be expected e.g. in the case of paradoxical sentences generating loops. Consider
for example the value of C (¬Tr(pλq)) in a classical value space V L = {1,0}:

C (¬Tr(pλq)) = {u¬Tr(pλq) = L 1− uTr(pλq)} ∪E({Tr(pλq)})
= {u¬Tr(pλq) = L 1− uTr(pλq)} ∪

{uTr(pλq) = L u¬Tr(pλq),u¬Tr(pλq) = L 1− uTr(pλq)}
= {uTr(pλq) = L u¬Tr(pλq),u¬Tr(pλq) = L 1− uTr(pλq)}
= C (Tr(pλq))

The equation system associated with ¬Tr(pλq) does not have more equations
than the system associated with ¬Tr(pλq). This is the expected result: both
λ and ¬λ should be associated with the same value, that is the same equation
system, which is unsolvable in V L = {1,0}.

It is now clear that the canonical evaluation yields the classification of LTr-
sentences described in §2 (see especially §2.4) and §3. Classical numerical values
are assigned to non-paradoxical sentences (§3.1). Non-classical numerical values
are assigned to liar-like sentences (§2.1, §3.2). Equation systems are assigned to
sentences that are compatible with too many numerical values (truth-teller-like
sentences, §2.2, §3.3) or too few numerical values (revenge sentences §2.3, §3.4).

Finally, notice that the canonical evaluation is compositional : the value of
C (ϕ) (whether numerical or equational) depends on the values that C assigns
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to the immediate sub-components of ϕ (where, by näıveté, ψ is considered to
be a sub-component of Tr(pψq)).

4.6.2. The canonical evaluation as a theory of truth. The next results show
that the canonical evaluation also constitutes a semantic theory of näıve truth.
To begin with, C validates the inter-substitutivity of truth and the t-
schema for every sentence receiving a numerical value (see §2, p. 4).

Lemma 4.27. For every ϕ ∈ LTr, if ϕTr is the result of substituting (possibly
non-uniformly) a subformula ψ of ϕ with Tr(pψq) or vice versa, then (for k ∈
V L):

C (ϕ) = k = C (ϕTr).

Lemma 4.28. For every ϕ ∈ LTr, there is a k ∈ V L s.t.:

C (ϕ) = k if and only if C (ϕ↔ Tr(pϕq)) = 1.

Moreover, C includes some arguably good candidates to determine the exten-
sion of a näıve truth predicate, such as the smallest fixed point of Kripke [1975]’s
theory (strong Kleene version).

Proposition 4.29. For every ϕ ∈ LTr:

- if ϕ is in the extension of Tr in the least Kripkean fixed point for LTr, then
C (ϕ) = 1, and

- if ϕ is in the anti-extension of Tr in the least Kripkean fixed point for LTr,
then C (ϕ) = (0).

Clearly, the converse of the claims in Proposition 4.29 does not hold.

4.6.3. The canonical evaluation, determinateness, and revenge. The canon-
ical evaluation recovers a natural partial version of every  Lukasiewicz seman-
tics, generalised with the inclusion of equational values. However, every finite-
valued  Lukasiewicz semantics is known to be inconsistent with näıve truth, while
continuum-valued  Lukasiewicz semantics is inconsistent with näıve truth over ω-
models of the base language.35 The canonical evaluation avoids these difficulties
as follows: the sentences that cannot be consistently assigned a value according
to the  Lukasiewicz semantics clauses in conjunction with näıve truth, i.e. revenge
sentences for this semantics, are simply assigned an equation system which is
unsolvable in the selected value space.

For instance, the following iterated Curry sentences (where ⊥ is some false sen-
tence) produce a revenge paradox for every finitely-valued  Lukasiewicz semantics
plus näıve truth:36

κ0 := Tr(pκ0q)→ ⊥
κj+1 := Tr(pκj+1q)→ κj

35See Restall [1992], Hájek, Paris, and Shepherdson [2000].
36For more details, see Field [2008], Chapter 4.
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However, the canonical evaluation assigns them numerical values if possible (that
is, whenever the numerical space is sufficiently large), and unsolvable equation
systems otherwise. At a glance:

C (κ0) =


E ∈ P(E L), if V L = {0,1}
1/2, if V L = {0, 1/n+1, . . . , n/n+1,1} for all odd n

or V L = [0,1]

C (κj+1) =


E ∈ P(E L), if V L ⊆ {0, 1/k+1, . . . , k/k+1,1} for k < 2j+1

2j+1−1/2j+1, if V L = {0, 1/k+1, . . . , k/k+1,1} for k ≥ 2j+1,

or V L = [0,1]

In a similar way, the canonical evaluation blocks the revenge sentences em-
ployed to prove the next result, assigning them an unsolvable equation system
(see the proof in the Appendix).

Proposition 4.30. (Restall [1992]) There is no continuum-valued  Lukasie-
wicsz evaluation for LTr that: (i) agrees with an ω-model for L, and (ii) validates
the t-schema or inter-substitutivity.

Restall’s omega-inconsistency can be proven via a bivalent notion of deter-
minateness, which is definable in  Lukasiewicz semantics.37 Since the canonical
evaluation ‘blocks’ the applications of bivalent determinateness that are prone to
yield revenge sentences (by assigning them equational values), it can consistently
feature a partial bivalent determinateness operator, i.e. an operator that works
bivalently on every sentence receiving a numerical value.

Definition 4.31. For every ϕ ∈ LTr, put: D(ϕ) := ¬(ϕ→ ¬ϕ). Let Dn(ϕ) be
a string of n iterations of D applied to ϕ. Let Nt be a univalent recursive ordinal
notation system, whose range is OrdNt. Let r be the primitive recursive function
from positive integers and sentences to sentences s.t. r(n, pϕq) = Dn(ϕ), and
put Dω(ϕ) := ∀nTrpr. (n, pϕq)q. Define a determinateness hierarchy à la Field
for ordinals in OrdNt.

38

Proposition 4.32. For every ϕ ∈ LTr and every V L, if C (ϕ) = k, for k ∈ V L,
then:

1. For all ordinals α ∈ OrdNt, C (Dα(ϕ)) ∈ V L. In particular (for γ limit):

C (Dα+1(ϕ)) = 1−min[1, (1− C (Dα(ϕ)) + 1− C (Dα(ϕ)))]

C (Dγ(ϕ)) = inf{C (Dα(ϕ))|α < γ}

37To my knowledge, the determinateness operator described here was introduced, in the
context of  Lukasiewicz logic, by Field [2008] (pp. 89-92, but see also Field [2003], p. 157 and

ff.).
38For ordinal notation systems, see Rogers [1987], §§11.7-11.8. For determinateness hier-

archies, see Field [2008], Chapters 22-23). Since Nt is recursive and univalent, the definable

iterations of D turn out to be much shorter than those in Field [2008], but neither longer
iterations nor stronger notation systems are needed, as the proof of Proposition 4.32 shows.



