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Even with high-dose post-transplant cyclophosphamide (PT-Cy) which was initially introduced
for graft-versus-host disease (GvHD) prevention in the setting of HLA-haploidentical
transplantation, both acute and chronic GvHDs remain a major clinical challenge. Despite
improvements in the understanding of the pathogenesis of both acute and chronic GvHDs,
reliable biomarkers that predict their onset have yet to be identified. We recently studied the
potential correlation between extracellular vesicles (EVs) and the onset of acute (@)GvHD in
transplant recipients from related and unrelated donors. In the present study, we further
investigated the role of the expression profile of membrane proteins and their microRNA
(mMiRNA) cargo (MiIRNA100, miRNA155, and miIRNA194) in predicting the onset of aGvHD in
haploidentical transplant recipients with PT-Cy. Thirty-two consecutive patients were included.
We evaluated the expression profile of EVs, by flow cytometry, and their miRNA cargo, by real-
time PCR, at baseline, prior, and at different time points following transplant. Using logistic
regression and Cox proportional hazard models, a significant association between expression
profiles of antigens such as CD146, CD31, CD140a, CD120a, CD26, CD144, and CD30 on
EVs, and their miRNA cargo with the onset of aGvHD was observed. Moreover, we also
investigated a potential correlation between EV expression profile and cargo with plasma
biomarkers (e.g., ST2, sSTNFR1, and REG3a) that had been associated with aGVHD previously.
This analysis showed that the combination of CD146, sSTNFR1, and miR100 or miR194 strongly
correlated with the onset of aGvHD (AUROC >0.975). A large prospective multicenter study is
currently in progress to validate our findings.
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INTRODUCTION

Hematopoietic cell transplantation (HCT) represents a potentially
curative strategy for several hematological malignancies. In recent
years, the use of post-transplant cyclophosphamide (PT-Cy) as
graft-vs.-host disease (GvHD) prophylaxis led to a considerable
expansion of haploidentical transplants (Haplo-HCT) with
remarkable clinical outcomes (1). However, both acute and
chronic GvHDs remain life-threatening complications (2, 3). To
predict their onset and develop preemptive interventions, the
identification of reliable biomarkers still represents an unmet
need. It is widely assumed that the combination of a profound
cytokine imbalance and donor alloreactive T-cells plays a major role
in the pathogenesis of acute GVHD (aGvHD) (3, 4). Several systemic
biomarkers, including micro(mi)RNAs (i.e., miR155, miR100,
miR194, miR423, miR199a) (5-9), suppression of tumorigenicity
2 (ST2), tumor necrosis factor receptor 1 (TNFR1), and organ-
specific biomarkers, such as regenerating islet-derived protein 3
alpha (REG3a), hepatocyte growth factor (HGF), and elafin, have
been investigated as potential biomarkers of aGvHD in various
biological fluids (10-13). Unfortunately, to date, none of these
biomarkers have been able to universally predict either risk or
severity of developing GvHD.

Extracellular vesicles (EVs) have recently been reported as a
promising group of circulating biological biomarkers (14-16). EVs
are cell-derived membranous structures containing different
biomolecules, including nucleic acids, proteins, lipids, and
carbohydrates. They play a major role in intercellular
communication by transferring proteins, bioactive lipids, and
miRNA to recipient cells (17-19). Increasing research on EVs has
demonstrated that EVs are involved in many pathophysiological
processes and that they might be exploited as biomarkers of several
pathological conditions (20). Moreover, EVs can be isolated easily
from body fluids, including blood and urine, in a minimally invasive
manner. Our group recently reported that the expression of CD146,
CD31, and CD140a on their surface significantly correlated with the
risk of developing acute GvHD in HLA-identical HCT (21). To
further investigate the role of EVs as an aGvHD biomarker, we
hereby report the same analysis in the setting of Haplo-HCT with
PT-Cy. Moreover, given the role of miR100, miR155, and miR194
in endothelial damage, inflammation, and neovascularization which
are also key factors in the pathogenesis of aGVHD, we evaluated
their expression level in EVs.

