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In this paper we present a minimal object oriented core dadcdor modelling the biological notion
of type that arises from biological ontologies in formalstased on term rewriting. This calculus
implements encapsulation, method invocation, subtypirkgesimple form of overriding inheritance,
and it is applicable to models designed in the most poputar-tewriting formalisms. The classes
implemented in a formalism can be used in several modeésplikgramming libraries.

1 Introduction

In biology, homogeneous biological entities are usuallyuged according to their behaviour. Enzymes
are proteins that catalyse (i.e. increase the rates of) ichénmeactions, receptors are proteins embed-
ded in a membrane to which one or more specific kinds of sigigatholecules may attach producing
a biological response, hydrolases are enzymes that catdilgshydrolysis of a chemical bond, and so
on. Such classification is greatly behaviour-driven: thedse is a hydrolase, then its peculiarity with
respect to the other biological entities is that it catadyse hydrolysis of a particular molecule. It sug-
gests Computer Science types: every biological entity eacidssified with a type, containing the sound
operations for it. These operations describe only the gébehaviours, that may be modelled by means
of different formalisms. Like Computer Science types, éhBslogical types are used to check the cor-
rectness of the chemical reactions. In fact, lactase isusitg hydrolase, but a glycoside hydrolase,
i.e. it catalyses the hydrolysis of the glycosidic linkadeasugar to release smaller sugars. If in the
system the substrate or the products are not sugars, someetlibee is an error. Moreover, in Biological
types we can recognize a subtype relation. Lactase hydroheslactose, that is a disaccharide. Since
the disaccharide is identified as a subtype of sugar, theolygis operation associated to the glycoside
hydrolase type is correct.

Many formalisms originally developed by computer scidati® model systems of interacting compo-
nents have been applied to Biology: among these, there areNeds [16], Hybrid Systems [2], and
the rr-calculus [T/ 211]. Moreover, new formalisms have been ddfiioe describing biomolecular and
membrane interactions, for examplé([3, 5,16, 9/ 19| 20, 1vénkf types are used by biologists and stud-
ied by computer scientists, curiously they are usually ngilemented in Computer Science biological
models. Despite the number of formalisms developed by ctengientists and applied to model bio-
logical systems, just in the last few years there has beeaveinyg interest on the use of type disciplines
to enforce biological properties. 10 [12] three type systesne defined for the Biochemical Abstract
Machine, BIOCHAM (see [1]). In[10] a type system for the Gaics of Looping Sequences (séé [3])
has been defined to guarantee the soundness of reductiswitherespect to the requirement of certain
elements, and the repellency of other ones. Finally, Jlinddjup types are used to regulate compartment
crossing in the BioAmbients framework [20]. However, nofiehem exploits the similarities between
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E = element composition
v|x| E+E

R = rule declaration
E - E

Figure 1: Biological Rules

the types in Biology and in Computer Science.

In this paper we present a minimal object oriented core taddor term-rewriting formalisms, i.e. for-
malisms based on term rewriting, that models the notionésyused in biology as above described. We
implement only the object oriented paradigm skills thatpim view, are basic in modelling biological
systems, that is encapsulation, method invocation, suigygnd a simple inheritance. The purpose of
this calculus is to facilitate the organizations of rulex] & improve their re-use in the model, or evenin
other models. By means of subtyping, for example, modetiexate a class hierarchy, that can be used
in different models like programming libraries: classed amethods are created by expert researchers,
but they can also be used by raw users.

The remainder of this paper is organized as follows. In 8aiwe formally present the core calculus.
In Sectior B we propose classes explaining some enzyme ibehavin Sectiol 4 we apply our frame-
work to two term-rewriting formalisms, the Calculus of Laog Sequences [3] and the P systems [17].
Finally, in Sectiori. b we draw conclusions and we discuss Soinee developments.

2 Core Calculus

Term-rewriting formalisms[[3,16,/9, 17] have been appliedtodelling biological systems. They are
characterized by the syntax of terms and the operationafisérs. A term represents the structure of
the modelled system, and the reduction rules represenpstipe evolutions of the system. Some term-
rewriting formalisms embed the rules in the terms, othefgori® divide them.

