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a b s t r a c t

We present a spatial interaction entropy maximizing and structural dynamics model of settlements from
the Middle Bronze Age (MBA) and Iron Ages (IA) in the Khabur Triangle (KT) region within Syria. The
model addresses factors that make locations attractive for trade and settlement, affecting settlement
growth and change. We explore why some sites become relatively major settlements, while others
diminish in the periods discussed. We assess how political and geographic constraints affect regional
settlement transformations, while also accounting for uncertainty in the archaeological data. Model
outputs indicate how the MBA settlement pattern contrasts from the IA for the same region when
different factors affecting settlement size importance, facility of movement, and exogenous site in-
teractions are studied. The results suggest the importance of political and historical factors in these
periods and also demonstrate the value of a quantitative model in explaining emergent settlement size
distributions across landscapes affected by different socio-environmental causal elements.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

In the Middle Bronze Age (2000e1600 BC; MBA), large settle-
ments arose in northeast Syria in the region of the Khabur Triangle
(KT). The distribution of settlement sizes in this region was rela-
tively broad; numerous small and medium sized sites arose, while
few sites became very large. These structures reflect the rise of
kingdoms that briefly integrated this region within larger states,
while at other times the regionwas politically fragmented. Roughly
one millennium later in the KT, the political and settlement picture
in the Iron Age (1200e600 BC; IA) were very different when the
large territorial Neo-Assyrian state dominated the landscape.
Although during this long period there are likely key settlement
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size variations, very few settlements reached sizes evident in the
MBA and many sites were small.

It is not well understood how such settlement size structures
developed based on inter- and intra-regional interactions and
socio-environmental factors. While there are historical sources that
explain the political situation for the region, we are missing vital
information. Based on this, a methodology is needed that can
explain such urban distribution structures, notwithstanding
imperfect knowledge. Data on geography, transport, the local and
regional political situation, and relative attractiveness of sites can
be determined from archaeological survey and historical research,
indicating where settlement would have been generally favored
and where other regions were likely to be less populated. However,
explanations are also needed that demonstrate how settlement
transformations, specifically in population, arise, based on uncer-
tainty, while not being overly simplified.

Spatial interaction and structural dynamic models that apply
entropy-based (Boltzmann) and dynamic LotkaeVolterra
methods (Wilson, 1970; Harris and Wilson, 1978; Wilson, 2012)
have the potential to provide explanations that address
se.
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Fig. 1. Maps (a & b) showing sites in the KT region during the MBA and IA periods respectively.
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settlement expansion or contraction within these geographic
settings. This paper explores the utility of such modeling and
potential insights that might be gained even when information is
limited. The goal is to present a generalized simulation that ex-
plores how the spatial setting and factors that affect the flow of
goods and people can influence urban size transformations and
settlement interactions. The paper uses sites surveyed in the KT
region in northern Mesopotamia, including those that date to
both the MBA and the IA.

We first introduce background information on the data. We
discuss both the background of entropy maximizing and structural
dynamics modeling approaches. Outputs from the two periods’
modeling are then presented. These results explore and demon-
strate relevant causal factors that lead to settlement structure
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differences between the periods discussed. The model and the re-
sults’ importance to understanding the development of urbanism
in the periods are then explored, including broader benefits derived
from the approach.

2. Background

2.1. Landscape

The KT is located within the Syrian Jezira, an area measuring an
extent of 37,480 KM2 and confined between the Tigris and
Euphrates rivers. The investigated area is largely flat and bounded
by the Syrian/Iraqi border to the east, by the Syrian/Turkish border
to the north, by the Jebel Sinjar and by the Jebel ‘Abd-al-Aziz’ to the
south, and by the Khabur river to the west (Fig. 1). Scholars have
proposed that a major drying trend led to site abandonment by the
late third millennium BC (Weiss, 2000), but by the early second
millennium BC conditions likely allowed for major settlements to
reemerge (Issar and Zohar, 2004).

2.2. Middle Bronze Age and Iron Age settlement patterns

Archaeological excavations and surveys carried out in the KT
provided the body of data on spatial extent at both regional and
local scales as well as occupation histories. While at times such data
can be problematic, as sites are obscured from the archaeological
record or are simply undetected, considering the scale of the area
studied, many sites have been detected because they are mounds
that protrude. In the KT, relevant survey data include: Eidem and
Warburton (1996), Gavagin (2012), Lyonnet (2000), Meijer (1986),
Ristvet (2005), Wright et al. (2007), Ur and Wilkinson (2008), and
Ur (2010). Other nearby surveys (Algaze, 1989; Wilkinson and
Tucker, 1995; Ball, 2003) have been left out of the analysis, as
these are not as continuous with the others.

Within the KT, there are 260 sites that are occupied in the MBA
(Fig. 1a). In the western KT (i.e., west of the JaghJagh River), set-
tlements are nucleated and populations were likely concentrated in
towns such as Chagar Bazar (ca. 9 ha), Tell Mozan (ca. 35 ha), and
Tell Arbid (ca. 7 ha), with the surrounding territory largely devoid of
smaller settlements. In the eastern KT, the Tell Leilan (Ristvet, 2005)
area alone has 148 sites during the MBA. Here, the dominant role of
Tell Leilan is clear, which had an area of ca. 90 ha with many sur-
rounding small villages. Other centers were Tell Farfara (ca. 80 ha)
and Tell Muhammed Diyab (ca. 35 ha). Along the Jaghjagh, themain
settlements were Tell Brak (ca. 25 ha) and Tell Barri (ca. 9 ha).
Overall, far more settlements and greater diversity of site sizes are
found in the east; this could be because the area hadmore favorable
climatic conditions (Evans and Smith, 2006). Fig. 1a and Table 1
show and summarize the sites.

