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Summary
Various genetic and environmental risk factors have been implicated in the pathogenesis of amyotrophic lateral scle-
rosis (ALS). Despite this, the cause of most ALS cases remains obscure. In this review, we describe the current evi-
dence implicating genetic and environmental factors in motor neuron degeneration. While the risk exerted by many
environmental factors may appear small, their effect could be magnified by the presence of a genetic predisposition.
We postulate that gene-environment interactions account for at least a portion of the unknown etiology in ALS. Cli-
mate underlies multiple environmental factors, some of which have been implied in ALS etiology, and the impact of
global temperature increase on the gene-environment interactions should be carefully monitored. We describe the
main concepts underlying such interactions. Although a lack of large cohorts with detailed genetic and environmen-
tal information hampers the search for gene-environment interactions, newer algorithms and machine learning
approaches offer an opportunity to break this stalemate. Understanding how genetic and environmental factors
interact to cause ALS may ultimately pave the way towards precision medicine becoming an integral part of
ALS care.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a devastating neu-
rological disease that primarily affects motor neurons
leading to paralysis and death from respiratory failure.
With a prevalence of 4¢9 �12 cases per 100,000 popula-
tion1 and an incidence of 3¢1 cases per 100,000 person-
years,2 ALS is a relatively rare disease. It is also a disease
of aging, with symptoms typically commencing around
age 65.3 These characteristics (a fatal, rare disease of the
aged) hint at the underlying etiology and suggest a road-
map to search for ALS risk factors. Today, we know the
genetic causes of approximately 20% of cases. The
remaining cases are likely caused by a mixture of multi-
ple genetic and environmental factors4 (Figure. 1).
*Corresponding author at: ALS Center, Department of Neuro-

science "Rita Levi Montalcini", University of Turin, via Cher-

asco 15, Turin 1026, Italy.

E-mail address: adriano.chio@unito.it (A. Chi�o).

www.thelancet.com Vol 75 Month January, 2022
Here, we aim to summarise what is known about the
environmental and genetic ALS risk factors. We also
explore how these factors potentially interact to trigger
motor neuron death.
ALS phenotypes
ALS clinical presentation is highly variable across
patients. For example, several aspects of the ALS pheno-
type vary widely, such as the onset age, the extent of
damage to the upper or the lower motor neuron, the
most affected body region, progression rate, and the
occurrence of non-motor symptoms, the most frequent
being cognitive impairment.5�7 Despite this, most stud-
ies examining the cause of ALS treat patients as a mono-
lith by assuming that the same risk factors are operating
in each case. The more significant numbers analyzed by
this approach increase the statistical power. However,
the assumption is not necessarily valid and different
environmental and genetic causes may operate within
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Figure 1. Amyotrophic lateral sclerosis (ALS) is likely to be a
complex disease arising from variable interactions between
genetic factors and environmental factors. ALS in Guam refers
to the geographical cluster of ALS cases on the island of
Guam.118
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different ALS patient subgroups. If this is the case,
treating them as a single group risks diluting the very
risks one is trying to detect.

The different distribution of these phenotypes across
diverse cohorts probably contributes to the discordant
results observed across studies (see below). Even though
ALS risk factors are undoubtedly granular and may
operate at a local community level, there is no easy solu-
tion to this problem. Clustering based on clinical char-
acteristics may not be the most suitable criterion when
looking for etiology.6
Mendelian randomization studies
Most studies looking for ALS etiology are observational
in nature. As such, many issues potentially limit the
validity of their results, such as selection bias, reverse
causality, and confounders. These issues are not unique
to ALS and are present in the epidemiological study of
any rare disease.

More recently, Mendelian randomization has
emerged as a valuable tool to overcome such hidden
confounders.8 Mendelian randomization studies rely on
the random assortment of genes from parents to off-
spring during conception, as described by Mendel’s sec-
ond law. Since the inheritance of one trait will be
independent of the inheritance of other traits, genetic
variants related to one exposure will not be linked to
those related to potential confounders and can be used
as a proxy.9,10 Single nucleotide polymorphisms (SNPs)
related to a particular exposure are retrieved from the
summary statistics of previous GWA studies and then
used as a separate outcome GWAS to assess the rela-
tionship between the exposure and the outcome.11