In our core calculus, a class contains methods (encapmilaind extends another class (subtyping); a
class inherits all the methods of the class it extends (itdrere). Methods are formed by a sequence
of variables (the arguments) and a sequence of reducti@s,rekpressed in the syntax of the term-
rewriting formalism, containing these variables. The rodthare called on values of the model, i.e. the
biological entities, with a sequence of values as argun{emthod invocation). The method invocations
are replaced by the reduction rules which are method bodiksre the variables are replaced by the
values used as arguments. These reduction rules are the:fouslee evolution of the model.

For the sake of generality, in running examples we use tHediial rule notation to represent reduction
rules: the syntax is depicted in Figure 1. We use the notéior= E; instead of the pair of reduction

rulese; — E; andE, — E;.

For example, the hypothetical class of glycoside hydrotasgains a method to hydrolyse a sugar into
two sugars, all of them passed as arguments. This methodiesithe sequence of reduction rules that
models hydrolysis. We assign to lactase the glycoside hgskeaype, and then call on it the hydrolysis
method, passing as arguments the lactose and the sugactsoBy invocation, we obtain the reduction
rules specific for lactase, that will be used for the evolutdthe model.

In this section we present the formal definition of the calsulThe syntax, definitions and rules of the
calculus are inspired by the ones proposed by Igarashicé@rd Wadler for Featherweight Javal[14],
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a minimal core calculus for modelling the Java Type System.

2.1 Syntax
Syntax

CT = class table declaration
CL

CL := class declaration
class C extends D{M} (C#0bject)

M = method declaration
m(Cx) R

R = reduction rule declaration

according to the formalism syntax
contains variables, values apbis
| = method invocation

v.m(V)
X variable
v value
this this

Figure 2: Syntax

The syntax is given in Figufd 2. The metavariallleandD range over class hamas;ranges over
method namesCL ranges over class declaratiorid; ranges over method declaratiori®ranges over
reduction rules, according to the syntax of the formalismanges over method invocationsyanges
over parameter nameg;ranges over values, i.e. the symbols of the model. We asshandhe set of
variables includes the special variableis. Notice that this is never used as argument of a method.
We write M as shorthand foM; ... M, and writeC for Cq,...,C, (similarly X, v, etc.). We abbreviate
operations on pairs of sequences similarly, writthgfor Cy xi, . ..,C, X%, Wheren is the length o and
X. Sequences of parameter names and method declaratiorssaneesl to contain no duplicate names.
The declaratiorclass C extends D{M} introduces a class nam&iwith superclas®. The new
class has the suite of methollls The methods declared @are added to the ones declaredbgnd its
superclasses, and may override methods with the same nhatesd already present il or add new
functionalities. The clas8bject has no methods and does not have superclasses.

The method declaratiom(C X) Rintroduces a method nameuwith parameter of typesC. The body

of the method is a sequence of reduction ritesxpressed in the syntax of the formalism. The variables
x and the special variablehis are bound irR.

A class tableCT is a mapping from class nam€go class declaratiorGL. We assume a fixed class table
CT satisfying some sanity condition&l) CT(C) = class C... for everyC € domCT); (2) Object ¢
dom(CT); (3) for every class nam@ (exceptObject) appearing irCT, we haveC € dom(CT); (4) there
are no cycles in the subtype relation induced1dy, i.e. a class cannot extends one of its subclasses.
The fixed type environmerit contains the association between valuesd their type€, writtenv : C.
We assume thdt satisfies some sanity condition&t) if v: C € ' for someyv, thenC € domCT); (2)
every value in the set of values (according to the formaliperHications) is associated to exactly one
type inl".
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For example, we define the class of molecules as follows:
class Molecule extends Object{}

TheMolecule class has thebject class as superclass, and it does not have methods, i.e.utesleD
not have any particular behaviour.