30 LORENZO ROSSI

2. There is a unique ordinal δ′ ∈ OrdNt s.t. for all δ ∈ OrdNt greater than or
equal to δ′:

C (Dδ(ϕ)) = 1 if and only if C (ϕ) = 1

0 if and only if C (ϕ) ∈ V L and C (ϕ) < 1

This result shows that, for every V L, the canonical evaluation expresses a unique,
bivalent determinateness operator Dδ′ that declares that every sentence that
has a numerical value other than ‘classical truth’ (i.e. 1) is not determinate.39

There is no ‘fuzzy’ hierarchy of stronger and stronger determinateness operators
(unlike in Field [2008]): they converge to a bivalent operator at a small ordinal
(dependent on the cardinality of V L).40 The canonical evaluation is thus immune
from a criticism that was advanced against the theory in Field [2008], namely
that it recovers a unique notion of truth but splits the notion of determinate truth
into a highly unmanageable hierarchy.41 The canonical evaluation provides one
notion of truth and one notion of determinate truth.

4.7. Modifications, extensions, and prospects for future work. The
construction that gives rise to the canonical evaluation is rather flexible, and
can be subject to several modifications and extensions. Here I informally outline
some of them.

- The  Lukasiewicz evaluation clauses (see §4.3) can be replaced with different
clauses (the value space should also be modified accordingly). A variant
of the canonical evaluation can thus be obtained for every compositional
semantics for the logical vocabulary. However, there is no obvious way to
adapt the canonical evaluation to non-compositional semantics, e.g. super-
valuations.

- An immediate modification is given by just considering the classical nu-
merical value space, i.e. {1,0}. When restricted to {1,0}, the  Lukasiewicz
evaluation clauses (as many other non-classical evaluation clauses) just re-
duce to the classical ones. In this value space, liar-like and revenge sentences
are completely identified. When there are only classical numerical values,
liar-like sentences yield equation systems with no solutions, just like revenge
sentences. In a slogan: liar-like sentences are revenge sentences for classical
semantics. More generally, in any given semantics, the difference between
liar-like sentences, i.e. the ‘standard’ paradoxical sentences, and revenge
sentences is that there are enough numerical values to evaluate sentences
of the former kind, but of not the latter kind. But this is no ‘deep’ differ-
ence: the same sentence can be classified as ‘liar-like’ or ‘revenge’ depending
solely on the available values.42

39The uniqueness of Dδ
′

holds modulo the choice of Nt, but the ordinals involved are so

small (ω at most, if V L = [0,1]) that there is virtually no dependence on the specific notation
adopted. For details, see the proof in the Appendix.

40This treatment of determinateness also avoids the ‘trivial collapse’ of Field [2008]: at no

level of ill-behaved iterations of D the resulting operator sends every sentence to 0.
41For this line of criticism, see e.g. Horsten [2012], §10.2.
42This also holds for non-numerical space values, e.g. the value space adopted in Field

[2008], Chapter 17. The approaches to revenge developed in Cook [2007], [2009], Schlenker
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- The canonical evaluation displays a ‘strong Kleene-style’ approach to par-
tiality: that some sub-formula of ϕ has a numerical value is in some cases
sufficient for ϕ to have a numerical value. In particular: a conjunction
with a 0-valued conjunct has itself value 0, and similarly for 0-valued uni-
versally quantified sentences, or 1-valued conditionals. One could easily
modify (indeed: simplify) the construction of the canonical evaluation to
give it a ‘weak Kleene-style’ approach, where a conjunction ψ ∧ χ in which
ψ has value 0 but χ has an equational value has itself an equational value
(and similarly for conditionals and universally quantified sentences). These
two variants – strong and weak Kleene – can, again, be adapted to all
compositional evaluation clauses for the logical vocabulary.

- Another immediate extension of the canonical evaluation would consist in
treating näıve predicates for satisfaction, denotation, and other semantic
notions. In order to extend the canonical evaluation in this way, it would
be sufficient to add näıve evaluation clauses for the corresponding seman-
tic predicates. Extending the canonical evaluation to a language with a
näıvely interpreted satisfaction predicate would enable one to treat other
paradoxical constructions, such as the Visser-Yablo paradoxes.43

- Truth-teller-like sentences and revenge sentences are both assigned equation
systems, with the former having systems with more than one solution, and
the latter having systems with no solutions (in the selected numerical value
space). One might want to make the difference between the two cases more
explicit in the evaluation itself, assigning them different kinds of values.
One could therefore replace the sets of equations employed in Definitions
4.14 and 4.18 with two new conventional values, to be assigned to truth-
teller-like and revenge sentences respectively. A form of compositionality
is also preserved in this variant. However, while this solution might seem
to be more explicit, it strikes me as less informative, less uniform, and less
elegant.

- Two liar sentences with different codes (e.g. with different Gödel number-
ing, if p·q is defined via Gödelization) are assigned, strictly speaking, two
different equation systems, even though they only differ for the choice of
 L-variables. But arguably, it might be objected, any two such sentences
should be assigned the very same equation system.44 This problem is eas-
ily solved, however: it is sufficient to map all sentences which have equation

[2010], Cook and Tourville [2016] also suggest that the difference between liar-like and revenge
paradoxes depends on the available values. See also footnote 13.

43See Visser [1989], Yablo [1985], [1993], [2006], and also Priest [1997], Beall [2001], Leitgeb

[2002], Bueno and Colyvan [2003], Ketland [2004], [2005], Cook [2006], [2014], Eldridge-Smith
[2015], Halbach and Zhang [2017]. In Visser-Yablo cases, one has an unending sequence of

sentences, each one to the effect that the sentences that come after it are true, untrue, or else.
If one thinks that Visser-Yablo cases should be separated from liar-like, truth-teller-like, and
revenge sentences, then the canonical evaluation could be modified in order to categorise them
differently, distinguishing between paradoxical sentences involving a straightforward circularity

or self-reference, and paradoxical sentences involving a form of ungroundedness or non-well-
foundedness.

44Thanks to Joel Hamkins and Richard Kimberly Heck for pointing out this potential prob-

lem to me.
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systems that are identical modulo renaming of free  L-variables to some fixed
equation system, employing some fixed  L-variables.

- Propositions 4.25 and 4.26 show that the canonical evaluation can be asso-
ciated with some notions of consequence, including both logical and truth-
theoretical inferences. For instance, say that ϕ is a C1-consequence of a
set of sentences Γ if, if for every ψi ∈ Γ, C (ψi) = 1, then C (ϕ) = 1. C1-
consequence can be shown to extend strong Kleene logic with a strong rule
of conditional-introduction (as per Proposition 4.25).45 Other choices for
the definition of consequence, such as preservation of values greater than
or equal to 1/2, preservation of the ordering of numerical values, and so on,
give rise to generalisations of other logics, such as LP, ST, TS and more.46

However, all the standard choices for defining consequence only involve nu-
merical values, thus leaving the equational values ‘unused’. This has some
possibly unexpected consequences. For instance, consider C1-consequence:
since liar-like and revenge sentence don’t have value 1, one might expect
that any sentence is a C1-consequence of a liar-like or a revenge sentence.
However, every sentence also follows from truth-teller-like sentences, since
such sentences also don’t have value 1. But this might seem counterin-
tuitive. Why should liar-like, revenge, and truth-teller-like sentences all
have the same consequences? Another example might help illustrate the
difficulty. Consider now a notion of consequence defined à la LP, i.e. as
preservation of values that are greater than or equal to 1/2 in C . Here the
situation might seem even ‘worse’: while now not every sentence follows
from liar-like sentences, it is still the case that every sentence follows from
a revenge or a truth-teller-like sentence, which again might seem counter-
intuitive. However, these potentially counterintuitive features result from
defining consequence using only numerical values, in a semantic framework
that also employs equations systems as semantic values. If consequence is
defined using also equational values, liar-like, revenge, and truth-teller-like
sentences have different sets of consequences.47 For example, say that ϕ
follows from Γ if:

– either every sentence in {Γ, ϕ} has a numerical value and whenever
every sentence in Γ has value 1, so does ϕ,

– or every sentence in {Γ, ϕ} has an equation system as a value and
whenever the system of every sentence in Γ has a solution, so does ϕ.