MATERIALS AND METHODS

Patients, Transplant Characteristics, and
Graft-vs.-Host Disease

Thirty-two consecutive patients who underwent a Haplo-HCT from
related donors were enrolled at the Bone Marrow Transplant Unit,
Humanitas Cancer Center, Humanitas Research Hospital in
Rozzano, Milan, Italy. Patients and donors signed an informed
consent, and all study procedures were conducted in accordance
with the Declaration of Helsinki. Patient, disease, and transplant
characteristics are summarized in Table 1.

GvHD prophylaxis consisted of PT-Cy 50 mg/kg on days +3
and +4, tacrolimus and/or cyclosporin A, and mycophenolate
mofetil (MMF) from day +5 post-transplant. Additionally,
granulocyte colony-stimulating factor (G-CSF) was started on
day +5. Disease response was defined according to the European
Bone Marrow Transplantation (EBMT) Group criteria. Acute
GvHD was graded according to Glucksberg score.

Plasma Sample Collection

Peripheral blood was drawn on lithium-heparin, from both
donors and recipients before transplant (day -6) and from the
recipients after a median of 0, 3, 7, 14, 21, 30, 45, and days and 2,
2.5, and 3 months following transplant. Plasma samples were
obtained after mononuclear cell separation by density gradient
centrifugation (Lympholyte, Cedarlane, Burlington, Canada) and
stored at —80°C until use (22).

Extracellular Vesicle Precipitation

and Characterization

For each sample, 1 ml of plasma was thawed on ice and
centrifuged at 2,000 x g at 4°C for 40 min to remove platelet

TABLE 1 | Patient and transplant characteristics.

Number
(%)
Patients 32
Median age, years (range) 41 (21-66)
Male 17 (63%)
DISEASE
Hodgkin lymphoma 17 (53%)
Non-Hodgkin lymphoma 11 (34%)
Acute lymphoblastic leukemia 2 (6%)
Chronic lymphocytic leukemia 1(3%)
Acute myeloid leukemia 1(3%)
Myeloablative conditioning
TBF 3/32 (9%)
Reduced intensity conditioning (RIC)/non-myeloablative
conditioning
Baltimore 22/32
(69%)
ONCO005 6/32 (19)%
TBF RIC 1/32 (3)%
Stem cell source
Bone marrow 31/32
(97%)
Peripheral blood stem cells 1/32 (3%)
GvHD prophylaxis
Pt-Cy + tacrolimus + MMF 22/32
(69%)
Pt-Cy + CyA+ MMF 10/32
(31%)
aGvHD grades II-IV 7 (21.88%)
Median day of onset (range) 41 (33-90)
aGvHD grades llI-IV 1(17%)

TBF, thiotepa (5 mg/kg; days -6, -5) - fludarabine (50 mg/m?; days -4, -3, -2) - busulfan (30
mg/kg; days -4, -3, -2); Baltimore = fludarabine (30 mg/m?; days -6, -5, -4, -3, -2) —
cyclophosphamide (14.5 mg/kg; days -6, -5), total body irradiation (200 cGy), ONC005 =
thiotepa (5 mg/kg twice a day; day -6) - fludarabine (30 mg/m?; days -5; -4, -3, -2) -
cyclophosphamide (30 mg/kg; days -5); TBF RIC = thiotepa (5 mg/kg; days -6, -5) -
fludarabine (50 mg/m?; days -4, -3, -2) - busulfan (3.2 mg/kg; days -4, -3); PT-Cy = post-
transplant cyclophosphamide; MMF= mycophenolic acid; CyA = cyclosporin A.
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contamination. EVs were then precipitated as previously described
(21). After precipitation, EVs were resuspended in 150 ul of
Roswell Park Memorial Institute (RPMI) medium supplemented
with penicillin, streptomycin, and amphotericin B, plus 10% of
dimethyl sulfoxide (DMSO), and stored at -80°C until use. EV size
and concentration were assessed by nanoparticle tracking (NTA)
analysis (21). The presence of EVs on precipitated samples was
confirmed by transmission electron microscopy. EVs were left to
adhere to 200-mesh Nickel Formvar® carbon-coated grids
(Electron Microscopy Sciences) for 10 min. Grids were then
washed with phosphate-buffered saline (PBS), fixed with 2.5%
glutaraldehyde containing 2% sucrose, negatively stained with
NanoVan® (Nanoprobes), and observed by JEOL JEM-1400
Flash electron microscope (Tokyo, Japan). The presence and
percentage of exosomes in our precipitated EV samples were
measured by flow cytometry using CD9 and CD81
phycoerythrin (PE)-conjugated antibodies (Figure 1).