In the IA (Fig. 1b), there are 276 settlements in the KT. The west
has 194 sites, but only 82 sites are in the east and they were larger
(Table 1). In general, settlements during the IA were mostly small
and somewhat evenly dispersed in the region (Wilkinson et al.,
2005). At the beginning of the IA, few settlements have been
located, while in the late IA, during the time of the Assyrian
Table 1
Average site size (ha) and standard deviation for the western and eastern KT during
the two periods.

Region Period Number
of sites

Average
size (ha)

Standard
deviation (ha)

West KT MBA 55 3.15 5.89
West KT IA 194 2.2 2.91
East KT MBA 205 4.7 9.89
East KT IA 82 3.3 2.58
conquest, many small settlements (i.e., less than 5 ha) became
established. In the late IA, the aggregate settled area more than
doubles from the late second millennium BC (Wilkinson and
Barbanes, 2000). During the IA, known larger sites are Tell Halaf
(14 ha; Novák, 2009), Tell Hamidya (24 ha; Wäfler, 2003), Tell al ’Id
(19 ha), Tell Badan (17.5 ha), Tell Effendi (17 ha), and Tell Beydar
(12 ha). The modern city of Nusaybin in Turkey likely overlies a
relatively large center, but this site is largely unexplored.

A natural log scale showing settlement size and hierarchies,
ranking from largest to smallest, are displayed in Fig. 2. For the
western KT (2a), the MBA and IA sites show a significant difference
(p-value < 0.5) in site size and hierarchy, using a Kolmogorove
Smirnov test, while the eastern KT (2b) there does not seem to be
any statistically significant difference (p-value < 0.05) for the two
periods’ sites. However, this is close to significant (p-value ¼ 0.06).
Overall, comparing all of theMBA and IA sites (2c), the distributions
are not statistically significant, but looking at each region and
period we see that site size and hierarchy are significantly different
(p-value < 0.05). Table 1 shows average and standard deviation in
site sizes between the regions and periods. From this, it is clear that
theMBA sites are larger in the eastern KTand have greater variation
in site size, while in all the KT sites are generally larger in the MBA
than in the IA. Table 2 summarizes the top ten largest sties and their
size estimates for the periods.

2.3. Historical background on the Middle Bronze and Iron Ages

For reasons that are unknown, sometime after 2000 BC, the local
kingdoms of Nagar (capital ¼ Tell Brak; Fig. 1.4; Oates et al., 2001)
and Urke�s (capital ¼ Tell Mozan; Fig. 1.3; Buccellati and Kelly-
Buccellati, 2009) come to an end. Subsequently, the KT finds itself
under outside control for much of the time. The political situation is
complex and in part documented by textual materials, such as from
the archives of Tell Leilan, (Fig. 1.7; ancient �Sehna; Eidem, 2012),
Chagar Bazar (Fig. 1.1; ancient A�snakkum; Tunca and Baghdo, 2008)
and Mari (Tell Hariri).

During the MBA, the KT is split into various local principalities,
not all of which can be localized with confidence. The kingdom of
Apûm (Eidem, 2008) seems to control most of the eastern part of
the KT, while the rest is divided into several small states including
A�snakkum, Urke�s, and �Suduhum (Guichard, 2009) that can be
specified with the group designation Ida-maraṣ (Fleming, 2004;
Bryce, 2009). For most of that time, these small states accept the
sovereignty of the kingdom of Mari (Margueron, 2004), first under
the so-called �sakkanakku dynasty and then under several rulers
that owe their regional importance and their position to their
connection with the kingdom of Yamhad (Klengel, 1997), whose
centre is Aleppo (Halab) which is outside of the investigated region.

The local states in the KT profit from the important eastewest
overland route that leads from Upper Mesopotamia through the KT
to the Mediterranean and Anatolia. It is used most prominently by
the donkey caravans linking Assur (modern Qala’at Sherqat) on the
Tigris in northern Iraq with the region of the Great Salt Lake in
Central Anatolia (Barjamovic, 2012). While there is a well estab-
lished tradition of trade links with the Tigris region, there is a
period of about two decades, around 1800 BC, when the KT also
comes under the direct political influence of its eastern neighbors.
At that time, the Tigris region between Assur and Nineveh (modern
Mosul) forms the powerbase of king Samsi-Addu (1833e1776 BC;
Charpin and Ziegler, 2003). Tell Leilan comes to serve as Samsi-
Addu’s local centre, who has the city renamed �Subat-Enlil. The
dominion of the Tigris region over the KT does not last long after
Samsi-Addu’s death. For the next decades (Eidem, 2012), the tex-
tual sources attest to the military and political maneuvers of
regional powers and outside powers frommuch further away in the



Fig. 2. Site size hierarchies, using a natural logarithmic scale for size of settlements (ha) and rank (ordinal), in the west, east, and overall KT during the MBA and IA.
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east (E�snunna ¼ Tell Asmar on the Diyala in eastern Iraq and Elam
with its capital city Susa ¼ Shush in Iran). In the short term, Mari
under king Zimrilim, is able to gain control over the KT but even-
tually, when his kingdom is conquered by Hammurabi of Babylon
(Charpin, 2012) and Mari is abandoned, the KT seems to become
part of the kingdom of Yamhad (Klengel, 1997).

In the early IA, we find the KT at first under local independent
rule. Previously, from the 13th to the 11th century BC, the region
had been part of the Assyrian state with its power base on the
Tigris, centered on the capital city of Assur. But from the reign of
A�s�sur-bel-kala of Assyria (1073e1056 BC) onwards, political control
was gradually lost to Aramaean tribal organizations that quickly
transformed into regional states and from the 11th century on-
wards the KT region is fragmented into several small states, with
Bit-Bahiani (capital ¼ Tell Halaf; Fig. 1.9; Dornauer, 2010) the most
prominent. As the result of successivemilitary offensives during the
10th century BC, the regionwas once again annexed by the Assyrian
state, with its centers further east (Radner, 2011), and the region
became integrated into the Assyrian provincial system by 867 BC.