An enzyme is a protein that catalyse chemical reactionsn leraymatic reaction, the molecules at the
beginning of the process (called substrates) are convirtedlifferent molecules (called the products),
while the enzyme itself is not consumed by the reaction. VWime¢he class of enzymes as follows:

class Enzyme extends Object
{
action(Molecule S Molecule P)
S+this — this+P
}

For the sake of simplicity, in our example an enzyme extemdskgect rather than a protein, jumping
a hierarchy level. According to the enzyme definition, thé/anethod of theEnzyme class isaction,
which converts the variable moleculdthe substrate) into the variable molec&éthe product) in pres-
ence of the enzyme (thehis variable). In the rest of the paper, thelecule class and its extensions
denotes biological object having no particular behaviand theEnzyme class and its extensions denotes
biological object having a behaviour.

Class tables and environment types are used to createe(&ipll",P), whereP is a model designed
according to the formalism specifications. Prwe use method invocations instead of reduction rules.
The class tabl€T and the type sdt are fixed, i.e. they are determined during the model creatiah
cannot vary during model evolution.

2.2 Auxiliary Definitions

For the typing and evaluation of rules, we need a few auxiléfinitions: these are given in Figure 3.
The type of a methochin a classC, written mtypém,C), is a sequence of typ€s The sequence gives
the types of the arguments of the methudlefined in the clas€, or in one of its superclasses, if not
defined inC. For example,

mtypéaction Enzyme) = (Molecule,Molecule)

The body of a methodhin a classC, written mbodym,C), is a pair(X,R) of a sequence of variabl&s
and a sequence of reduction ruRsThe elements of the pair are the arguments and the reduciies
of the methodn defined in the clasg, or in one of its superclasses, if not definedinFor example,

mbodyaction Enzyme) = ((S,P),S+ this — this+P)

2.3 Evaluation

The unique evaluation rule concerns the method invocatio(t). In this case, if the value has type
Cin I, and the methodn has argument® and bodyR in C, then its evaluation is the sequence of re-
duction rulesR, in which all the occurrences of the variableare replaced with the valugésand all the
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Method type lookup

CT(C) =class C extends D{M} m(CX)ReM

mtypém,C) =C

CT(C) = class C extends D{M} mis not defined irM
mtypgm,C) = mty pgm,D)

Method body lookup

CT(C) =class C extends D{M} m(CxX)ReM
mbodym,C) = (X,R)

CT(C) =class C extends D{M} mis not defined irM
mbodym,C) = mbodym,D)

Figure 3: Auxiliary Definitions

Method Invocation

v:Cel mbodym,C) = (X,R)
— (e-meth)
vm() — [X—1, this— V|R

Figure 4: Evaluation

occurrences ofhis are replaced with the value A method invocation is placed in the model instead
of the reduction rules: once evaluated, the reduction rofése method become the reduction rules of
the model.

Phosphoglucose isomerase is an enzyme that catalysesiregsion of glucose-6-phosphate into fruc-
tose 6-phosphate (and vice versa) in the second step oflgdjgoln order to model this behaviour, in
' we associate to the valym-iso (the phosphoglucose isomerase) the tgpeyme, and to the val-

uesglu-6-ph andfru-6-ph (the glucose-6-phosphate and fructose 6-phosphate ctasghg) the type
Molecule

I = {ph-iso : Enzyme,glu-6-ph:Molecule,fru-6-ph: Molecule}

Instead of the reduction rules, in the model we place thengabif the action method on theph-iso
enzyme, using the molecules as arguments

ph-iso.action(glu-6-ph,fru-6-ph)
Following the evaluation rule in Figufe 4, this method ination is replaced by the reduction rule
glu-6-ph+ph-iso — ph-iso+ fru-6-ph

As a consequence, we obtain the reduction rule modellingdneersion of glucose-6-phosphate into
fructose 6-phosphate. In order to obtain the conversioharother side, we call thection method on



L. Bioglio 55

theph-iso enzyme swapping the arguments
ph-iso.action(fru-6-ph,glu-6-ph)
This method invocation is then replaced by the reductioa rul
fru-6-ph+ph-iso — ph-iso+glu-6-ph

After method evaluation, we obtain the reduction rules efrtiodel, representing the possible evolution
of the system.