Flow Cytometry Analysis

EVs were characterized by flow cytometry using fluorescein
isothiocyanate (FITC) or phycoerythrin (PE)-conjugated
antibodies, investigating the expression of 14 EV membrane
proteins (Supplementary Table 1). Mouse non-immune isotypic
FITC or PE IgGs (Miltenyi Biotec, Bergisch Gladbach, Germany)
were used as negative controls. Incubation of tagged antibodies
(0.8-1.5 pl) and EVs (3 x 10° particles), flow cytometry
acquisition on a Guava Instrument (Guava easyCyteTM 8,
Merck Millipore, Billerica, MA, USA), and gate setting were
performed as previously described (21).

For each marker, a total of 5,000-10,000 events were acquired
at low speed (repeated 2-4 times) to determine a) the mean
fluorescence intensity (MFI) and b) the percentage and
concentration of positive EVs (Figure 1 and Supplementary
Figure 2). Concentrations of positive EVs for given markers were
obtained by multiplying the frequency of positive events and
total EV concentration. Data were analyzed using the guavaSoft
InCyte 2.5 program.

miRNA Extraction

miRNas were extracted from EVs by TRIzol LS (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. Briefly, 70 pl of EV suspension was diluted in 180 ul
of PBS (pH 7.4) and lysed by adding 750 ul of TRIzol LS.
Subsequently, 200 pl of chloroform was added and samples were
centrifuged at 12,000 x g at 4°C for 15 min to allow phase
separation. The upper aqueous phase was then transferred, and
750 ul of 100% ethanol was added to allow the RNAs
precipitation. MiRNAs were then purified by a miRNeasy Mini
Kit (Qiagen, Hilden, Germany), according to the manufacturer’s
instruction. RNA concentrations were assessed using a
NanoDrop 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA).

miRNA Reverse Transcription and
Real-Time PCR Quantification

MiRNAs were reverse transcribed to cDNA using a miScript II
RT Kit (Qiagen). Briefly, 60 ng of input RNA from all samples

was reverse transcribed at 37°C for 1 h in the presence of 2 units
of Bacteroides Heparinase I (NEB, Ipswich, MA, USA) in a final
volume of 15 ul (23).

The expression of miR100, miR155, miR194 was then
assessed by semiquantitative real-time PCR (qRT-PCR) using
the miScript SYBR Green PCR Kit (Qiagen). RNU6b and
miR92b were used as housekeeping reference genes to
normalize qRT-PCR outputs. All samples were run at least in
triplicate using 3 ng of cDNA for each reaction in a final volume
of 10 ul. gRT-PCR was performed as follows: 15 min at 95°C; 15 s
at 94°C, 30 s at 55°C, 30 s at 70°C for 52 cycles, and finalized by a
dissociation curve with a 5-s dwell time for each 0.5°C increment.

Data were expressed as relative to healthy donor
quantification (RQ) using the AACt method. miR92b was
used as stable miRNA reference given its lower intra-patient
expression variability in comparison to RNU6b (Supplementary
Figure 3) (24).