However, Mendelian randomization studies are not
free from limitations, and three major assumptions
must hold for the results to be valid: (i) genetic variants
should be associated with the exposure (relevance
assumption); (ii) they must not be associated with con-
founders (independence assumption); and (iii) they
must not influence the outcome through other
pathways than the exposure considered (exclusion
restriction assumption).8,9 The first assumption is usu-
ally quantified using the F-statistics, while the remain-
ing two are addressed through sensitivity measures
such as the MR-PRESSO and Cochran’s Q test.11 A prac-
tical consideration is that Mendelian randomization
requires large datasets to detect meaningful effects,
and, ideally, a positive outcome should be replicated in
an independent dataset.

Furthermore, the SNPs used as instrumental varia-
bles of the exposure are identified based on a specific
linkage disequilibrium structure. Hence their validity
may not be the same across multiple populations. Ide-
ally, the two GWASes should be selected from the same
population to avoid this pitfall. Finally, Mendelian Ran-
domization studies could be limited when considering
time-varying exposures, such as behaviours. In these
cases, GWAS would be performed at a specific time
point while the behaviour could change before and after
that point in response to many internal and external
stimuli.11,12 The confounding effect of time (or aging) is
a recurring theme when tackling gene-environment-cli-
mate relationships.
Genetic factors
Heritability estimates provide a measure of how much
phenotypic or disease risk variance can be explained by
genetics. Estimates from twin studies13,14 and pedigree
studies15,16 give higher heritability estimates compared
to those from population-level genome-wide SNP data.17

The difference reflects the contribution of rare variants
captured in family studies and perhaps the relatively
small numbers of cases involved in twin and pedigree
studies yielding wide confidence intervals. With only 30
genes reliably identified to cause or modify ALS risk,18 a
significant proportion of heritability in ALS is still miss-
ing.

Despite this knowledge gap, the known genes are
already converging on multiple functional pathways.
These pathways include global protein and RNA
homeostasis dysfunction, oxidative stress and inflam-
mation, mitochondrial dysfunction, impaired cytoskele-
tal integrity, and altered axonal transport dynamics
(18,19; summarized in Table 1). Interestingly, many of
these pathways are reactive and responsive to exogenous
influences. For example, exposure to pesticides, ciga-
rette smoke, traumatic brain injury, and physical activity
can induce oxidative stress and inflammation,20 which
could have a knock-on effect on cellular pathways with
pre-existing lower tolerance to dysregulation due to pre-
disposing genetic factors. In a recent Mendelian ran-
domization study, physical activity was correlated with
the altered expression of many genes, including C9orf72
and was inversely proportional to the onset age among
patients with C9orf72 expansion.21 Exposure to cigarette
smoking has been shown to cause heritable epigenetic
www.thelancet.com Vol 75 Month January, 2022



Pathways Genes Molecular impact on disease

Protein homoeostasis C9orf72, SQSTM1, TBK1, CCNF, FUS,

TARDBP, OPTN, UBQLN2, VCP, CHMP2B,

SOD1, VAPB, SIGMAR1

Protein aggregation and accumulation due to mutation-induced

protein misfolding and/or aberrant out-of-frame protein produc-

tion hampered by impaired removal via autophagy or ubiquitin-

proteosomal pathway.

RNA homeostasis C9orf72, SQSTM1, TBK1, CCNF, FUS,

TARDBP, ATXN2, SETX, ANG, hnRNPA1,

MATR3

Altered RNA splicing producing cyptic or aberrantly spliced tran-

scripts and dysregulated transcriptome causing differrential and

pathogenic expression of genes.

Aggregation of abberant transcripts into RNA foci could act as a

sink resulting in depletion of other transcripts resulting in further

dysregulation of the transcriptome and proteome. These could

have knock-on effects on other cellular processes.

Oxidative stress & inflammation SQSTM1, TBK1, FUS, TARDBP, UBQLN2,

VCP, SOD1

Free radicals could induce abnormal modification of proteins caus-

ing it to aggregate and/or altering protein function, cause DNA

and organelle damage. Inflammation induced by microglia could

aggravate oxidative stress response.

Persistent and uncontrolled oxidative stress response drives the

formation of irreversible stress granules that can sequester RNA-

binding proteins and accelerate pathogenic aggregation of

proteins.