The KT was organized into three provinces. Naṣibina, with the
capital city of the same name (modern Nusaybin; Fig. 1), occupied
the eastern part of the KT. That area was integrated into the pro-
vincial system in 896 BC, first as part of a border march and later as
a separate province. This happened probably at the time of the
integration of the Aramaean principality of Bit-Bahiani into the
Assyrian Empire, which led to the establishment of the province of
Guzana by 867 BC. This province took up the western part of the KT
and owes its name to its capital city Guzana (¼Tell Halaf). A third
province called Raqamatu, after its (unidentified) capital city,
which was also known under the Aramaic name Gidara (Bryce,
2009), lies west of Nasibina and north (or perhaps east?) of
Guzana. This province was established in 898 BC and may have
been merged with another province after 773 BC, when there are
no further references to the province (Radner, 2006). Until the fall
of the Assyrian state at the end of the 7th century BC, and for more
Table 2
Top ten sites in estimated size for the MBA and IA.

MBA sites Size (ha) IA sites Size (ha)

Tell Leilan 90 Tell Hamidiya 24
Tell Farfara 80 Tell al ’ID 19
Tell Brak 45 Tell Badan 17.5
Tell Muhammed Diyab 35 Tell Effendi 17
Tell Mozan 35 Tell Halaf 14
al-Andalus 30 Tell Beydar 12
Dumdum 27 Tell Barri 9
Hansa 25 Khirbat al-Shiha 7.5
Tell Hamidiyah 24 Tell Tamr 7.3
Hameid 23 Tell Arbid 7
than two centuries, the KT was an integral part of the Assyrian state
(Radner, 2002).

What the above historical data indicate is that for much of the
MBA we see the KT as politically fragmented and established
powers frequently changed, while in much of the IA, particularly
when many settlements are well established in the KT, we see a
singular large state dominate the region. Below we attempt to
explain observed settlement patterns and sizes while reconciling
this with the historical data.
3. Methodology

3.1. Modeling using entropy maximizing and structural dynamics

Entropy maximizing methods have been widely used to model
spatial interaction (Wilson, 1970). Here, they are used to represent
an indicator of interaction between settlements, which can be
considered to represent both migration and trade. Economic or
population growth has been modeled using methods analogous to
those of Lotka and Volterra in ecology (Harris and Wilson, 1978).
The combined models have been labeled as BoltzmanneLotkae
Volterra and hence BLV models (Wilson, 2008). In archaeology,
various publications have applied similar approaches (Evans and
Gould, 1982; Knappett et al., 2008). More recent work on archae-
ological applications of entropy maximizing methods includes
work by Wilson (2012) and Bevan and Wilson (2013). In this
approach, we use these and related techniques to model the evo-
lution of settlements in the historical periods in question. Specif-
ically, our aim is to produce simulations of these spatial systems
which reflect, as far as we can, the development of these sites, with
the goal of explaining why certain sites may have achieved relative
prominence and the general settlement size distribution. The val-
idity of the model will be assessed on the basis of the correspon-
dence, in terms of several observed characteristics, between
simulated results and data. These characteristics are primarily
macro-level features, such as the overall size distribution, so that
the agreement is in terms of stylized features rather than highly-
granular detail. In the process of seeking such model outputs, ex-
amination of those parameter configurations which give rise to the
closest correspondence, in this sense, also offers insight into the
relative importance of individual factors.

In technical terms, the analysis we present uses a well-
established formulation of a BLV model, and the primary contri-
bution in this regard is in its adaptation to the present archaeo-
logical context. Nevertheless, while the overall structure is
standard, a number of methodological innovations have been
incorporated which are not present in previous work. In particular,
we explore a method for assessing the robustness of results under
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uncertainty in data, which is motivated explicitly by the nature of
the archaeological data available.

The spatial data required for our model is provided in the form
of two site datasets; one for each of the periods. For each set e

containing 260 and 276 sites respectively e these contain the lo-
cations of sites and cost matrices for travel between each pair of
sites, calculated via cost surface analysis, using methods applied by
Fontenari et al. (2005), in order to account for the effect of varying
terrain. We also have rough estimates for the size of each site in
hectares, based on surveys referenced, which provide a relative
proxy as to which sites likely had larger populations.

3.2. Model formulation

The model takes the form of a standard spatial interaction
model (SIM) of the type which has been used previously in other
contexts (e.g., Harris and Wilson, 1978; Bevan and Wilson, 2013),
with some modifications for the present setting. We define the
following variables for each of the sites:

Xi¼ volume of flow (i.e., people and goods) originating at a given
site i
Zj¼ ‘attractiveness’ or size of site j; a variable that represents any
factor that makes a site attractive to settle
dij ¼ distance (i.e., cost of travel) between any two sites i and j,
normalized by the mean of all such distances
rij ¼ number of rivers crossed by a direct path from i to j

In the case of cost values dij for which i ¼ j (representing,
notionally, the distance from a site i to itself), these are set to f, a
parameter which represents impedance to internal trade at a given
site, before the normalization step. In addition, for every river
which is crossed by a direct path between two sites i and j, an
additional impedance r is added to the corresponding cost value, so
that the total is (dij þ rrij).