Enzyme-Linked Immunosorbent Assay
Soluble forms of human TNFR1, ST2, and REG3a were assessed
in plasma samples using commercially available sandwich
enzyme-linked immunosorbent assays (ELISA; R&D Systems
Europe, Abingdon Science Park, Abingdon, UK). Plasma
samples were diluted in 1% bovine serum albumin in PBS
(1:15 for TNFR1, 1:15-1:60 for ST2, and 1:200 for REG3a).

Plasma concentrations of TNFRI1, ST2, and REG3a were
determined according to the manufacturer’s protocol in both
donors and recipients before transplant and at different time
points post-transplant.

Statistical Analyses

Cumulative incidences of aGvHD were calculated from the date
of transplant to the date of onset. The estimations were
performed considering relapse or death from any cause as
competing event as described by Gooley et al. (25) Patients
alive without GVHD were censored at the last available follow-up
time point. The effects of repeated measurements of each marker
on incidence of aGvHD were analyzed dividing the follow-up of
each patient in a period of 7 days without considering pre-
transplant measurements and the first week after. Patients were
classified by presence/absence of aGvHD during each period. In
case of more than one measurement for a given marker in the
same 7-day period, the analysis was performed considering the
mean value. Thus, the probability of developing aGvHD in each
period with respect to marker levels, evaluated as absolute
measure and as proportional change from pre-transplant value
[expressed as (biomarker value - pre-transplant value)/pre-
transplant value], was calculated by the logistic regression
model (LRM). The effects on aGvHD incidence were reported
as standardized odds ratio (OR), indicating the effect for a 1-
standard deviation (SD) increase for a given variable per 1-point
increase (relative increase of 100%) and corresponding p value
for statistical significance. Analyses were based on repeated
measurements on the same patient; ORs were estimated
checking the standard errors with the Huber-White Sandwich
Estimator. Moreover, for sensitivity analysis, Cox proportional
hazard models (CM) for aGvHD were estimated using EV
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FIGURE 1 | Extracellular vesicle (EV) characterization by light scattering and fluorescence. (A) Forward and side scatter dot plots of EVs analyzed after incubation
with non-immune isotypic FITC and PE-IgG (iso-FITC/iso-PE, negative controls, blue dots). Red dots represent debris. (B) Representative fluorescence dot plots
showing EV fluorescence after incubation with non-immune isotypic FITC and PE-IgG (negative controls, red dots), and after incubation with anti-CD146-FITC and
anti-CD31-PE (blue dots). The red line marks the threshold to discriminate the positive FITC (green fluorescence) and the positive PE fluorescence (yellow
fluorescence) signal from the background. (C) Representative histograms showing the shift in fluorescence after incubation of EVs with the indicated antibodies
(blue peaks) with respect to isotypic control (FMO, red peaks). (D) Donor EV dimension histograms by nanoparticle tracking analysis. Inset: representative image of
EVs detected by transmission electron microscopy (magnification x60,000; scale bar 50 nm). (E, F) Plasma concentration of total EVs (E) and concentration of
CD120+ EVs (F) in donors (blue) and in patients prior to transplant (preTX, red). (G) Representative flow cytometry histograms showing the shift in fluorescence
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parameters at each time point as a time-varying covariate and
reporting the hazard ratios (HRs) for a 1-SD increase. The
discrimination ability on predicting the aGvHD of single
biomarkers was evaluated by performing univariable logistic
regression models including as independent variable the
repeated measurements within the 100-day period of each
marker and estimating the univariable area under the receiver
operating characteristics (AUROCs). Multivariable models were
then estimated to include most predictive markers performing a
backward selection by Akaike information criterion selecting a
maximum of three biomarkers due to the small number of
aGVHD events. Correlation between markers was measured
using the Spearman correlation coefficient, and markers most

correlated (r >0.30) were included in the models. Finally, for each
model, multivariable AUROCs were estimated. Due to repeated
measures in the same patient, standard errors of ORs were
adjusted using the Huber-White sandwich estimator. All
statistical analyses were performed using STATA 15
(StataCorp LP) and SPSS Statistics 25 (IBM SPSS Statistics).