Cellular energetics CHCHD10, TBK1, OPTN, VCP, SOD1 Structural and functional mitochondrial abnormalities cause defec-

tive energy production, abnormal calcium handling, dynamics,

and apoptotic signaling.

Mitochondria can be damaged by reactive oxygen species, mito-

chondrial DNA damage, and impaired fission and fusion.

Cytoskeletal integrity & intracel-

lular transport

C9orf72, SQSTM1, CCNF, FUS, TARDBP,

UBQLN2, TUBA4A, SOD1, ALS2, SPG11,

VAPB, FIG 4, SIGMAR1, PFN1, ANXA11,

KIF5A

Intracellular trafficking of organelles within the soma and dendrites

are important in maintaining a functional intracellular signaling

and cross-talk between neurons at the synaptic junctions.

Destabilized cytoskeletal scaffold, impaired machineries for axonal

transport and endo-trafficking can affect homeostasis of other cel-

lular processes potentially amplifying pathogenic processes

already underway.

Table 1: Crosstalk of genes in functional pathways impacted in ALS.
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changes resulting in altered gene expression and trig-
gering abnormal inflammatory response.22,23

Taken together, there is a theory of evidence that
suggests that the risks conferred purely by genetics,
especially by variants with minor effects operating in
sporadic ALS, are not sufficient to cause disease.
Instead, they require an external trigger to push the sys-
tem into an irreversible cascade of cell death and loss.
This theory could usefully explain some of the variabil-
ity in penetrance observed from genetic studies.
Environmental factors
Given that the environmental exposure of an individual
(the “exposome”24) is essentially infinite, it is perhaps
not surprising that a plethora of environmental factors
has been implicated in ALS pathogenesis.4,25,26 These
hypotheses predominantly arose from anecdotal cases,
patients' medical history, risk factors identified in other
diseases, spatial epidemiology studies,27 and biological
plausibility based on our incomplete knowledge of the
www.thelancet.com Vol 75 Month January, 2022
molecular mechanisms involved in neurodegenera-
tion.4 A common criticism of these suspects is that they
arise from a “streetlight's effect,” reminiscent of Captain
Louis Renault “rounding up the usual suspects” in
Casablanca, rather than being data driven. Clearly,
many environmental factors remain to be explored, and
there is an unmet need to develop methods to investi-
gate the exposome systematically.28

In contrast to genetic studies, evidence nominating
an environmental factor is seldom successfully repli-
cated. These discordant findings could be due to the
patients’ different ancestral origins leading to differen-
tial susceptibility to that environmental factor. It could
also be driven by environmental exposures being local,
circumscribed events within a geographical area. More
often, however, methodological differences account for
most of this discordance. Selection bias could yield a
false relationship or hide a true one. The use of preva-
lent cases in these studies is concerning, as detected
relationships may be driven by survival rather than by
risk. Confounders could differentially influence the
3
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results across the studies depending on their adjust-
ment (known) and distribution (unknown). Reduced
sample size could lead to a type II error, hiding genuine
differences and exacerbating false-positive associations.
Finally, measures chosen to assess an exposure could
be differently susceptible to information bias (recall bias
being the most common).

Compounding these study design effects, most anal-
yses assume a linear model, but this may not be the
case for all environmental factors. Looking at other dis-
eases, the relation between alcohol consumption and
acute coronary syndrome is J-shaped, for example.29

Additional complexity arises from the timing and dura-
tion of the exposure, circumstances that are rarely taken
into account but could strongly influence the risk and
vary across studies.4 An exposure that happened deca-
des before disease onset (e.g., sports-related head injury
as a teenager) will be more challenging to study than
one that occurs immediately before onset (e.g., bone
fracture). Finally, as mentioned above, differing
phenotypes could underlie different etiologies.6,7,30 In
conclusion, each epidemiological study collecting envi-
ronmental study is likely closer to being an entirely new
experiment rather than a replication of a previous obser-
vation.

It should also be considered that collecting and ana-
lyzing information across multiple environmental fac-
tors could provide insights into disease pathogenesis
that would have been missed by considering single
exposures. This reinforces the need to focus on the indi-
vidual exposome, despite some issues that are difficult
to overcome. Firstly, many tools are needed to assess
the exposures, both through internal (-omics characteri-
zation) and external measurements. Furthermore, the
collection of many variables will need analysis to employ
appropriate dimensionality-reduction approaches.
Finally, to characterize an individual’s lifetime expo-
some would require either multiple measures overtime
or a smaller number of measures known to be stable
over extended periods.31,32 Registries could offer a con-
venient solution to the issue of collecting numerous,
accurate, and sequential data on exposures.