One further factor worthy of note here is that of external
interaction; that is, each site’s interaction with sites outside the
area of study. This would be manifested as an additional in-flow for
each site and therefore contribute to site growth. A simple repre-
sentation of this in the model would be the inclusion of a constant
term for ’rate of growth due to external interaction’, encapsulating
all such effects. Simulations were carried out with such a term
included, but it was found that its effect could also be achieved, in
general, through variation of f. This can be rationalized by
considering the function of f as a barrier to internal interaction:
such interaction is a feedback effect, providing in-flow to a site in
proportion to its current size, and so increasing this flow mimics
the consequence of external influence.

The model itself can, broadly, be divided into two parts: the
estimation of interaction flows and the use of these flows to
determine site size evolution. The first of these relies upon estab-
lishing, for any pair of sites i and j, the utility of interactionwith j as
perceived by i. This takes the form of a cost/benefit calculation, with
the benefit being a function of the size of j and the cost representing
the physical impedance (i.e., distance between). Two parameters, a
and b, are introduced at this stage: a specifies the scaling of utility
as size varies, and b determines the strength of the negative effect
of cost. Using entropy-maximizing methods, the most likely set of
flows, given that the total flow originating at each site is known, is
then found. The allocation given by this method is relatively sim-
ple: for any given site i, the total out-flow Xi is shared between each
other site j in proportion to the utility of j. In this way, we find the
flow Sij between any such pair of sites.

In the second part of the model, these flows are used to update
the site sizes; that is, to determine the growth/decline of each site
under the calculated set of flows. For each site j, the total inward
flow is found by summing Sij over all i, and this value is compared
with the site’s current size Zj. If the total flow is less than Zj, the
current size is unsustainable and the site shrinks, whereas a surplus
of inward flow leads to the growth of j. The model, in essence, is
appropriate for measuring generic factors (e.g., environmental
constraints, political conditions, economic conditions) that could
lead to some sites becoming larger than others.

Having made these calculations and adjusted Xi and Zj accord-
ingly, the model proceeds to the next time-step and the process is
repeated. For any individual simulation, we run the model for a set
number of discrete time-steps dt:

The flow Sij between each pair of nodes i and j is calculated using
the following formula, which utilizes a and b:

Sij ¼ Xi

Zaj e
�bðdijþrrijÞ

P
k
Zak e

�bðdikþrrikÞ (1)

These flows are summed to give the total incoming flow Dj to
each site j:

Dj ¼
X
i

Sij (2)

This incoming flow is used to calculate Zj at the next time step,
Zj

(t þ dt), via the formula:

Ztþdt
j ¼ Ztj þ dt

�
Dj � Ztj

�
Ztj (3)

We now find Xi
(t þ dt) for the next time step by taking it to be the

corresponding Zi(t þ dt) value, normalized according to the total of all
Zi
(t þ dt) and rescaled so that the Xi

(t þ dt) continue to have mean 1:

Xtþdt
i ¼ n

Ztþdt
iP

k
Ztþdt
k

(4)

Then return to (1).
3.3. Model outputs

Having completed any given numerical simulation of the model,
a natural question arises of which quantities should be regarded as
the fundamental outputs of the model; these are precisely those
quantities which will be used to evaluate settlement sizes and
distributions for the periods discussed. For each simulation, we
have several observable features upon which to base assessments:

� the final site size Zi for each site j, and the distribution of these
values across all sites. Since we have numerical estimates for
these values within our datasets (the distributions of which are
shown in Fig. 3) we canmakemeaningful numerical comparison
between these distributions using statistical tests;

� the structure and properties of a NystueneDacey (NeD) graph
(Nystuen and Dacey, 1961; construction described in Appendix
A) derived from the simulated flow matrix Sij. Such a graph
defines a hierarchy of sorts for sites, with links representing
subordinate relationships. This facilitates the analysis of both
graph-theoretical properties and the average geographical
length of the estimated links, i.e. the typical length traveled to a
locally-dominant site. Although true flow data is not available
for comparison, we can compare the link length with that of
another graph derived from the real data, for example by linking
each site to its closest ‘large’ site;



Fig. 3. Simulation outputs for the MBA as a and b are varied, with r ¼ f ¼ 2500, : a) a ¼ 0.8 and b ¼ 45, b) a ¼ 1.2 and b ¼ 45, c) a ¼ 0.8 and b ¼ 15, d) a ¼ 1.2 and b ¼ 15. The sites are colored according to size, ranging from yellow to red
as size increases, and the links are those of the induced NeD graph. It is notable that the links are significantly longer in the low-b simulations where there is a lower associated cost to travel, and that the changing value of a has the
effect of picking out different dominant sites. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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Fig. 4. The average length of NeD links for the IA, as a function of b and r. The colors
range from blue to red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.).
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� the extent to which the largest sites in the real data are found to
be large during simulated runs. ‘Large’ is taken here to refer to
sites whose size is an order of magnitude higher (i.e., 10 times)
than other sites: for each dataset, we identify a set of L such sites
(L is 19 and 6 for MBA and IA respectively) and, for each simu-
lation, record the number of these which appear in the top L
simulated sites, when ranked;

� visual inspection of outputs and evaluation of their historical
validity.

It is in these terms, therefore, that we characterize individual
simulations; however, we stop short of identifying specific criteria
for what constitutes a ‘match’ with real data. Firstly, each of the
above points represents a well-justified objective for a model and it
is far from clear how they should be combined. More importantly,
though, to be prescriptive in this way implies a level of confidence
in the accuracy and completeness of the data, which is not present,
and therefore to fit in this way may be counter-productive.

4. Results

There is clearly a wide degree of variation possible within the
model, in terms of parameter choices, manipulation of the under-
lying datasets, and synthesis of results. In the following sections we
explore several of these, incrementally building the complexity of
the approach. All simulations are run for 3000 ticks, with step size
dt as 0.01; in all cases this was sufficient for the site sizes to reach a
steady state. Initially, all variables were the same for sites, while
only distances (i.e., cost surface) between sites were different. Data,
code, and instructions for the model are made publically available
(http://discovery.ucl.ac.uk/1414597/).