RESULTS
Acute GvHD

Acute GVHD requiring systemic therapy was observed in 7/32
(22%) of patients with a median day of onset at +41 (range +33-
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+90) (Table 1). The cumulative incidence of grade II-IV aGvHD
at day 100 was 21.9% (95% confidence interval (CI): 9.6-37.2%)
(Supplementary Figure 1).

EV Characterization and Correlation

With aGvHD

Fluorescence—CD146 fluorescence change was significantly
associated with increased risk of aGvHD by both logistic
regression and Cox regression models (OR 2.93 p < 0.001, and
HR 2.69 p = 0.009, respectively). CD30 fluorescence change was
associated with an increased risk of aGVHD only by logistic
regression (OR 1.58 p = 0.042). Even though CD25 fluorescence
was associated with increased risk of aGvHD, its significance
should be considered minimal given the overall very low
fluorescence levels of this marker (Table 2).

Proportional concentration change—proportional concentration
changes in total EVs (OR 0.53, p = 0.01) and in CD120a (OR
0.58, p =0.018), CD140a (OR 0.55, p = 0.013), CD26 (OR 0.59, p
=0.017), CD31 (OR 0.62, p = 0.047), and CD144 (OR 0.70, p =
0.034) were significantly associated with decreased risk of
aGvHD (Table 2). Moreover, proportional concentration
changes in CD30 were associated with increased risk of

aGvHD (OR 1.40, p = 0.051). By contrast, we did not observe
any correlation between CD44, CD106, KRT18, CD86, CD8, and
CD138 and aGvHD (Table 2). Our findings also showed that
these changes were detectable several weeks before the onset of
aGvHD (Figure 2).

miRNA Quantification and Correlation

With aGVHD

Expression changes of miR100 (OR 3.90 p <.001, HR 2.63, p =
0.001), miR155 (OR 1.84, p = 0.008, HR 2.43, p = 0.002), and
miR194 (OR 2.68 p < 0.001, HR 2.99, p = 0.001) were correlated
with increased risk of developing aGVHD by both logistic
regression and Cox regression models (Table 3A). Moreover,
proportional expression change analyses showed that all three
miRNAs significantly increased before aGVHD onset (Figure 3).

Plasma Level Measurement of Soluble
Biomarkers and Correlation With aGVHD
The absolute concentration (ng/ml) and concentration change of
STNFRI1 (OR 1.47, p = 0.041, and HR 1.42, p = 0.005, respectively)
were significantly associated with increased risk of aGVHD
whereas a trend was observed with ST2 (OR 1.55 p = 0.058, HR

TABLE 2 | Association between EV surface biomarker level and aGvHD.