2.4 Typing
Subtyping
C<:D D<«E
C<:C (t-subl) (t-sub2)
C<E

CT(C) =class C extends D{M}

t-sub3
C<:D ( )

Figure 5: Subtyping

The rules for subtyping are formally defined in Figlfe 5. Thbtgpe relation between classes is
given by the class declarations in the class t&le The subtype relation is reflexive and transitive. For
Enzyme andMolecule classes we derive the following subtype relations:

Enzyme <:Enzyme Molecule <:Molecule (by rule (t-subl))
Enzyme <:0Object Molecule <:0bject (by rule (t-sub3))

Note thatEnzyme is not a subtype dfiolecule, then an enzyme cannot be a substrate nor a product of
theEnzyme's actionmethod.

The typing rules for method invocations and for method aadscteclarations are given in Figlte 6.
Typing statements for method invocations have the famtt) 0K, asserting that the method invocation
v.m(f) is well formed. The typing rule checks that the types of tHeesused as arguments in a method
invocation are subtypes of the types of the arguments redjliy the method.

Typing statements for method declarations have the fdr@kK in C, and assert that the method dec-
larationM is well formed in the clas€. The typing rule checks that the reduction rules in the natho
of a class are well formed, according to the types of the aggusand the class. The relatibrserves
this purpose, by using the type assignments on its left inythe checking of the element on its right.
Different formalisms have different constraints to chettk rule is well formed. For this reason, the
modeller must add the proper typing rules to check the veethBdness of a rule, according to the types
of the arguments and the class in which it is contained, intiatdto the typing rules in Figurel 6.

Typing statements for class declarations have the koK, stating that the class declaratioh is well
formed. The typing rule checks that each method declaratitime class is well formed.

As expected, botEnzyme andMolecule classes aréX.
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Invocation typing

v:Cel mtypdmC)=C i:Del D<:C
vm(f) 0K in C

(t-invmeth)

Method typing

X:C,this:CHROK
m(CX) ROK in C

(t-clmeth)

Class typing

CT(C) =class C extends D{M} MOK in C

— (t-class)
class C extends D{M} 0K

Figure 6: Typing

Note that the inheritance is very simple: a class inheritdhalmethods of its superclass, and it can mod-
ify the body and the arguments of a method declared in itsrelgss, i.e. it can change the reduction
rules and the arguments associated to a method name. Inapisomwer classes can reuse the names of
higher classes methods, i.e. more specialised biologntdies can focus and specialise the behaviour of
more generic biological entities by reusing the name aasetito a generic reduction rule. For example,
an hydrolase is an enzyme, but it cannot catalyse any reaekioept hydrolysis. For this reason, we
design hydrolase class as follows:

class Hydrolase extends Enzyme
{
actionMolecule S Molecule Pj, Molecule P)
S+ HyO+this — this+ P+ P

}

TheHydrolase class is an extension of tlBazyme class that overrides thaction method. In this way,
the generic catalysis described in thezyme’s action method is no more available in thigdrolase
class, but the overridaction method makes available the specific hydrolysis.

In the same way, the glycoside hydrolase is an hydrolasdtdmibstrate and products are sugars. Then
the glycoside hydrolase class is designed as an extensiydoblase class, that overrides thection
method by modifying the types of the arguments, from mokestb sugars:

class Sugar extends Molecule{}

class GlycosideHydrolase extends Hydrolase

{
action(Sugar S Sugar P;, Sugar P»)
S+HyO+this — this+ P +P
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3 Example

In this section we show how our calculus can be used to modkldical behaviours. As an example, we
design classes and method invocations to describe Michiiedhten enzyme kinetic, the two-substrates
enzyme kinetic and the competitive inhibition kinetic.