4.1. Parameter variations

The model features four parameters e a, b, r and f ewhich can
be varied to give different outputs, for a given set of initial condi-
tions. Each has a real-world interpretation: a represents returns to
scale of attractiveness as a function of settlement size, with a value
of 1 indicating a linear relationship; b determines the impedance of
distance (i.e., how easily goods and people can move across given
distances); r governs the extent to which rivers inhibit interaction;
f controls the relative attractiveness of internal and exogenous
activity for a site, which accounts for edge effects as this addresses
outside interactions and sites not addressed in the model.

The effect of such parameter variation can be seen visually in
Fig. 3, which shows outputs for the MBA as a and b are varied. In
these simulations, the system is initialized in a homogeneous state;
specifically, Xi

(0) is set to 1 for all sites i. These particular simulations
are intended not as an attempt to produce realistic results, but
instead to give a visual impression of the effect of parameter vari-
ation: it is clear to see that b is a significant determinant of the
length-scale of interactions, while a influences which sites become
dominant.

A different perspective can be seen in Fig. 4, which shows the
average length of connections in the induced NeD graph for the IA,
across a range of b and r. While this offers limited insight into the
underlying system, these results exemplify the significant and
highly non-linear manner in which the model parameters interact.
As would be expected, smaller b values e representing lower
impedance to travel e lead to longer interaction links. The behavior
with r, however, is more interesting, particularly at low values of b:
as impedance increases, link length decreases, before unexpectedly
increasing towards higher values. An explanation might be found
by considering the relative positions of rivers and sites: in the
southern area, many sites are clustered around rivers, and the
impedance of the river increasing above a certain valuemight cause
their dominant interactions to switch from those involving river
crossings to favor sites on the same side of the river, which may be
further away.

4.2. Fitting to empirical data

The ultimate objective of analyzing parameter space in this way
is to identify a set of values that correspond most closely to the real
data. Although this correspondence could be defined inmany ways,
we take as our first objective the distribution of site sizes. This
requires a measure of the similarity of distributions, and for this we
use KolmogoroveSmirnov (KeS) distance. For any set of data, it is
possible to calculate an empirical cumulative distribution function
(ECDF): a step-functionwhich, for any value x, gives the probability
of finding a value less than or equal to x when randomly sampling
from the data. The KeS distance between any two distributions is
simply the maximum difference between their ECDFs, over all
possible x; it therefore ranges between 0, in case of a perfect fit, and
1 in the worst case. For each output, we compare the distribution of
the modeled site sizes with that of empirical site size estimates,
having first normalized each set by dividing by its mean.

In order to investigate the goodness of fit for various configu-
rations, a grid search of parameter spacewas carried out and the Ke
S distance found in each case. One feature which becomes imme-
diately apparent is the disparity between the two periods in terms
of the parameter configurations which give rise to the closest cor-
respondence. Fig. 5 shows the results of simulations for a sampling
of the parameter space of a, b, r and f, shown as an interpolated
‘heat map.’ Presented in this way, the difference in character be-
tween the two periods is immediately apparent, since the areas of
parameter space indicating good agreement differ markedly be-
tween the two plots. For the MBA, better fit is found for higher
values of a, for example, implying that returns to scale were larger
for this system. In addition, higher values of f also lead to closer fits
in MBA than in IA, suggesting that the MBA sites were less reliant
on internal interactions. Above all, the dissimilarity between the
plots suggests a significant difference in character between the two
periods.

Using the results of this parameter search, configurations were
found for MBA and IA sites, which give the minimal KeS distance.

http://discovery.ucl.ac.uk/1414597/


Fig. 5. KeS distances for simulations of a) MBA and b) IA data across a range of parameter values. The ‘outer’ grid axes represent changing a and b; for any pair of these values, the
image within the grid is a plot of f against r for the fixed a and b, as shown in the expanded panels. The color represents KeS distance, with red representing the best fit and blue
the worst. Uniform initial conditions were used in these simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.).

Table 3
Parameter values giving minimal KeS distance for site sizes when compared with
observed data.

a b r f KeS

MBA 0.7 35 1500 1000 0.077
IA 0.5 15 0 1000 0.101
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The relevant parameters are given in Table 3, and the results are
shown in Figs. 6 and 7, which show site size distributions and
mapped results respectively. The relatively good fit e seen both
visually and in the low KeS values e indicates that, on this gauge,
the model has successfully reproduced the empirical distribution.

Although these results show good agreement in terms of site
sizes, the sites which have large estimated size in the observed data
tend not to be those which the model forecasts to be large. The
failure to identify precise sites does not necessarily imply that the
model has not identified more general geographical areas, which
would be expected to feature large sites. Of course, in reality, there
are various factors that lead to the dominance of certain sites (e.g.,
earlier settlements could initially be larger, socio-environment
factors may favor one site vs. others), whereas only geographic
location is included here. Considering the case of Tell Leilan, for
example, it is clear from inspection that there is no a priori reason
why it, rather than its nearest neighbor Rehaya, should become
dominant in the model. If the analysis is widened, though, to
consider situations where the dominant simulated site is not one of
the true largest sites, but is in close proximity to one, it is possible to
find the extent to which the localities of large sites are identified.