Marker Type Logistic regression Cox model
Change Absolute Change Absolute
OR P OR P HR P HR P
Total EV conc. .53 .01 .70 .045 .83 465 1.43 407
CD120a Fluo. 1.50 193 1.33 .026 1.14 .632 .83 645
Conc. .58 .018 .76 129 .89 .632 1.50 .309
CD140a Fluo. 1.12 627 1.05 .685 .90 .688 .75 5
Conc. .55 .013 .73 .066 .80 374 1.29 555
CD44 Fluo. .80 508 .89 .38 117 544 1.53 .25
Conc. 71 194 .73 .068 1.21 469 1.87 .083
CD26 Fluo. 1.12 642 1.06 575 1.18 501 1.18 643
Conc. .59 .017 74 .065 91 694 1.61 264
CD146 Fluo. 2.93 <.001 1.25 .048 2.69 .009 1.26 .586
Conc. .58 .096 .76 176 .80 423 1.12 .76
CD31 Fluo. 92 656 97 .825 .89 .636 .87 735
Conc. .62 .047 .83 .288 81 453 1.37 461
CD106 Fluo. 1.21 48 1.07 671 1.34 .296 1.45 .321
Conc. 72 133 74 125 .99 977 1.61 .228
KRT18 Fluo. 1.23 454 1.04 729 1.20 A74 1.01 .981
Conc. .92 677 .88 483 112 .662 1.45 .364
CD30 Fluo. 1.58 .042 1.12 .37 1.53 185 1.02 .969
Conc. 1.40 .051 .98 .894 2.37 .018 2.79 .029
CD144 Fluo. .92 .691 1.05 .696 .81 433 .90 793
Conc. .70 .034 .48 .004 1.52 .322 .75 291
CD25 Fluo. 1.87 .046 .94 .588 1.93 .044 1.18 725
Conc. 1.07 793 1.05 .785 1.43 198 .88 796
CD86 Fluo. 117 464 97 .876 1.20 455 .93 .895
Conc. .76 264 .88 .37 79 .379 .88 .808
CD8 Fluo. .88 578 1.15 277 1.15 .55 .98 .955
Conc. .79 211 1.09 .545 1.25 418 .58 175
CD138 Fluo. .90 762 .93 .695 .99 977 1.09 .852
Conc. .64 .066 72 .054 .96 .881 1.51 .336

EV, extracellular vesicle; FLUQ., fluorescence; HR, hazard ratio; OR, odd ratio; CONC., concentration of positive EVs (particles/plasma mi).
Marker analysis by 7-day time periods (logistic regression analysis), and by a time-varying approach (Cox model-proportional hazard model). Significant odd and hazard ratios (OR and HR

respectively) are in bold.
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1.64, p = 0.053) (Table 3B). No association was observed between
REG3a and aGvHD. Moreover, the mean plasmatic concentrations
and concentration changes of ST2 and sTNFR1 from day+15 were
significantly different in patients with or without aGvHD
(Figures 4 and Supplementary Figure 4).

Biomarker Performance

AUROC curves showed that miR100 and miR194 displayed
excellent discriminating performance in separating patients
with or without aGvHD (individual AUROC 0.923 and 0.91,
respectively) and that CD146 had good performance (AUROC
0.858), whereas the other biomarkers that correlated with
aGVHD had either poor or fair performance (Figures 5A, B).
Based on the Akaike information criteria, the combination of

CD146 and CD144 among the EV membrane proteins, and
miR100 and miR194, had high multivariate AUROC, 0.922 and
0.970, respectively (Figures 5C, D). Two triplet combinations,
CD146, miR100, sSTNFR1 (combination 1) and CD146, miR194,
sTNFR1 (combination 2), (Figures 5E, F) showed the highest
AUROC, 0.987 and 0.975, respectively, and allowed to better
discriminate patients with or without aGvHD (Figures 5G, H).

DISCUSSION

Biomarkers that could reliably predict the onset of aGvHD and
ensure preemptive interventions are lacking, meaning that
diagnosis and treatment rely on clinical signs and symptoms
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TABLE 3 | Association between acute GvHD and EV-derived miRNAs and plasmatic biomarker levels.

A
Marker Logistic regression Cox model
miRNA EV Change Absolute Change Absolute
OR P OR p HR P HR P
miR100 3.90 <.001 1.84 <.001 2.63 .001 2.61 .014
miR155 1.84 .008 1.41 .012 2.43 .002 2.93 .01
miR194 2.68 <.001 1.39 .013 2.99 .001 2.24 .022
B
Marker Logistic regression Cox model
Plasma proteins Change Absolute Change Absolute
OR P OR p HR P HR P
ST2 1.04 227 1.65 .058 1.03 156 1.64 .053
STNFR1 1.47 .041 1.56 151 1.42 .005 1.41 A17
REG3a 77 .086 117 425 .89 .636 1.18 446

EV, extracellular vesicle; HR, hazard ratio; OR, odd ratio.