To be sure, more refined notions of consequence could (and should) be
devised, e.g. to account for premises Γ featuring sentences with both nu-
merical and equational values. However, this simple notion of consequence
suffices for present purposes, since it already separates truth-teller-like from
revenge cases. More precisely, every sentence now follows from revenge

45For strong Kleene logic, see Urquhart [2001]. For extensions of strong Kleene logic with

conditionals obeying stronger introduction rules, see Rossi [2016].
46For LP see Priest [1979], for ST and TS see Cobreros, Égré, Ripley, and van Rooij [2012].

See Chemla, Égré, and Spector [2017], Chemla and Égré [2019] for a systematic discussion of
many-valued consequence relations.

47I am indebted to Emmanuel Chemla for suggesting to consider equation systems in the

definition of consequence.
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sentences, but not from truth-teller-like sentences. In general, using both
numbers and equations in defining one’s notions on consequence based on C
would make it possible to determine which forms of reasoning are valid for
every kind of paradox, distinguishing the consequences of liar-like, truth-
teller-like and revenge sentences. I plan to investigate the notions of conse-
quence definable within the semantic framework of the canonical evaluation
in future work.48

- Consider an object-language featuring a predicate for the canonical evalua-
tion itself (such a predicate would be a partial näıve truth predicate, as per
Proposition 4.26 and Lemmata 4.27 and 4.28), and now consider a revenge
sentence ρC equivalent to the claim that ρC has a canonical value different
from 1. How is such a ρC to be treated by the canonical evaluation (for
the language in which ρC is formulated)? The answer is quite clear: with
an unsolvable equation system. If ρC forces evaluation conditions that are
impossible to satisfy – having simultaneously a value identical to and dif-
ferent from 1 – then it is a revenge sentence, and it should be evaluated as
such. One might object that this is an undesirable result: since C (ρC ) is
an unsolvable equation system, then C (ρC ) is different from 1, just as the
sentence ρC says, so it should actually receive value 1, which is impossible.
However, the objection is far from being devastating: it simply shows that
the canonical evaluation is itself subject to revenge paradoxes – and this
is to be expected, since minimally expressive semantic theories are subject
to revenge. The advantage of the canonical evaluation is that it treats its
own revenge sentences just as it treats every other object-linguistic revenge
sentences, namely by assigning them unsolvable equation systems.

- What about axiomatising the semantic theory provided by the canonical
evaluation? It is clear that no axiomatisation that is adequate in the sense
of Fischer, Halbach, Kriener, and Stern [2015] is available, for reasons of
computational complexity (the truth-set determined by C exceed the ∆1

1-
complete subsets of the relevant domain). However, one might wonder
whether there are nice ways of characterising the computable fragment of
C ; I plan to explore this issue in future work.

48One might argue that defining a notion of consequence using only one evaluation func-
tion is not sufficiently general (even though this seems to be the approach adopted, e.g., in

Field [2003], [2008]). However, one can define notions of consequences via sets of evaluations
that properly extend the canonical evaluation in its assignments of numerical values. Just like
one obtains non-minimal Kripkean fixed points by assigning value 1 or 0 to truth-teller-like sen-
tences, one obtains non-minimal, quasi-canonical evaluations that assign numerical values to
truth-teller-like sentences. In addition, the algebraic structure determined by quasi-canonical

evaluations has several features in common with the structure of Kripkean fixed points (e.g.

there are maximal evaluations, intrinsic evaluations, and more). While quasi-canonical evalu-
ations do not provide a nice theory of paradoxes (they conflate truth-teller-like sentences with

either non-paradoxical or liar-like sentences, just as it happens in Kripke’s theory), collections
of quasi-canonical evaluations can be used to give more general notions of consequence.
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§5. Concluding remarks. The main objective of the present work has been
to propose a unified theory of truth and paradox, that is an (idealised) inter-
pretation of a language with a näıve truth predicate that also provides an in-
terpretation of the paradoxical sentences that arise from the combination of
self-applicable semantic notions, logical principles, and syntactic mechanisms.
The canonical evaluation provides both a theory of näıve truth and a theory of
semantic paradoxes (see Proposition 4.26 and Lemmata 4.27 and 4.28). As far as
the theory of paradox goes, I have argued that (in addition to ‘non-paradoxical’
sentences) three main kinds of paradoxical sentences can be distinguished: liar-
like sentences, truth-teller-like sentences, and revenge-sentences (§§2.1-2.4 and
§§3.1-3.4). The canonical evaluation captures and expresses the distinction be-
tween these fundamental types of paradoxical statements:

- Liar-like sentences: they are compatible with exactly one non-classical nu-
merical value. The canonical evaluation assigns them their non-classical
numerical value.

- Truth-teller-like sentences: they are compatible with more than one nu-
merical value (classical or non-classical). The canonical evaluation assigns
them equation systems with more than one solution.

- Revenge sentences: they are incompatible with any numerical value (clas-
sical or non-classical). The canonical evaluation assigns them equation
systems with no solution.

The above classification is robust, in that it is independent from which com-
positional semantics is selected for the logical vocabulary. Indeed, a variant
of the canonical evaluation presented here can be given for any compositional
interpretation for the logical vocabulary.

Much work remains to be done in order to understand and account for the
semantic paradoxes. Much work remains to be done even in the framework I
have introduced here – some possible developments have been outlined in §4.7. I
hope to have provided at least a first step towards a unified account of semantic
notions and of the paradoxical phenomena they engender.

Appendix: Proofs of the main results.

Proposition 4.19.

(I) For every ϕ ∈ LTr and every ordinal α:
1. There is exactly one eαϕ.
2. eαϕ is a function, i.e. for every v ∈ Nϕ and every v0,v1 ∈ V L ∪ P(E L) :

if 〈v,v0〉 ∈ eαϕ and 〈v,v1〉 ∈ eαϕ, then v0 = v1.

I write ‘eαϕ(v) = v’ if 〈v,v〉 ∈ eαϕ, and ‘eαϕ = eβϕ’ if, for every v ∈ Nϕ,

eαϕ(v) = eβϕ(v).
3. For every v ∈ Nϕ, if eαϕ(v) = k for a k ∈ V L, then for every β > α,

eβϕ(v) = k.
4. For every v ∈ Nϕ, if eαϕ(v) = E for E ∈ P(E L), then for every β > α, if

there is no k ∈ V L s.t. eβϕ(v) = k, then eβϕ(v) = E.
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(II) There is exactly one ordinal δ0 s.t. for every ϕ ∈ LTr, e
δ0
ϕ is a fixed point

of the functions eαϕ, i.e. for every δ ≥ δ0 and ϕ ∈ LTr :

eδ0ϕ = eδϕ

I indicate eδ0ϕ simply as eϕ.