To do this for any given simulation output, we take each of the
10 largest simulated sites and calculate the distance to the nearest
of the ‘true’ 10 largest sites (that is, the minimum distance one
would have to travel to reach one of the true top 10). The average of
these values is an estimate of the extent to which the true large
sites have been ‘missed’, in geographical terms. In the MBA case,
this value, for the parameters given in Table 3, is 7564m. To put this
value in perspective, we can compare it with the value it would take
if, instead of using the top 10 simulated sites, a random set of 10
sites were chosen and the distances from these to the true top 10
calculated. Doing this 100 times, we find a mean value of 15,597 m
with standard deviation of 4648; that is, the sites which are fore-
casted as large by ourmodel are significantly closer to the true large
sites thanwould be expected by chance. Although comparisonwith
random points is relatively unambitious, this value, along with vi-
sual comparison, suggests that the model is indeed finding sites
that are geographically close to known large sites, suggesting the
model is far better at forecasting the largest sites than random
selection. The equivalent value for the IA is 4272 m, with a corre-
sponding null value of 12,062 m (s.d. 2602).



Fig. 6. Comparison of site size distributions between empirical data and the optimal simulations, in terms of KeS distance, for a) MBA, and b) IA. The distributions are plotted as
complementary ECDFs on doubly logarithmic axes.
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4.3. Initial conditions

The results of the previous section suggest that, whenwe seek to
produce a distribution of site sizes similar to the real data, known
large sites do not, in general, emerge in the model. In order to
distinguish such sites, therefore, some modification to the model is
required. A natural approach to this, within the current framework,
is to manipulate the initial conditions for site size; rather than
taking these to be uniform, we adjust these according to what is
known about the sites in question. Such an adjustment perturbs the
model in favor of certain sites; inmore concrete terms, this could be
regarded as accounting for any effects not explicitly included in the
model which currently only considers the spatial configuration of
the system.

Our approach to this is to divide the sites into three categories,
according to the order of magnitude of their given size in the data
(essentially a classification as ’small’, ’medium’ or ’large’ on the
basis of their hectare sizes lying in the ranges [0,1), [1,10) or [10,N),
respectively). The initial condition for each site is then set to be the
mean of the known size of all sites in its category. In the MBA, for
example, the mean size of ‘large’ sites is 28.73, and so all large sites
are initialized with this value. Although guiding the system, this
still represents a relatively coarse-grained classification of sites.
Fig. 8 shows the result of simulations under this modification, with
parameters identical to those shown in Table 3. In terms of top sites,
a modest improvement is apparent: for the MBA, the sites at Hansa,
al-Andalus and Khirbet el-‘Abd are now significant, and in the IA
there is now a larger site at Tell Halaf.

If we allow ourselves to make changes to the parameters,
however, the results can be improved still further in these terms.
For the MBA, using the values a¼ 0.7, b¼ 45, r ¼ 1000 and f ¼ 500
leads to the output shown in Fig. 9a. Several empirically large sites,
such as Tell Brak, Tell Hamidiyah and Tell Leilan, are now amongst
the largest forecasted, and several of the other sites found to be
large (e.g., Duger, Lazzaga and Khirbet el-‘Abd) are known to be
significant. For the IA, on the other hand, the values used are
a ¼ 0.4, b ¼ 45, r ¼ 5000 and f ¼ 500, with the output shown in
Fig. 9b. We can, of course, also consider the distributions of site
sizes in these cases: we have KeS values of 0.21 and 0.19 respec-
tively. Although these do not represent such a close fit as the pre-
vious section, the difference is not so large as to nullify the results.

The ability of the model to identify these sites is encouraging: it
offers further confirmation that the model is capable of producing
sensible outcomes and demonstrates that only a small amount of
additional information is required to improve the accuracy of the
simulation. It is, however, instructive to consider the nature of the
changes to themodel that were required to give rise to such results.
The need to change initial conditions suggests the existence of
certain site-specific factors, which have a material effect on the
real-world outcome but are not included in the basic model (which
incorporates geographical location only). Without accounting for
these factors in a more elaborate model, the results of this section,
achieved by imposing the three-tiered initial classification, should
be viewed as illustrative only.

In terms of parameters, we may draw some insight from an
inspection of results e suggesting that the most crucial change in
terms of the identification of major sites is the lowering of f. This
can be rationalized by considering the spatial layout of sites in both
periods, which includes significant clustering in both cases. Since
every site represents a source of flow, a site which is situated in an
area of high site density has a large potential in-flow within rela-
tively short distance. If such a site is able to dominate locally, as
tends to be the case within the model, it is therefore likely to reach
larger size than a similarly dominant site in a sparse region, simply
because of the greater resource onwhich it may draw. Lower values
of f represent greater emphasis on internal development at a site;
as noted previously, this might also be thought of as giving greater
weight to extra-regional trade and, therefore, mediate against the
above effect. A good example of this is the southern region around
Uwayja in the IA period, which has a high density of sites: in Fig. 8b,
this density is clearly associated with large site sizes, whereas the
effect is much less pronounced in Fig. 9b.

4.4. Partial dataset sampling

The clustering of sites mentioned above may be the result of
unevenness in the surveying of sites, but also relates to a more
general problemwith the data: that of the contemporaneousness of
sites. The possible lifetimes of the locations we are modeling lie
within a wide range; at any given time, it may be the case that only
a subset would be in existence (and these subsets may not be
known). To ameliorate this, we use a new simulation protocol,
which involves repeated sampling of the sites.

To do this, instead of performing one simulation run for a given
parameter configuration,weperform a series ofM such simulations.
For each simulation, we randomly sample a subset of R of the sites,



Fig. 7. Mapped outputs from basic simulations for a) MB and b) IA periods, with parameter settings as indicated in Table 3. Darker red indicates larger relative site size under the model. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.).