Marker analysis by 7-day time periods (logistic regression analysis), and by a time-varying approach (Cox model-proportional hazard model). Significant odd and hazard ratios (OR and HR

respectively) are in bold.

and tissue biopsies only. Although several molecules/proteins
have been investigated (16, 21, 26-28), in the present study, we
evaluated the antigenic profile and miRNA cargo of EVs in the
setting of Haplo-HCT using PT-Cy as GvHD prophylaxis.
Overall, we confirm that the risk of developing aGvHD was
directly associated with CD146 expression and inversely
correlated with total EV concentration and CD31 and CD140a
concentrations. CD146 (or melanoma cell adhesion molecule) is
a marker of activated endothelial cells, also expressed by CCR5+
T helper 17 (Th17) cells which expand during gastrointestinal
aGVHD (29, 30). Moreover, this T-cell population plays an
important role in many autoimmune diseases and
inflammatory conditions (31, 32). CD31 (or platelet/EC
adhesion molecule) is also a marker of endothelial activation.
CD31 prevents lymphocyte hyperreactivity by increasing the
activation threshold of the T-cell receptor (33). Its immune-
regulatory role has been clearly demonstrated in murine models
where CD31-deficient mice show a pronounced tumor rejection
and excessive immune reactivity (34, 35). Decreased levels of
CD31 in patients with aGvHD may indicate the loss of its
protective role against inflammation and detrimental
immunological attacks. We also observed a parallel reduction
of the EV concentration of CD140a, also known as platelet-
derived growth factor receptor-alpha (PDGFR-a), which is
instrumental in the migration of fibroblasts and wound healing
(36). Pro-inflammatory tumor necrosis factor-alpha (TNF-o)
levels are usually higher in patients with aGvHD (37) and play a
pivotal role in both initiating and amplifying aGvHD (38). TNF-
o also decreases the expression of PDGFR-o. after fibroblast
injury, and its increased levels during aGvHD could
consequently reduce fibroblast activation and tissue recovery
(39). Interestingly, we observed that VE-cadherin, also known as
CD144, is downregulated, which could be correlated with the
increased TNF-o levels observed before aGvHD (40, 41).
Increased TNF-o during aGvHD promotes vascular
permeability by internalization and degradation of VE-
cadherin, a calcium-dependent transmembrane cell-cell

adhesion molecule, which regulates the formation of adherent
junctions between endothelial cells, thus ensuring the
physiological permeability and endothelial structure (42-45).
We also investigated the EV surface expression of CD120a and
its circulating soluble form TNFR1 (46). Increased levels of
plasmatic STNFR1 were shown to be associated with aGvHD
(10, 47-49). This could result from the increased activity of the
receptor sheddase (i.e., TACE) which proteolytically cleaves the
TNFR1 ectodomain (50). Moreover, the increased TNFR1
sheddase activity may partly explain our observation that the
concentration of CD120a" EVs is reduced in aGvHD (51). All
these findings are highly suggestive of endothelial activation.

Significant concentration changes of antigen expression
indicating T-cell activation were also observed before the onset
of aGvHD. CD30 is a type 1 transmembrane receptor of the
TNEF/nerve growth factor receptor family (TNFRSF8). It acts as a
co-stimulatory molecule in T-cell responses and identifies/
defines proliferating T-cell populations induced by allogeneic
antigens (52). We observed a significant increase of CD30 in
patients developing aGvHD as previously reported (52-54). By
contrast, we observed a decreased level of circulating CD26.
CD26, also known as dipeptidyl peptidase IV (DPPIV), is a cell
surface glycoprotein enzyme associated with immune regulation,
signal transduction, and apoptosis of several cell types (55).
CD26 has been also described as a marker of T-cell activation
and as an important regulator of inflammation (56-59). It
accumulates in inflamed tissues and in target organs of aGvHD
(60, 61). This may explain in part why its expression on EVs is
reduced during aGVHD as seen in several autoimmune and
other inflammatory conditions (62, 63).