Proof. Ad (I), let ϕ be any LTr-sentence. Item 1 is immediate. Item 2 follows
from the next lemma:

Lemma 5.1. For every ϕ ∈ L→T , every ordinal α, and every v ∈ Nϕ:

- There are at most two v0,v1 ∈ V L ∪ P(E L) s.t. 〈v,v0〉, 〈v,v1〉 ∈ Ψϕ(eαϕ).
- If 〈v,v0〉, 〈v,v1〉 ∈ Φϕ(eαϕ), then one of v0 and v1 is in P(E L) and the

other one is in V L.

Proof. If α = 0, the result is trivial. For the successor case, assume the
claim up to α, and let v ∈ Nϕ be s.t. 〈v,v0〉, 〈v,v1〉 ∈ Ψϕ(eαϕ), for two distinct
v0,v1 ∈ V L ∪ P(E L). By IH, for any such v ∈ Nϕ, v0 and v1 are the only two
elements of V L ∪ P(E L) s.t. 〈v,vli〉, 〈v,vlj〉 ∈ Ψϕ(eαϕ); moreover, one of them is
in P(E L) (say v0), and the other is in V L (say vl1). By Definition 4.18,

eα+1
ϕ := Ψϕ(eαϕ) \ {〈x, y〉 ∈ Nϕ × P(E L) | 〈x, y〉 ∈ Ψϕ(eαϕ)

and there is a k ∈ V L s.t. 〈x,k〉 ∈ Ψϕ(eαϕ)}

so eα+1
ϕ is a function, where 〈v,v0〉 ∈ eα+1

ϕ , while 〈v,v1〉 /∈ eα+1
ϕ . Then, in order

to show the claim for Ψϕ(eα+1
ϕ ), we only have to consider all the possible out-

comes of an application of Ψϕ, namely of the clauses of Definition 4.14, to eα+1
ϕ .

However, since eα+1
ϕ is a function, there are at most two clauses of Definition

4.14 that can apply simultaneously to it, namely:

(a) Clauses 4 and 7, 4 and 9, or 5 and 8: every such pair of clauses yields the
same values in V L.49

(b) Exactly one of clauses 11-14 and clause 15.50 If clause 15 and one of clauses
11-14 applies to eα+1

ϕ , exactly two pairs obtain, 〈v,v2〉 and 〈v,v3〉, where
v1 ∈ P(E L) and v3 ∈ V L (since exactly one  Lukasiewicz equation system
and one numerical value obtain), as desired.

The limit case is straightforward. (Lemma 5.1) a
If there are less than two values assigned to every node by Ψϕ(eαϕ), the claim is
immediate. If there are at least two v0,v1 ∈ V L∪P(E L) assigned to v by Ψϕ(eαϕ),
by Lemma 5.1 they are the only distinct values, one of them is in P(E L) and the
other one is in V L. By Definition 4.18, 〈v,v0〉 is removed in the revision step
(where v0 ∈ P(E L)), leaving only 〈v,v1〉 in eα+1

ϕ . The limit case is immediate.
Item 3 of the Proposition follows from the following lemma:

Lemma 5.2. For every v ∈ Nϕ, if eαϕ(v) = k for k ∈ V L, then eα+1
ϕ (v) = k.

49E.g., if a simple point v is labelled with ψ ∧ χ, both its immediate successors have a

numerical value, and at least one such value is 0, then both clauses 4 and 7 apply, assigning

value 0 to v.
50In other words, one of the clauses to assign an equation to a node (11-14) and the clause

to solve a given equation system, assigning the corresponding numerical values to nodes (clause

15).
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Proof. If α is 0, the claim is trivial. Let α be α0 + 1. Then, exactly one
clause of Definition 4.14 amongst 2-3, 4-10, and 15 applies to eαϕ.51 We reason
by cases (I only do a few examples.):

- If clause 2 or 3 applies, the claim is immediate, since it applies at every
ordinal.

- If clause 8 applies, then α0 ≥ 1, Lϕ(v) = ψ → χ, and there are vm, vn in
Nϕ, immediate successors of v, s.t. Lϕ(vm) = ψ and Lϕ(vn) = χ. By IH,
Definition 4.14, and Definition 4.18:

eα0
ϕ (vm) = i, eα0

ϕ (vn) = j,

eα0+1
ϕ (v) = k = min[1, (1− i + j)].

By IH eα0+1
ϕ (vm) = i and eα0+1

ϕ (vn) = j, so the conditions of clause 7 are
satisfied for α+ 1, and

eα0+2
ϕ (v) = eα+1

ϕ (v) = k = min[1, (1− i + j)].

- If clause 16 applies, the claim is immediate by the IH and our requirement
of the existence of unique solutions for equation systems.

The case where α is a limit is similar to the successor case. (Lemma 5.2) a
Suppose now that eαϕ(v) = k for a k ∈ V L, and let β ≥ α. If β = α, the claim is
trivially true. Suppose that β > α. If β is β0 + 1, assume the claim up to β0 as
IH. Therefore:

eαϕ(v) = k = eβ0
ϕ (v) = eβ0+1

ϕ (v) = eβϕ(v),

by assumption, IH, Lemma 5.2, and the definition of β, respectively. Let β be a
limit and assume the claim as IH for every β0 such that α ≤ β0 < β. For every
such every β0:

eαϕ(v) = k = eβ0
ϕ (v) = eβϕ(v),

by assumption, IH, and Definition 4.18, respectively.
Item 4 of the Proposition follows from the following lemma:

Lemma 5.3. For every ϕ ∈ LTr and every ordinal α, if there is an E ∈ P(E L)
s.t. eαϕ(v) = E and there is no k ∈ V L s.t. eα+1

ϕ (v) = k, then eα+1
ϕ (v) = E.

Proof. If α is α0 +1, then first exactly one clause of Definition 4.14 amongst
11-14 applies to eα0

ϕ , yielding that eαϕ(v) = E, for E ∈ P(E L). Assume the
claim as IH up to α. I only do one example. Suppose clause 12 applies and
Lϕ(v) = ψ → χ. Then α0 ≥ 1 and either v has one immediate successor and it
loops back to a predecessor, or v has two immediate successors vm and vn, where
Lϕ(vm) = ψ and Lϕ(vn) = χ. Suppose the latter obtains. By IH, and Definitions
4.14 and 4.18:

eα0
ϕ (vm) = v0, eα0

ϕ (vn) = v1,

eα0+1
ϕ (v) = {uϕ→ψ = L min[1, (1− sϕ + sψ)]} ∪

{x ∈ E L |x is assigned by IΦ to a node with the same loop top as v}.

51For simplicity, I am ignoring the case of two clauses applying to the same node yielding
the same numerical value (as explained in the case (a) of the proof of Lemma 5.1).
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where v0 ∈ P(E L) ∪ (V L \ {0}), vl1 ∈ P(E L) ∪ (V L \ {1}), at least one of v0

and v1 is in P(E L), and sm and sn are the L L-terms assigned to vm and vn as
per Definition 4.14. Suppose that there are no i, j ∈ V L s.t. eα0+1

ϕ (vm) = i and

eα0+1
ϕ (vn) = j. By IH then eα0+1

ϕ (vm) = v0, eα0+1
ϕ (vn) = v1, and sm and sn are

assigned to vm and vn as above. Hence, the conditions of clause 12 are satisfied
for α+ 1, and

eα0+2
ϕ (v) = eα+1

ϕ (v).