Fig. 8. Mapping of simulation outputs for a) MBA, and b) IA, using the parameters of Table 3, but with initial conditions modified according to the known size of sites, as described in the text.
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and carry out the simulation using only these sites. When all sim-
ulations are complete, we take the mean modeled size of each site
across all the simulations inwhich it featured, and take this to be our
estimates of that site’s size. The underlying principle of this method
is that each sampling represents a possible ‘state of the world’, and
that averaging in this way accounts for our uncertainty about the
composition of the dataset: when a site is consistently modeled to
be large, for example, we can be confident that it is likely to be large
whatever the true composition of the system should be.

We carry out this process for each of the MBA and IA datasets,
taking M ¼ 500 and R ¼ 100 and with the other parameters as
specified in Table 3. Encouragingly, there is good consistency be-
tween the results of these simulations and those of the original
simulations, which used the whole dataset. We can use Spearman’s
rank correlation coefficient (which gives a value of 1 in the case of
perfect correlation and 0 in case of total absence) to examine how
closely the rankings of the sites under each protocol match; this
quantity is 0.556 for theMBA and 0.976 for the IA. This is significant
in both cases, and indeed remarkably high in the IA case, suggesting
consistency of results. In other words, sites which are found to be
large under the original algorithm remain large under this aver-
aging and random sampling system, and vice versa.

If we consider the variation of individual sites across such a run of
simulations, we observe a further difference between MBA and IA
periods. Fig.10 shows the sizes of individual sites across various runs;
it is noticeable that the distributions are normal-like in the IA case,
whereas theMBA case has a muchmore flat distribution, with many
low values. This can again be understood in terms of the clustering of
sites: many IA sites are well-clustered and are therefore somewhat
interchangeable from thepoint of themodel, whereas greater spatial
diversity of theMBA sitesmeans that system ismuch less resilient to
changes. The results are also shown in map form in Fig. 11.

In terms of size distribution, however, those simulations show a
significant disparity with the reference distribution (in terms of Ke
S distance); in particular the distribution has much lower variance.
This can be understood in terms of the averaging procedure; any
given site will be modeled as large in some of the simulations and
smaller in others (as shown in Fig. 10). Averaging over runs gives an
impression of which of these regimes it tends to be in, but does not
necessarily reflect its true size. Under this principle, the true size is
the outcome of the model under one particular (but unknown)
sampling; the averaging simply offers insight into its tendency
across all possibilities.

5. Discussion

The results demonstrate the utility of the model as a method
that explores spatial systems in historical contexts such as those
considered here, while also forecasting, at least far better than
random sampling, lager sites nearer to their true location using
input survey data. The model produces important insights and
demonstrates broader utility in describing settlement hierarchies
and detecting a variety of factors that may have caused some sites
to become relatively larger than others. Results show potential
political and historical differences affecting settlement in the MBA
and IA that can be explained by the advanced model.

Several aspects are particularly notable, both from the point of
view of modeling and of providing insight into the underlying
system. Firstly, themodel is able to produce close matches with real
data in terms of the distribution of site sizes, even in the most basic
implementation that focuses on spatial location. As well as
providing partial validation of the model, this stage of the work is
notable for the varying parameter configurations that are required
to produce the closest matches in each time period. The fact that
the best fits are found in markedly different areas of parameter



Fig. 10. Distribution of site sizes across 500 repeated simulations, where each simulation involves only a randomly-selected 100 sites (and each individual site therefore features in
only approximately 200 of the simulations, on average). Results are shown for a) MBA, and b) IA; in each case the upper panel shows the site with largest mean size and the lower
shows the 20th ranked.
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space e particularly in terms of a and b e implies that there is an
inherent difference between the periods. The results indicate that
returns to scale in site size were greater in the MBA (due to higher
a) and that interactions typically had a shorter length-scale (higher
b). In the IA, lower a indicates less importance on site size, while
lower b indicates greater movement or facility of movement across
the landscape. Translated to the discussed historical data, a politi-
cally fragmented landscape, such as in the MBA, could restrict
movement, thereby leading to larger local sites that also absorb
more flow from nearby sites. There may have been more emphasis
on establishing large sites, perhaps for protection (i.e., which re-
flects higher a) during periods of political competition, further
encouraging larger sites to become even larger.

We can interpret the results by the fact that in the MBA the KT is
characterized by the presence of several peer polities aiming to
exert their influence over their surrounding hinterland, while in the
IA settlements are well integrated into the Assyrian imperial
structure. During the MBA, we see the Jaghjagh River playing an
important physical/political boundary, and modeling results
demonstrate how river impedance can differentially affect site size
distributions depending onwhich side of the river bank a sitemight
be located.While in the IA, the landscapewould have been easier to
navigate due to the Neo-Assyrian empire’s control of the region,
with movement likely to be less restricted, particularly for a long
period of time (i.e., more than 200 years). Easier movement enables
the dispersion of flow to many sites, leading to greater similarity in
site sizes. Diminished a indicates less of a need or ability to have
larger sites in the IA, which could be caused deliberately by the
Neo-Assyrians or other environmental factors.

Overall, andanother important result demonstrated in themodel,
is that it was far better at forecasting larger sites near their true lo-
cations than by selecting sites randomly. In order to locate such sites,
it was necessary to manipulate both the initial conditions of the
model and some of the parameter choices. The first of these implies
that it was necessary to include a certain amount of known infor-
mation about the sites in question; in otherwords, that location data
alone were not sufficient to explain their dominance. Nevertheless,
the manipulation of initial conditions here was done in a coarse-
grained way, suggesting perhaps that any extra information need
not be particularly detailed. In the case of parameter variation, it was
found that closer matches tended to be associatedwith lower values
off, a parameter controlling local andexogenous interactions,which
can be related specifically to the nature of the data. The fact that the
data contained several areas of high site density presents something
of a modeling challenge. A large number of sites translates to a high
activity potential in the model, which may not represent reality: the
high density of sites may simply be an artifact of the area being
relatively well-surveyed or other distortion in identification of sites.
The parameter f has the potential to reduce this effect, by placing
greater interpretation on internal site features or interaction with
exogenous, non-KTsites outside of the simulated area, depending on
interpretation. In a sense, then, it is able to ‘tune’ the relative influ-
ence of local interaction effects and address edge effects.