Despite these caveats, several environmental factors
have been robustly implicated in the pathogenesis of
ALS, and we review the evidence for each here.
Cigarette smoking
At this stage, there is sufficient epidemiological and
genetic data indicating that cigarette smoking is a bona
fide risk factor for ALS.12,33,34 Studies showed an
increased risk ranging from 1¢4334 to two-fold for indi-
viduals who smoked compared to never-smokers.35

Compellingly, the risk was further increased when com-
paring current smokers to individuals who never
smoked.35,36 Furthermore, most studies showed a pack-
years dose-response relationship,34 although the rela-
tionship may rely more on the exposure duration than
intensity.33,36 Some studies also showed that lowering
the age of smoking initiation could further increase the
risk.34 Finally, even the number of years since smoking
cessation was associated with a decreased risk.33,36

This is not to say that every study has agreed with
smoking as a risk factor. Negative and weak data for
smoking as an ALS risk factor have also been publish-
ed.37�39 A systematic review based on eighteen papers
did not support an overall association between smoking
and ALS, though it did show a significantly higher risk
among women (RR 1¢66).40

While the ease in assessing smoking exposure has
aided in studying this risk factor in ALS, factors associ-
ated with a benign cardiovascular profile (physical activ-
ity) or occupation may have acted as confounders.
However, a recent study showed a shared genetic risk
between smoking and ALS,41 while a Mendelian ran-
domization study suggested that confounders do not
influence this relationship.42 These genetic data under-
scored the epidemiological data implicating cigarette
smoking in ALS pathogenesis and provided an early
example of the power of genomics to resolve such life-
style factors.

How smoking increases the ALS risk remains
unclear, though theories abound. A single cigarette
smoke puff contains considerable quantities of oxidative
molecules.43 Accordingly, one hypothesis is that smok-
ing could overwhelm the antioxidant capacity of cells.
Furthermore, some chemicals present in cigarette
smoke (lead and formaldehyde) have a neurotoxic effect.
Finally, smoking inhibits paraoxonase (PON), an
enzyme able to reduce the damage from oxidative
stress.40,44 This would explain the increased risk for
women for whom oxidation mechanisms seem to be
upregulated, leading to an increased level of intermedi-
ate oxidant metabolites.40 The change in the smoking
habits among women during the last decades could
have contributed to the increase of the ALS incidence
reported among this subgroup.45
Physical activity
There are multiple lines of evidence pointing to exces-
sive physical activity increasing ALS risk.4 For example,
patients often highlighted their high fitness levels
before disease onset, and there are anecdotal reports of
prominent athletes, including the eponymous Lou Geh-
rig after whom the disease is named, developing ALS.4

Furthermore, patients usually show a favorable cardio-
vascular profile,46 which could be interpreted as an
effect of engaging in physical activity. The relationship
has been further fueled by the evidence of a six-fold
higher ALS risk among former Italian professional soc-
cer players47 and a four-fold higher mortality rate for
ALS among what Americans refer to as Football com-
pared to the general population.48 Finally, the hypothe-
sis could be biologically plausible as strenuous exercise
www.thelancet.com Vol 75 Month January, 2022
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could place increased strain on the motor system neces-
sary to undertake these activities, possibly through an
oxidative stress mechanism.49,50

Similar to smoking, the evidence implicating physi-
cal activity in the etiology of ALS has been contradictory
to date. Four systematic reviews did not find a
relationship51,52 or reported inconclusive data.50,53 Even
when considering physical activity types separately
(occupational, leisure-time, varsity athleticism, profes-
sional sport), the reports remained conflicting.53 More-
over, it is unclear which level of exercise is required to
drive ALS risk.54 A questionnaire-led, population-based,
case-control study including 636 patients and 2166 con-
trols showed no association for vigorous, occupational
or cumulative physical activity. In contrast, leisure-time
physical activity was significantly higher among ALS
patients (OR 1¢08, 95% CI 1¢02 - 1¢14, p = 0¢008).55 The
peculiar organization of the motor cortex could favour
both the athletic prowess and the risk of developing
ALS.4 Thus, performing physical activity (leisure-time)
would be associated with ALS while occupational may
not. A recent PET study may help unravel this conun-
drum, as it showed distinct changes in the brain metab-
olism of ALS patients who practiced sport compared to
those who did not. Despite having the same level of dis-
ability, the former group showed a more diffuse meta-
bolic change in the cerebellar, frontotemporal, and
corticospinal tracts, suggesting that these patients could
be coping better with the neurodegenerative process.56