The case where α is a limit is similar to the successor case. (Lemma 5.3) a
Suppose that eαϕ(v) = E for E ∈ P(E L), let β ≥ α, and suppose that there is

no k ∈ V L s.t. eβϕ(v) = k. If β = α, the claim is is trivially true. Suppose that
β > α. If β is β0 + 1, assume the claim up to β0 as IH. Since we supposed that
there is no k ∈ V L s.t. eβϕ(v) = k, then (by claim 3 of the Proposition) for every

δ s.t. α ≤ δ < β there is no k ∈ V L s.t. eδϕ(v) = k either. Therefore:

eαϕ(v) = E = eβ0
ϕ (v) = eβ0+1

ϕ (v) = eβϕ(v),

by assumption, the IH, Lemma 5.3, and the definition of β, respectively. Let β
be a limit and assume as IH the claim for every β0 s.t. α ≤ β0 < β. As above,
since we supposed that there is no k ∈ V L s.t. eβϕ(v) = k, then (by item 3 of the

Proposition) for every δ s.t. α ≤ δ < β there is no k ∈ V L s.t. eδϕ(v) = k either.
Then, for every δ s.t. α ≤ δ < β:

eαϕ(v) = E = eδϕ(v) = eβϕ(v),

by assumption, the IH, and Definition 4.18, respectively.
To prove claim (II) of the Proposition, given items 3 and 4 of claim (I), it

suffices to notice that there are at most i2 distinct functions eαϕ, since for every
ϕ ∈ LTr, Nϕ is countable and the cardinality of V L is either finite or i1. Therefore,
there is a smallest ordinal ζ0 at which the revision sequence of Definition 4.18
reaches a fixed point for cardinality reasons. a

Proposition 4.22. For every ϕ,ψ ∈ LTr, v ∈ Nϕ, w ∈ Nψ:

if Lϕ(v) = Lψ(w), then 〈Nvϕ, Svϕ〉 ∼=l 〈Nwψ, Swψ〉.
Proof. I begin with two preliminary results.

Lemma 5.4. For every ϕ,ψ ∈ LTr, v ∈ Nϕ, and w ∈ Nψ, if Lϕ(v) = Lψ(w) and
no looping clause applies to v and w, then v and w have the same number of
immediate successors, with identical labels.

Proof. I do only the case Lϕ(v) = χ → σ = Lψ(w). Since no looping clause
applies to v and w, by Definitions 4.2 and 4.3 the only clause that applies to v

in the construction of 〈Nϕ, Sϕ〉 as well as to w in the construction of 〈Nψ, Sψ〉 is
clause (5.1). Therefore, v and w have two immediate successors, v0, v1 and w0, w1
respectively, s.t. Lϕ(v0) = χ = Lψ(w0) and Lϕ(v1) = σ = Lψ(w1). (Lemma
5.4) a

Lemma 5.5. For every ϕ,ψ ∈ LTr, v ∈ Nϕ, and w ∈ Nψ, if Lϕ(v) = Lψ(w) and
there is a v0 ∈ Predϕ(v) s.t. a looping clause applies to v and v0 but there is no
w0 ∈ Predψ(w) s.t. Lϕ(v0) = Lψ(w0) and a looping clause applies to w and w0,
then w has a successor w1 s.t. Lϕ(v0) = Lψ(w1).
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Proof. I do only the case Lϕ(v) = ∀xχ(x) = Lψ(w). If there is a v0 ∈
Predϕ(v) s.t. a looping clause applies to v and v0, then by Definition 4.2 such
clause is (7.L) and Lϕ(v0) = χ(tn) for some term tn. If there is no w0 ∈ Predψ(w)
s.t. Lϕ(v0) = Lψ(w0) and a looping clause applies to w and w0, then by Definition
4.2 the only possible clause that applies to w is (7.1), which yields that w has an
immediate successor w1 s.t. Lψ(w1) = χ(tn), proving the claim. (Corollary
5.5) a
I now turn to the proof of the Proposition. There are three main cases:

Case 1. Let v be a dead end. By Definition 4.3, v is either labelled with an
atomic L-sentence, or with a sentence Tr(t) where t does not denote the code of
a LTr-sentence. Since Lϕ(v) = Lψ(w), w is also a dead end.

Case 2. Suppose for a contradiction that v is a simple point but w is not.
As per Case 1, w is not a dead end, so it belongs to at least one loop L, of the
following form:52

L =
〈
〈w1, w2〉, . . . 〈wi, w〉, 〈w, wi+1〉, . . . , 〈wj, wj+1〉, 〈wj+1, w1〉

〉
where a looping clause applies to wj+1 (and possibly other nodes). Since Lϕ(v) =
Lψ(w), by Lemmata 5.4 and 5.5, v and w can have many immediate successors,
possibly infinitely many, but in particular v has an immediate successor v1 s.t.
Lψ(wi+1) = Lϕ(v1). But since we assumed that v is a simple point, v1 cannot
loop back to v nor to any of its predecessors. Moreover, it is not the case that v1
only loops back to itself, because otherwise wi+1 would do that as well (by the
above Lemma and Corollary). So, v1 is also a simple point. Now we apply to v1
and wi+1 the same reasoning that we applied to v and w: using again Lemmata
5.4 and 5.5 on v1 and wi+1 we conclude that, amongst possibly many others,
v1 has at least one successor labelled as the immediate successor of wi+1 that
belongs to L, and that such successor of v1 is a simple point. Proceeding in
this way, by repeated applications of Lemmata 5.4 and 5.5, we generate a path
P ∈ Rϕ(v) s.t., as set of ordered pairs of sentences (labels), matches exactly the
loop L.53 So, P has the form:

P =
〈
〈v, v1〉, 〈v1, v2〉, . . . , 〈vk, vk+1〉

〉
where Lϕ(v) = Lψ(w), . . . , Lϕ(vk+1) = Lψ(wi) (the dots stand for the nodes in L)
and j = k. However, by our assumption that v is a simple point, a looping clause
never applies to a node in P and v or one of its predecessors. But, by Lemma 5.5
and Definition 4.3, a looping clause applies at least once to vk+1 that loops back
to v. Contradiction. So, if v is a simple point, also w is a simple point. They
have the same label by assumption and, as shown, they have the same number
of immediate successors, labelled with the same sentences, by Lemma 5.4.

Case 3. Let v belong to at least one loop P∗ and suppose for a contradiction
that there is no loop P ∈ Rψ(w) s.t. P∗ and P have the same number of nodes and

52In this proof, I suppose for the sake of readability and without loss of generality that the
nodes in the loops and paths to be mentioned are enumerated progressively.