The results generally show that other non-geographic factors do
make specific known sites larger, as sites become relatively large
through modifications to initial size and f. This can, for instance,
reflect external political conditions or initial site advantages. In
particular, it seems that Tell Brak, Tell Leilan and Tell Mozan in the
MBA would need greater exogenous effects or initial advantages to
enable them to consistently reach a relatively greater size. This
could come in the form of Samsi-Addu making Tell Leilan (the
ancient �Subat-Enlil) an important political capital, Tell Brak being
the seat of the “Lady of Nagar”(Oates et al., 1997, 141), and local or
external benefits that Tell Mozanmay have relative to other sites. In
the IA, the Neo-Assyrians choosing Tell Halaf as a provincial capital
could enable that site to be relatively large.

The issue of clustering of sites is once again apparent when we
consider another method of simulation: that of running repeated
simulations on only partial datasets (i.e., see section 4.4). The moti-
vation for this is to combat the effect of temporal uncertainty in the
data, since possibly only some of the sites are likely to be contem-
porary. The IA case, remarkably, shows little difference when using
this method, primarily because of the spatial structure: high clus-
tering means that the role of deleted sites is essentially assumed by
close neighbors and in simulation runs site size hierarchies are very
comparable. This indicates that even if some sites were occupied at
different times or missed in survey, the hierarchy of site sizes would
not be significantly different than that achieved in the results. The
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situation differs in theMBA,which appears to bemore volatile in this
sense and consistency of larger sites and hierarchies are not as easily
maintained across various runs, although the results are still fairly
consistent based on the Spearman’s rank correlation coefficient.
Nevertheless, based on this uncertainty, this serves to emphasize
that small changes in this dataset are liable to have a significant effect
on model outputs.

Despite the promise of the results, some shortcomings of the
modeling approach must be acknowledged. While also being a
strength to themodelingapproach, as itmore easilyallows themodel
to be transferable to other case studies, the model is necessarily
reductive and implements several factors in a relatively coarse
manner. The parameter f, which encapsulates a number of factors, is
a case in point, and is a consequence of seeking a parsimonious
model. In a similar vein, few non-spatial factors are included, and
these may have significant influence on the true evolution of sites;
the failure of the model to pick out certain sites can be ascribed to
this. It must be emphasized that the fine-grained accuracy of the
model is directly related to its complexity, and that the work pre-
sented here is a test of the potential of a simple model on imperfect
data. In future developments, several of these issues could be
addressed. In addition, the question of the selection of optimal pa-
rameters remains a subject of ongoing research in light of the
incomplete nature of archaeological data.

6. Conclusion

The goal of this paper has been to present a method that ex-
plores how the spatial setting and other unspecified socio-
environmental factors in the MBA and IA could affect the flow of
goods and people that ultimately influence urban growth and
settlement sizes. We explore certain aspects from the survey data
and try to match known historical events to explain modeling re-
sults. The strength of the modeling approach is that it can explain
the role of such factors as location, settlement importance, exoge-
nous effects, and movement and flow of goods and people on site
sizes and their distribution. While we are not completely certain
what caused observed results, the model is reconcilable with
known political and historical events. In terms of how outputs
might be used, there are several options for how results might be
used for meaningful historical/archaeological understanding. On
the one hand, we can use point estimates, using optimized pa-
rameters as we have done here, to forecast the relative size of
known (or unknown) sites. It is clear from our results, however, that
there is a range of parameters which all lead to very similar outputs,
and that selecting only one of these might not be prudent. An
alternative to be explored would involve the establishment of some
criteria for the ‘acceptability’ of a simulation output, identification
of all parameter configurations that satisfied these criteria, and the
production of an output which represents an average across these
configurations.

The present work has potential to be extended in various di-
rections. On the one hand, there are various aspects of the model
where it should be possible to incorporate uncertainty to a greater
degree. For example, our consideration of known site sizes uses
point estimates for these, where it may be more prudent to draw
values from a weighted distribution. In the case of rivers, also, the
impedance which we associate with river crossings, r, is constant
everywhere, which represents a simplification. Given more
detailed data, it would be possible to experiment with varying this
value on a river-by-river basis, or by incorporating known cross-
ings. On a deeper level, given that the clustering of sites in the data
has been identified as a significant complicating factor, further
work is likely to be required to consider how this problemmight be
tackled. This might be done by developing a process whereby sites
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which are consistently insignificant can be deleted, or merged with
other sites, in order to reduce imbalances of density.

As for larger benefits to archaeology, the model demonstrates
that it can begin to reconcile socio-political or even environmental
constraints to an abstract level, whereby such circumstances can be
translated to parameters such as a, b, and f that affect the impor-
tance of site size, cost of movement, and internal-exogenous site
interactions respectively. While such variables can be affected by a
host of circumstances, the benefit is the method can be transferred
to other and very different case studies more easily. The model is
applicable to describing observed settlement structures by
providing parameter estimates that enable nearly matching simu-
lated settlement data. The model is also useful for forecasting
general areas where larger or smaller sites are to be expected,
demonstrating its potential for helping archaeologists to locate
such sites. Overall, such modeling allows archaeologists to differ-
entiate how significantly different periods are in site distribution
and size structures and begin to understand this with causal
factors.
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