Methodological issues may have contributed to the
inconsistency of these results. The studies varied
widely in sample size, and most of them were retrospec-
tive and prone to recall bias and confounders. Other
confounders, such as smoking, cardiovascular comor-
bidities, body mass index (BMI) and hypercholesterol-
emia,57 were inconsistently accounted for across
studies. There is even no consensus on how to quantify
the intensity of physical activity, with various methods
being deployed, including questionnaires, information
on previous occupations, Metabolic Equivalents, Com-
pendium of Physical Activities, or frequency of sweat-
ing.53 Also, it is unclear why other types of professional
athletes apart from soccer and football players are not at
risk.58 Even among soccer players, only some positions,
such as midfielder, showed a higher risk for ALS.58

Though initially greeted with skepticism,59 these data
have been borne out.

It has been suggested that the increased risk among
soccer and football players could be mediated by expo-
sure to pesticides from the field, head traumas, or the
use of performance-enhancing drugs.60 However, geno-
mics seems to suggest that physical activity is indeed
involved. A previous study using a linkage disequilib-
rium score regression showed that strenuous physical
activity might contribute to ALS risk. Notably, and in
keeping with some aspects of the available epidemiolog-
ical data, light physical activity was protective against
www.thelancet.com Vol 75 Month January, 2022
the risk of developing ALS.41 Moreover, a recent Mende-
lian randomization study found that physical activity is
directly linked to the ALS risk, suggesting a causal
relationship.21
Dyslipidemia
Genetic data have been quite conclusive in asserting
that hyperlipidemia is an ALS risk factor. A recent Men-
delian randomization study ruled out the role of con-
founders and reverse causality by showing that
increased plasma LDL cholesterol is directly correlated
to the risk of developing ALS.41 The finding was con-
firmed separately in European and Asian populations,
adding further weight to this risk factor.61 As a conse-
quence, it has been postulated that lowering blood cho-
lesterol levels could reduce the ALS risk.

In contrast to the genetic data, previous epidemiolog-
ical data reported conflicting results. While some stud-
ies showed higher levels of total cholesterol, LDL and
LDL/HDL ratio62�64 and HDL,63 others found no
differences.65,66 Some studies even reported an oppo-
site ratio.67,68 A recent meta-analysis involving 3291
ALS patients and 3367 controls showed no pooled differ-
ences in any of the lipid markers considered except for
lower levels of total cholesterol among Asian patients.69

Similar results came from a meta-analysis involving
1930 cases and 3635 controls which did not find signifi-
cant differences for lipid markers, even when consider-
ing Caucasian and Asian ethnicities separately.66

Against this, the most extensive study to date analyzing
nearly 700 drugs based on Medicare data that included
10,450 ALS cases and 104,500 controls showed that a
broad range of antihyperlipidemic drugs with different
mechanisms of action were associated with a lower ALS
risk. These data strongly point to hyperlipidemia influ-
encing ALS risk, rather than a secondary effect from
any particular drug class.70

However, there are several reasons to trust genetic
over retrospective epidemiological studies in this case.
First, the lipid profile is part of a more global cardiovas-
cular profile, including BMI,71,72 glycaemia,73 cardiovas-
cular comorbidities, and cigarette smoking. Each of
these factors could have acted as a confounder in the ret-
rospective epidemiological studies. Second, ALS is char-
acterized by a hypermetabolic state,74 and abnormal
lipid profile observed after patients develop symptoms
could merely reflect secondary changes arising from the
degenerative process. Such reverse causality could affect
epidemiological studies but not properly designed
genetic studies. Finally, the epidemiological studies typ-
ically employed sample sizes that were several folds
smaller than those utilized in genome-wide studies and
Mendelian randomization analyses.
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Other environmental factors
Many other environmental factors have been proposed
as influencing the risk of developing ALS, including
heavy metals,75 pesticides, electromagnetic fields,76,77