The miRNA cargo of EVs is pivotal for their functions in both
physiological and pathological conditions. In particular, we
evaluated miR100, miR155, and miR194, given their association
with inflammatory conditions and aGvHD, although their
expression levels in EVs have not yet been explored. MiR100
has been described as an important player in regulating the
inflammatory neovascularization during GvHD (8). In our
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patient cohort, the miR100 cargo gradually increased after
transplant until the onset of aGvHD. However, its absolute
levels remained lower compared to healthy donors and patients
without aGvHD (Supplementary Figure 5). MiR155 is a critical
regulator of inflammation and of innate and adaptive immune
responses (64, 65). It has been reported that miR155 modulates
aGvHD by driving a proinflammatory Thl phenotype and by
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facilitating T-cell expansion, migration, and effector functions
(64). Moreover, miR155 is upregulated in donor-derived T-cells
in both preclinical mouse models and patients with GvHD. Its
downmodulation, with synthetic anti-miR155, decreased aGvHD
severity and prolonged survival in mice (5). MiR194 has been
found significantly upregulated in patients who would later
develop aGvHD. Of note, pathway prediction analyses suggest
that these miRNAs regulate critical pathways in aGvHD
pathogenesis, such as JAK-STAT, CXCL3, and TGFp signaling.
They could potentially become therapeutical targets (6). Our
findings confirm their potential pivotal role in the development
of aGvHD after haploidentical transplantation.

Plasma concentrations of sTNFR1, ST2, and REG3a have
been extensively studied (66). We confirm previous findings

showing the correlation of ST2 and sTNFR1 with aGvHD. We
did not observe any correlation of REG3a. This, however, is
likely due to the fact that only one of our patients developed
gastrointestinal aGvHD. Finally, our ROC analysis showed
that three of the studied biomarkers (miR100, miR194, and
CD146) showed excellent or good performance (ROC > 0.8).
By combining the most informative biomarkers, specificity,
predictability, and diagnostic performance could increase.
Combinations of CD146 fluorescence and CD144
concentration or miR100 and miR194 represent the minimal
combinations that improve the diagnostic performance
(multivariate ROC > 0.92). Combinations of plasma levels of
sTNFRI, fluorescence of CD146, and miR100 or miR194 were
the best combinations that significantly improved the
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diagnostic performance (multivariate ROC > 0.975) in
discriminating patients with and without aGvHD.

Reproducibility and standardization are key to the
development of clinically applicable biomarkers. Different
methods of EV isolation and characterization may be employed.
We used PEG precipitation to isolate EVs from our samples given
the volume of starting material (<1 ml). Importantly, our analyses
can be carried out in 24-48 h. Although ultracentrifugation
techniques may be considered the gold standard for EV
purification, they would be more difficult to standardize and be
more expensive to run in a clinical laboratory (67-69).

Although our present observations are consistent with our
previous findings (21), our cohort remains small in size, with
relatively few cases of aGvHD, most of them affecting only the
skin and being low in grade (one case III-IV aGvHD only).
However, to further confirm our findings and to validate our
model, a large multicenter prospective study including patients
with different hematological malignancies and transplanted from
different donor types has been designed and currently accruing.
In summary, our report indicates a turbulence of significant
dynamic changes in surface markers and miRNA cargo in
plasma EVs that may specifically underlie events that precede
the onset of aGVHD. They appear to mainly express endothelial
injury and T-cell activation. Furthermore, our biomarker
performance analyses suggest that combinations of EVs with
other plasma biomarkers may reliably identify patients with
incipient aGvHD.
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