53Corollary 5.5 is used in generating the successor of v (within P) labelled as wj+1
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identical labels for edges (within Lϕ and Lψ, respectively).54 P∗ is a finite set of
ordered pairs of labelled nodes of the following form:

P∗ =
〈
〈v1, v2〉, . . . 〈vi, v〉, 〈v, vi+1〉, . . . , 〈vk, vk+1〉, 〈vk+1, v1〉

〉
where a looping clause applies to vk+1 that loops back to v1. By our supposition,
there is no loop in Rψ(w) that is loop-isomorphic to P∗. By cases 1 and 2, w is in
at least one loop. If w is not contained in any loop which is loop-isomorphic to
P∗, then a looping clause applies to w or to one of its successors (within Rψ(w))
that are labelled as a node in P∗, but not to such node in P∗, or vice versa. Let
wp+1 be the first node in Rψ(w) s.t. the first case is given (otherwise, it is dual).
So, there is a path P〈

〈w, wn+1〉, . . . , 〈wp, wp+1〉, 〈wp+1, wm〉
〉

= P ∈ Rψ(w)

s.t. Lψ(wn+1) = Lϕ(vi+1), . . . , Lψ(wp) = Lϕ(vi+(p−n)), Lψ(wp+1) = Lϕ(vi+(p−n)+1),
by Lemmata 5.4 and 5.5. A looping clause applies to wp+1 and some wm labelled
as vi+(p−n)+2 (by our assumption), but it does not apply to vi+(p−n)+1 and
vi+(p−n)+2 (by our assumption). Then vi+(p−n)+1 is between vi+1 and vk in P∗,
so there is an index l s.t. vi+(p−n)+1 is vl. Therefore, P∗ looks as follows:

P∗ =
〈
〈v1, v2〉, . . . 〈vi, v〉, 〈v, vi+1〉, . . . , 〈vl, vl+1〉, . . . , 〈vk, vk+1〉, 〈vk+1, v1〉

〉
Since a looping clause applies to wp+1, there is a path P1 s.t.

P $
〈
〈wm, wm+1〉, . . . , 〈w, wn+1〉, . . . , 〈wp, wp+1〉, 〈wp+1, wm〉

〉
= P1 ∈ Rψ(w)

where Lψ(wm) = Lϕ(vl+1) and Lψ(wm+1) = Lϕ(vl+2). Our assumption, however,
dictates that there is no path within Rψ(w) that is loop-isomorphic to P∗. So,
any path within Rψ(w) that contains nodes labelled as Lψ(〈wm, wm+1〉 ∪ P), with
the same order of labels as P∗, is not loop-isomorphic to P∗.55 There are at most
countably many such paths P1.1, P1.2, . . . and P1 is one of them. Considering all
the (at most countably infinitely many) possible cases, we have:〈

〈wm, wm+1〉,∼1, 〈w, wn+1〉, . . . , 〈wp+1, wm〉
〉

= P1.1 ∈ Rψ(w)

...〈
〈wm, wm+1〉,∼j , 〈wj, wjn+1〉, . . . , 〈w

j
p+1, wm〉

〉
= P1.j ∈ Rψ(w)

...

54An anonymous referee has described the proof strategy employed in this case of the demon-
stration as the application of a kind of pigeonhole principle. In fact, I show that, trying to

systematically falsify the claim of (this case of) the Proposition and constructing all the possible

paths in Rψ(w) that start from w, one can derive the existence of a path that is loop-isomorphic

to P∗.
55I write Lψ(P) to denote the labels assigned by Lψ to the nodes in P.
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where ∼j indicates some path different in labels from Lϕ(P∗) \ [Lψ(〈wm, wm+1〉) ∪⋂
i Lψ(P1.i)] and in their order. Moreover, for i ∈ ω, Lψ(w) = Lψ(wi), Lψ(wn+1) =

Lψ(win+1), . . . , Lψ(wp+1) = Lψ(wip+1).

Lemmata 5.4 and 5.5 imply that there is a node in Rψ(wm+1) labelled as some
member of P∗ s.t. a looping clause applies to that node but not to the correspond-
ing member of P∗, or vice versa (otherwise there would be a path loop-isomorphic
to P∗ within Rψ(w)). In terms of the above list, this means that some node in
some of the P1.n in the disagreeing part of the path ∼n loops back to a prede-
cessor of wm (so, such node is a predecessor of all nodes that are successors of
wm).

56

Take any such path, call it P2. We have that:〈
〈wo, wo+1〉, . . . , 〈wq, wq+1〉, 〈wq+1, wo〉

〉
= P2 ∈ Rψ(w)

for Lψ(wo) = Lϕ(some node in P∗), Lψ(wo+1) = Lϕ(its successor labelled as the
corresponding node in P∗) and a looping clause applies to wq+1 and wo. Clearly
Lψ(wq+1) 6= Lψ(wnp+1) for all n ∈ ω (by construction and because otherwise no

path such as P1.n could exist). By construction, wo, wo+1 are predecessors of any
node in

⋃
i P1.i. Now, we reason as we did after finding the path P1, deriving the

existence of (possibly countably infinitely many) paths P2.1, P2.2, . . . such that:〈
〈wo, wo+1〉,∼1, 〈wq, wq+1〉, . . . , 〈wq+1, wo〉

〉
= P2.1 ∈ Rψ(w)

...〈
〈wo, wo+1〉,∼j , 〈wjq, w

j
q+1〉, . . . , 〈w

j
q+1, w

j
o〉
〉

= P2.j ∈ Rψ(w)

...

where ∼j indicates a path that is different in labels and their order from Lϕ(P∗)\
Lψ[(〈wo, wo+1〉) ∪

⋂
i Lψ(P2.i)].

Then we take an arbitrary path P3, as we did for P2, i.e. s.t. a looping clause
applies to two nodes in it labelled as in P∗, but s.t. (by assumption) the resulting
path is not loop-isomorphic to P∗. By construction, the node labelled as a node
in P∗ that loops back to a node labelled as a node in P∗ is s.t. no node with the
same label loops back to a node labelled as a node in P∗ in P1 or P2 (just as above
we had that Lψ(wq+1) 6= Lψ(wnp+1) for all n ∈ ω). Moreover, the node in P3 to

which such node loops back is a predecessor of every node in (
⋃
i P1.i ∪

⋃
i P2.i)

(just as we had that wo and wo+1 are predecessors of every node in
⋃
i P1.i above).

Proceeding in this way, we derive the existence of more and more paths
P4, P5, . . . s.t. every Pt+1 in P1, P2, P3, P4, P5, . . . is loop-isomorphic to a proper
sub-path of P∗, but is not loop-isomorphic to P∗ itself. The existence of such
paths is guaranteed by iterated applications of Lemmata 5.4 and 5.5, while the
‘asymmetric’ looping back we have seen in the construction of P1, P2, P3, . . . is
forced by our assumption that no such path can ever be loop-isomorphic to P∗:

56Such a node exists by Lemmata 5.4 and 5.5 and our assumption.
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if no node in the path in question looped back asymmetrically, our assumption
would be immediately falsified.

The key facts are: (1) for every Pt+1 amongst P1, P2, P3, . . . , a looping clause
applies to a node w′ in Pt+1 labelled as a node in P∗ but no node w′′ with the same
label as w′ in any of P1, P2, P3, P4, . . . , Pt is s.t. a looping clause applies to w′′ and
to a node labelled as a node in P∗ (by construction and to avoid contradiction,
as shown above); (2) for every Pt+1 amongst P1, P2, P3, . . . , a node labelled as an
element of P∗ loops back to a node which is also labelled as an element of P∗:
the latter is a predecessor of every node in

⋃
m≤t(

⋃
i Pm.i) (by the definition of

predecessor and the above construction, which in turn is forced by Lemmata 5.4
and 5.5 together with our assumption).