occupations,78 drugs,79 and cyanotoxins.80 Evidence for
these factors has been weaker; however, they could be
involved in less common pathogenetic mechanisms
(see below) and should not be overlooked.
Climate
The effect of climate change on the environment must
be carefully considered. Earth is racing towards at least
a 1¢5 °C temperature increase over the following deca-
des, resulting in myriad ecological and geopolitical
changes. The resultant environmental upheavals will
have lasting effects on public health concerning food
security and water access, the geographical distribution
of vectors responsible for zoonotic infections, exposures
to industrial pollutants, and even the pattern of renal,
cardiovascular and pulmonary conditions.81 For exam-
ple, the environmental conditions conducive for of
malaria transmission will extend over many areas of the
United States, South America, Europe, and Australia by
the end of the century.82

Neurological disorders should also be included in
that rubric, given the relative importance of the local
environment in their pathogenesis. Much importance
has been placed on the butterfly effect, whereby minor,
locally defined events have outsized effects on distant
environs. However, we must not forget that the opposite
is also true: planetary climate change due to an exces-
sive release of greenhouse gases into the atmosphere
will alter local air pollution patterns, a risk factor for
many neurodegenerative diseases, including ALS. Shift-
ing industrial bases due to food scarcity and economic
forces arising from climate changes could compound
these environmental disruptions. Humidity will
increase because of the higher rate of water evaporation
from the earth’s surface. A previous study showed that
the birth seasonality among four ALS cohorts across the
two hemispheres correlated with humidity rates during
the year. Presciently, the authors argued in 2012 that
this aspect could be influenced by an imminent climate
change.83 Finally, a climate temperature increase could
directly or indirectly lead to increased oxidative stress,
changes in cerebrovascular hemodynamics, excitotoxic-
ity, and microglial activation, all implicated in neurolog-
ical conditions, such as ALS.84

The effect of climate changes may not just be iso-
lated to the environmental aspect of gene-environment
interactions. Population displacement due to climate
change could cause the exposure of immigrants with
certain genetic factors to new external agents to which
they had not been previously exposed. Such hazardous
materials, neurotoxins and infections could adversely
affect their nervous system.85,86 While the local
population has evolved a tolerance level to their local
environment, migrants to the area may lack the same
protection, making them more susceptible.

Such considerations are speculative and unexplored
at present. However, the 2021 United Nations Change
Conference (COP26) highlighted the potentially devast-
ing effects of climate change on the environment. Con-
sequently, it is worth keeping this hypothetical scenario
in mind as we could be facing it soon.
Gene-environment interactions
A fundamental conundrum in studying environmental
and lifestyle exposures is that they tend to be common
in the community (e.g., smoking, exercise, and hyper-
lipidemia), and yet ALS is ostensibly rare. Gene-environ-
ment interactions offer a possible explanation for this
and may be particularly relevant when considering rare,
sporadic diseases that occur in later life. Under this
model, not every person exposed to an environmental
factor would develop the disease. Instead, only those
individuals with an underlying genetic predisposition
would be at risk. Environmental factors alone or genetic
factors alone would be insufficient to lead to motor neu-
ron degeneration. Instead, the interactions between
these environmental and genetic factors drive the
issue.87 While such interactions could be rare in the
general population, they could explain many cases in
the ALS subpopulation. In the absence of a deeper
understanding of this mechanism, the sporadic occur-
rence of the disease in the community would look sto-
chastic. In reality, it hints at a much more complex
pathogenic system.

Various methodologies have been developed to
model gene-environment interactions and are described
elsewhere.88�95 The most straightforward approach
would be examining factors already known to be associ-
ated with ALS. For example, the risk exerted by an envi-
ronmental exposure associated with ALS could vary
according to the presence or not of one of the genetic
variants listed in Table 1.89,90 Epidemiological studies
could explore this hypothesis using stratified analysis in
which the risk of developing the disease is calculated
across the possible combinations of the two factors. If
the risk among individuals doubly exposed is greater
than the product of the risk given by the two factors
individually, then a multiplicative interaction can be
inferred.89�91,95 For example, both asbestos and ciga-
rette smoking increase the risk of developing lung can-
cer, but those exposed to both have a risk that far
exceeds either alone.96 In another example, estrogen
use was globally protective against the risk of
Alzheimer’s Disease, but the risk was only truly
decreased among e4-negative women (HR = 0¢59; 95%
CI, 0¢36�0¢99).97

The gene-environment interactions may also exist on
an additive scale.95 In this paradigm, the joint exposure
www.thelancet.com Vol 75 Month January, 2022



Review
risk would differ from the sum of the single exposures
risks.89�91,95 It is still debated whether the multiplica-
tive or additive measure more truly reflects the underly-
ing biological interactions, and each may be valid
depending on circumstances.95 For example, if the etiol-
ogy involves multiple steps (as is postulated for
ALS98,99), two factors acting at the same stage will fit an
additive model. In contrast, factors acting at different
stages will fit a multiplicative hypothesis.89 If both expo-
sures are needed for the disease to develop, interaction
on an additive scale should be searched.95,100 However,
interactions on a multiplicative scale have been more
widely used, perhaps for the practical reason that they
are prominent in magnitude and easier to detect.95

Our discussion so far has been predicated on the
notion that each interacting factor is associated with
ALS on its own. However, there are many complex
interactions in nature where this is not the case. For
example, individuals with glucose-6-phosphate dehy-
drogenase deficiency are usually asymptomatic as the
genetic predisposition exerts no effect on its own. How-
ever, these patients develop fever, dark urine, and
abdominal pain when they consume fava beans.90 The
LIPC gene was associated with high cholesterol levels
only after adding dietary fat to the model.101 A polymor-
phism of the serotonin transporter gene (SLC6A4) pro-
moter moderates the influence of stressful life events
on depression while not exerting an effect in the
absence of stressors.102 Many other examples come
from studies assessing the risk of asthma, lung cancer,
type 2 diabetes, and heart diseases.88 These types of
interaction are much more difficult to detect, particu-
larly in a rare disease such as ALS.

Genetics could also predispose to an environmental
exposure which in turn causes the disease. For example,
an individual could be predisposed to commencing ciga-
rette smoking, which will increase the ALS risk. This is
not a gene-environment interaction in the proper sense
but rather a covariance (or gene-environment correla-
tion). This covariance could also act the other way
around, such as the case of older paternal age increasing
the risk of mutagenesis103 or somatic mutations accu-
mulating within the brain as the person ages.104 This
latter mechanism may be an elegant explanation for the
apparent discrepancy between the low heritability esti-
mates and our failure to date to identify significant envi-
ronmental factors underlying ALS.

Nevertheless, such possibilities should be carefully
considered as they could reflect the underlying biology
or act as a noise obscuring other findings.105 Gene-envi-
ronment interactions could also explain the phenotypic
variability among siblings carrying the same genetic
mendelian mutation. Additional genetic variants or
environmental exposures could determine a different
age of onset106 or a different disease,107 or even prevent
the disease from happening (reduced penetrance) .90
www.thelancet.com Vol 75 Month January, 2022
To date, there have been a limited number of studies
examining gene-environment interactions in ALS. A
study involving 143 ALS patients and an equal number
of controls found that genetic variants in the PON1 gene
increased the risk of ALS among individuals exposed to
pesticides.108 A second study explored the interaction of
the same gene using population density as a proxy of
environmental exposure to pesticides. The authors
found a significant interaction between density popula-
tion and a marker rs854560 (L55M) at the genotypic
level.109 However, it is not easy to draw meaningful con-
clusions from these publications. Instead, these studies
highlight the difficulties in designing studies to exam-
ine gene-environment interactions studies in ALS.

First, there is a paucity of accurately measured data
for both genetic and environmental factors. While
genome sequencing has become progressively more
affordable,110 the same cannot be said for the exposome,
where only limited data are available.24 More recently,
spatial data analysis has emerged to infer an environ-
mental effect.6,27,111 Furthermore, metabolomics and
epigenetics are increasingly used as proxies of environ-
mental exposures. Particularly in the case of metabolo-
mics, it can be challenging to distinguish an
environmental effect precipitating the disease from a
secondary effect of the disease itself.28 On the other
hand, epigenetics could offer an extra layer to consider
when seeking the effect of environmental factors on
genetics. Such information would complement the
genomic sequence information; environmental factors
can alter gene expression through epigenetic modifica-
tions (such as DNA methylation, histone modifications,
chromatin remodeling) and each can be quantified with
appropriate methods.112 Nevertheless, the nature of
quantifiable measures continues to improve and may
offer an opportunity to understand gene-environment
interactions in ALS more completely.