But P∗ has only finitely many nodes, so the process described in key facts (1)
and (2) cannot go on forever. Deriving the existence of finitely many P1, P2, P3,
P4, . . . , we should find a path Pn+1〈

〈wr, wr+1〉, . . . , 〈ws, ws+1〉, 〈ws+1, wr〉
〉

= Pn+1

s.t. Lψ(ws+1) is identical to the label of some node between vi+2 and vl−1
(by Lemmata 5.4 and 5.5) and a looping clause applies to ws+1 and wr (by our
supposition and key fact (1)). But this cannot be! For, if there were a node
labelled as wr with which ws+1 is in a loop, then there would have already been
some node between wn+1 and wp (included) within P1 in a loop with it. This is
because wr is a predecessor of every node between wn+1 and wp (included), by key
fact (2). So, no path such as P1 could have existed, because the nodes between
wn+1 and wp are labelled as the nodes between vi+2 and vl−1 (included) and wp+1

would not be the first successor of w in Rψ(w) labelled as a member of a pair in
P∗ s.t. the rule (Loop) applies to it but not to the corresponding member of P∗.
Then, we derive the existence of the following path〈

〈ws, ws+1〉, 〈ws+1, ws+2〉
〉

= P̂1 ∈ Rψ(w)

where Lψ(ws+1) = Lϕ(vi+2) (by Lemmata 5.4 and 5.5) and no looping clause
applies to ws+1 and any other node labelled as in P∗.

We reiterate this reasoning k+ 1 times, observing that a looping clause never
applies to ws+m (for m ≤ k + 1) and to some node in Rψ(w) labelled as a node
in P∗, otherwise we would have a contradiction with the existence of the paths
P1, P2, P3, P4, . . . derived so far. We therefore obtain the existence of the following
paths: 〈

〈ws, ws+1〉, 〈ws+1, ws+2〉, 〈ws+2, ws+3〉
〉

= P̂2 ∈ Rψ(w)

...〈
〈ws, ws+1〉, 〈ws+1, ws+2〉, . . . , 〈ws+k, ws+k+1〉, 〈ws+k+1, ws〉

〉
= P̂k ∈ Rψ(w)

By construction and Lemmata 5.4 and 5.5, the labels of the edges of P̂k are
pairwise identical to those of P∗, i.e. P̂k ∼=l P

∗. Contradiction. a
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Proposition 4.23. For every ϕ,ψ ∈ LTr, v ∈ Nϕ, w ∈ Nψ, and v ∈ V L∪P(E L),
if Lϕ(v) = Lψ(w):

1. there is an α s.t. eαϕ(v) = v if and only if there is a β s.t. eβψ(w) = v, and

2. eϕ(v) = eψ(w).

First, I prove a useful lemma.

Lemma 5.6. Let ϕ,ψ ∈ LTr, v ∈ Nϕ, and w ∈ Nψ be s.t. Lϕ(v) = Lψ(w).
For every dead end or simple point vi ∈ Nvϕ there is a dead end or simple point
wj ∈ Nwψ s.t.:

- Lϕ(vi) = Lψ(wj),
- Lϕ(the immediate predecessor of vi) = Lψ(the immediate predecessor of wj).

Proof. For vi as in the lemma, the immediate predecessor of vi, call it vi
′,

is in Nvϕ. Since by Proposition 4.22 〈Nvϕ, Svϕ〉 ∼=l 〈Nwψ, Swψ〉, there is a w′ ∈ Nwψ s.t.

Lϕ(vi
′) = Lψ(w′). The existence of a node wj as in the statement of the lemma

follows immediately from case 2 of the proof of Proposition 4.22 – in fact, if wj
is not in a loop, its being a simple point or a dead end depends only on its label.
(Lemma 5.6) a

Proof sketch of the Proposition. Let ϕ, ψ, v, and w be as in the state-
ment of the proposition. I only do the left-to-right direction. Let there be
an α s.t. eαϕ(v) = v. By Definition 4.14, the only nodes of Nϕ used in con-
structing eαϕ(v) are those in Nvϕ. Since Lϕ(v) = Lψ(w), by Proposition 4.22
〈Nvϕ, Svϕ〉 ∼=l 〈Nwψ, Swψ〉. As a consequence:

(i) Dead ends of 〈Nvϕ, Svϕ〉 are mapped to dead ends of 〈Nwψ, Swψ〉 with identical
labels, and vice versa.

(ii) Simple points of 〈Nvϕ, Svϕ〉 are mapped to simple points of 〈Nwψ, Swψ〉 with
identical labels, and by Lemma 5.6 every path made of simple points within
〈Nvϕ, Svϕ〉 (with the only possible exception of starting with a looping point
or ending in a dead end) is reconstructed, identical in order and labels,
within 〈Nwψ, Swψ〉, and vice versa.

(iii) Every loop within 〈Nvϕ, Svϕ〉 is mapped to a loop of 〈Nwψ, Swψ〉, with identical
number of nodes and labels, and vice versa.

It is easy to show that nodes with identical labels are assigned the same equations
un the first inductive construction, encoded by the minimal fixed point IΦ. It
follows that:

- If v is a dead end, e1
ϕ(v) = k = e1

ψ(w), by item (i) (where k = 0 or k = 1).
- If v is a looping leaf, then v and w belong to loop-isomorphic loops and

so are assigned the same equation system, by item (iii). And identical
equation systems have identical solutions or no solutions.

- If v is a simple point and eαϕ(v) has a value, then one or more of the

successors of v has already a value in V L ∪P(E L) at an ordinal γ < α;57 by

item (ii), then for some ordinal β the function eβψ(w) has the same value,
for the very same reason.

57See, for example, item 1.1 in Definition 4.14.
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- Finally, the evaluation functions move towards the root node either via
paths of simple points or via loops that are ‘closer’ to the root than those
already evaluated. In both cases (as seen with the two previous points), eϕ
and eψ give identical values to nodes with identical labels.

a

Proposition 4.25. For every ϕ,ψ ∈ LTr and χ(x) ∈ ForLTr
, the following

holds (⇐⇒ stands for the meta-linguistic ‘if and only if ’, and =⇒ for ‘if . . .
then’) :

C (¬ϕ) = 1 ⇐⇒ C (ϕ) = 0

C (ϕ ∧ ψ) = 1 ⇐⇒ C (ϕ) = 1 and C (ψ) = 1

C (ϕ→ ψ) = 1 ⇐⇒ C (ϕ) = 0,

or C (ψ) = 1,

or C (ϕ) = j,C (ψ) = k, and j ≤ k

C (∀xχ(x)) = 1 ⇐⇒ C (χ(tk)) = 1 for all tk ∈ CTerLTr

C (Tr(pϕq)) = 1 ⇐⇒ C (ϕ) = 1

In addition, modus ponens holds for the canonical evaluation:

C (ϕ) = 1 and C (ϕ→ ψ) = 1 =⇒ C (ψ) = 1.