As a second major issue, many samples are required
to study ALS. This is due to its rarity, the high number
of exposure variables that need to be considered, the low
frequency of genetic variants involved, and the minimal
effect that the various factors are expected to have. A pri-
ori knowledge could partially reduce the sample size
needed; data collection could be limited to environmen-
tal data known to act on pathways involved in the dis-
ease pathogenesis. However, this hypothesis-based
approach limits the discovery of new variants and envi-
ronmental exposures.88 As an alternative strategy, a
polygenic risk score could be used to measure genetic
predisposition. A recent study investigated the interac-
tion between genetic susceptibility, as assessed by the
weighted sum of previously associated loci, and the
exposure to household coal for the risk of developing
lung cancer among Asian females. Using two different
cohorts, the authors found that the risk given by the
genetic predisposition was weaker among coal ever-
7



8

Review
users than never-users, suggesting a multiplicative
interaction among these two factors.113

However, detecting an effect becomes more compli-
cated if the timing of the exposure is relevant. Under
that model, environmental pathogens would influence
the ALS risk only during sensitive periods or if the expo-
sure acts for a sufficient length of time.4,28,114 This pos-
sibility could explain why ALS risk increases with age
reaching its peak around the seventh decade of life. A
cumulative effect of environmental exposures could be
necessary for the disease to develop, along with struc-
tural and functional changes linked to the aging of
motor neurons.115 Being the third variable in the ALS
equation, time likely interacts with the genetic predispo-
sition, influencing the age of onset.4

Finally, here we focused on gene-environment inter-
actions, but interactions could also occur between two
(or more) environmental exposures or genetic variants
(epistasis).88 Recent and more sophisticated methods to
explore large-scale gene-environment interactions have
been developed and could help solve the riddle of deal-
ing with many variables.116,117
Conclusions
Gene and environmental factors could be variably
involved in ALS pathogenesis. Exploring their interac-
tions will likely give some critical insights. So far, the
field has dealt chiefly with simplistic etiological models
of ALS in which nature and nurture were considered as
a dichotomy.28 Furthermore, environmental factors are
typically studied at diagnosis, whereas their window of
action could precede the onset by many years. While
simple is not necessarily wrong, studying one factor at a
time has potentially hidden effects that will become
apparent when multiple factors are considered simulta-
neously. Knowledge of gene-environment interactions
would allow the identification of susceptible individuals
who could then be targeted for specific interventions.
For example, they could be advised to avoid the culprit
exposure during their lives. This precision medicine
approach for ALS could lessen the risk of developing
the disease or delay onset by decades.28
Outstanding questions
Many questions must be addressed as we travel along
this Road to Utopia. Which exposures and genetic var-
iants make the most sense to examine early on? How
should we make our selection? While such a candidate-
based approach would dramatically lower the need for
data, it would hamper discovering new genetic and envi-
ronmental factors hidden due to our limited knowledge
of biological processes. The next question follows from
this observation: is it feasible to study gene-environment
interactions over many exposures in a rare disease such
as ALS? The era of big data, along with the easy-to-
access data repositories, offers us perhaps the first real
glimmer of hope to undertake such a study. Recently
published algorithms can search for interactions on a
genome-wide and exposome basis even in the setting of
limited sample sizes and power.116,117 Machine Learning
techniques may reveal unexpected data-driven correla-
tions and prioritize a smaller number of factors for
study.119�121 However, in the end, the data lake will
likely need to expand in size dramatically. A concerted
effort is required to make environmental and genome-
wide data from large population-based settings publicly
available.28
Search strategy and selection criteria
Data for the review were identified through searches from
PubMed with the following search terms: “Amyotrophic
Lateral Sclerosis”, “ALS”, “environment*”, “genetic*”,
“interaction*”. Only articles in English with published up
to August 2021 were included; references of the collected
published studies were also considered. Selection of the
most appropriate references was made by the authors.
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