Proof sketch. I do only one case. Let C (ϕ → ψ) = 1, C (ϕ) = 1. Then
eϕ→ψ(r1) = 1 and eϕ(r2) = 1, for Lϕ→ψ(r1) = ϕ → ψ, Lϕ(r2) = ϕ. r1 is not a
dead end (→ is binary). Since eϕ is the fixed point of the sequence of eαϕ, the
evaluation clause of eϕ→ψ(r1) is:

eϕ→ψ(r1) = 1 iff eϕ→ψ(v1) = 0, or

eϕ→ψ(v2) = 1, or

eϕ→ψ(v1) = j, eϕ→ψ(v2) = k, and j ≤ k

(1)

where Lϕ→ψ(v1) = ϕ and Lϕ→ψ(v2) = ψ. v1, v2 ∈ Nϕ→ψ by Definition 4.3 (they
are successors of the root node r1). Since eϕ(r2) = 1 and Lϕ(r2) = Lϕ→ψ(v1),
by Proposition 4.23 also eϕ→ψ(v1) = 1. By equation (1) (it’s an ‘if and only if’),
eϕ→ψ(v2) = k and 1 ≤ k, but k ∈ V L, so k = 1. Applying again Proposition
4.23 yields that eψ(r3) = 1, for Lψ(r3) = Lϕ→ψ(v2) = ψ, therefore C (ψ) = 1 as
desired.

Suppose now that C (ϕ) = 0, or C (ψ) = 1, or C (ϕ) = j and C (ψ) = k,
for j ≤ k. Then, eϕ(r2) = 0, or eψ(r3) = 1, or eϕ(r2) = j and eψ(r3) = k
(with labels as above). Let the last case be given (otherwise it is similar). By
Proposition 4.23, eϕ→ψ(v1) = j and eϕ→ψ(v2) = k (v1 and v2 exist by Definition
4.3), and by equation (1) eϕ→ψ(r1) = 1, i.e. C (ϕ→ ψ) = 1, as desired. a

Notice that Proposition 4.26 can also be proven essentially along the lines of
the above proof.

Proposition 4.30. (Restall [1992]) There is no continuum-valued  Lukasie-
wicsz evaluation for LTr that: (i) agrees with an ω-model for L, and (ii) validates
the t-schema or inter-substitutivity.
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Proof (based on Field [2008], adapted to the present framework).
Let ρ be the fixed point of ¬∀nTr(pr. (n, x)q) (for the function r, see Definition
4.31). Consider the following graph:

¬∀nTr(pr. (n, pρq)q)

∀nTr(pr. (n, pρq)q)

· · ·

Tr(pDn(ρ)q)

Dn(ρ)

sub-graph ending with 2n

copies of the dotted one
without previous loops

· · ·

Tr(pD(D(ρ))q)

D(D(ρ))

sub-graph ending with 2
copies of the dotted one
without previous loops

Tr(pD(ρ)q)

¬(ρ→ ¬ρ)

ρ→ ¬ρ

¬ρ

...

Figure 9. The semantic graph of ρ

The evaluation of the nodes in this graph yields an infinite system of equations
at level ω + 1. Suppose that this system has exactly one solution, and consider
the following cases:

- Suppose that C (ρ) = 1. An easy induction shows that the equation asso-
ciated with Dn(ρ), for all n ∈ ω, has 1 as its only solution. Therefore 1 =
C (ρ) = C (¬∀nTr(pr. (n, pρq)q)) = 1 − C (∀nTr(pr. (n, pρq)q)) = 1 − 1 = 0,
which is absurd.

- Suppose that C (ρ) = k, k < 1. If 0 ≤ k ≤ 1/2, the only solution to
the equation associated with each sentence of the form Dn(ϕ) is 0, and so
C (∀nTr(pr. (n, pρq)q)) = 0 and C (¬∀nTr(pr. (n, pρq)q)) = 1 = C (ρ), against
our supposition. If 1/2 < k < 1, then there is a j ∈ ω s.t. the only possible
solution for Dj(ρ) is less than or equal to 1/2. Then consider Dj+1(ρ) and
reason as above.

a

Proposition 4.32. For every ϕ ∈ LTr and every V L, if C (ϕ) = k, for k ∈ V L,
then:

1. For all ordinals α ∈ OrdNt, C (Dα(ϕ)) ∈ V L. In particular (for γ limit):

C (Dα+1(ϕ)) = 1−min[1, (1− C (Dα(ϕ)) + 1− C (Dα(ϕ)))]

C (Dγ(ϕ)) = inf{C (Dα(ϕ))|α < γ}
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2. There is a unique ordinal δ′ ∈ OrdNt s.t. for all δ ∈ OrdNt greater than or
equal to δ′:

C (Dδ(ϕ)) = 1 if and only if C (ϕ) = 1

0 if and only if C (ϕ) ∈ V L and C (ϕ) < 1

Proof. As for the first item, let α ∈ OrdNt and assume that the claim holds
for γ < α. Now, Dα+1(ϕ) = ¬(Dα(ϕ) → ¬Dα(ϕ)) and, by IH, C (Dα(ϕ)) ∈ V L.
By Proposition 4.26, C (¬(Dα(ϕ) → ¬Dα(ϕ))) ∈ V L i.e. C (Dα+1(ϕ)) ∈ V L, and
the successor case holds by construction. A similar argument establishes the
limit case.

As for the second item, note that if C (ϕ) ≤ 1/2, then C (D(ϕ)) = 0 (by
Proposition 4.26 and simple calculation). We therefore distinguish two cases:

- V L = {0, 1/2m, . . . , 2m−1/2m,1}. If C (ϕ) = k/2m (for 1/2 < k/2m < 1), then
by Proposition 4.26:

C (D(ϕ)) = 1−min[1, (1− k/2m + (1− k/2m))] = (2k−2m)/2m.(2)

So, if C (ϕ) = k/2m (for 1/2 < k/2m < 1), then C (Dm(ϕ)) = 0 applying
equation (2) at most m times. Therefore, for all α ∈ OrdNt s.t. α ≥ m,
C (Dα(ϕ)) = 0, by item 1 of the Proposition, equation (2), and Proposition
4.26. This proves item 2 for every finite V L, in which case δ′ is the smallest
l ≤ m s.t. C (Dl(ϕ)) = 0 (uniqueness is immediate).

- V L = [0,1] and C (ϕ) = k, for 0 ≤ k < 1. So, there is a j/2n s.t. k < j/2n <
1. By the previous result on finite numerical value spaces, Dn(ϕ) = 0.
Since such a Dn exists for each k ∈ V L, the claim holds also for their limit
Dω (which exists and is unique by item 1 of the Proposition). Therefore,
for all δ ∈ OrdNt s.t. δ ≥ ω, C (Dδ(ϕ)) = 0, by item 1, equation (2), and
Proposition 4.26, and this shows that if V L = [0,1], then δ′ = ω.

a
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E. Chemla, P. Égré, and B. Spector [2017], Characterizing logical consequence in

many-valued logic, Journal of Logic and Computation, vol. 27, no. 1, pp. 2193–2226.
G. Chierchia and S. McCconnell-Ginet [2000], Meaning and Grammar: Introduc-

tion to semantics, second ed., MIT Press, Cambridge (MA).
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