3.1 Michaelis-Menten Model

In the Michaelis-Menten Model, the enzyme reaction is dididn two stages. In the first stage, the
substrateS binds reversibly to the enzymie, forming the enzyme-substrate comple§ then in the
second one the enzyme catalyses the chemical step in tH@reacd releases the produet

E+S= ESSE+P

This basic behaviour is also used in most complex enzymeioeac In order to model this behaviour,
we create two classes, tBezyme class and thnzymeComplex class. The first one models an enzyme:
it associates itself with a substrate and produces an ensyibvstrate complex. The second one models
an enzyme-substrate complex: it dissociates itself in agrap and a product.

class Enzyme extends Object class EnzymeComplex extends Enzyme
{ {
asgMolecule S EnzymeComplex ES dis(Enzyme E, Molecule P)
S+this -+ ES this - E+P
} }

Since an enzyme-substrate complex can act as an enzyniaApeeComplex class extends thenzyme
class. In this way, thEBnzymeComplex class inherits fronEnzyme the assmethod by auxiliary defini-
tions.

The type environment is

I = {E : Enzyme,ES: EnzymeComplex, S: Molecule,P: Molecule}
The method invocations for reproducing the described liehaare

E.as§SES ESdis(E,S) ESdis(E,P)

3.2 Two-substrates Enzymes

Some enzymes catalyse reaction between two substrates. rédution is usually divided into three
stages. In the first, the substrade binds reversibly to the enzynig, forming the enzyme-substrate
complexE S, then in the second the substr&ebinds reversibly to the enzyme-substrate comiéx,
forming the enzyme-substrate comple% S,. Finally the enzyme complexS S, catalyses the chemical
step in the reaction and releases the pro@uct

E+S = ES +S = ESS S E+P

Note that this is only one of all the possible interactionsMeen an enzyme and two substrates. To
model this behaviour, we assign the following types:

= {E:Enzyme,ES :EnzymeComplex,ESS;: EnzymeComplex,
S; :Molecule,S : Molecule,P:Molecule}
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The method invocations are the following:

E.as{S,ES) ESJiS(E,S ES.as$$,ESS)
ESSAISES,S) ESS.disE,P)

3.3 Competitive Inhibition

In Biology, enzyme reaction rates can be decreased by metcalled enzyme inhibitors. There exist
a lot of inhibitors kinetics: among others, in Competitivéhibition the inhibitorl binds to enzymd=
producing the complek| and stops a substraifrom entering the enzyme’s active site and producing
the complexES The inhibitor and substrate compete for the enzyme (i®€y dannot bind at the same
time):

E+S= ES—E+P

E+l = EI

This case is an extension of the Michaelis-Menten Model icti8e[3.1, and is modelled by adding the
following type environment and method invocations:

" ={El : EnzymeComplex,| : Molecule}
E.asgl,El) El.dis(E,I)

4 Use of Classes in Term-Rewriting Formalisms

The calculus in this paper aims to be easily applicable tortbst popular term-rewriting formalisms for
modelling biological systems. To do so, we just act as fofiow

1. set the syntax of reduction rules of the term-rewritingrfalism as the syntax of reduction rules
of the core calculus;

2. if the reduction rules must respect certain conditiomglread by typing, then add the proper typing
rules to check their well-formedness;

3. define the class tabl@T and assign types to values in the type environnieatcording to their
biological behaviour;

4. create a tripléCT,I",P), whereP is a model designed according to the formalism specification
except for the reduction rules, that are replaced by methamtations.

After the evaluation of the method invocationsRnwe obtain the modd® in the formalism form, in
which all the reduction rules are consistent with the bi@abclassification and behaviour definedd
andrl .

We present an implementation of the calculus in two diffeterm-rewriting formalisms: the Cal-
culus of Looping Sequences (CLS) and the P systems. As azbhg ste present the Porins behaviour.
Porins are proteins that cross a cellular membrane and agi@® through which molecules can diffuse.
The molecules which diffuse across the porin depends ondtie fpself. Among the porins, aquaporins
selectively conduct water molecules in and out of the cdiljavpreventing the passage of ions and other
solutes. Some of them, known as aquaglyceroporins, tranalso other small uncharged solutes, such
as glycerol, CO2, ammonia and urea across the membranel@pe We design th@orin class to
model the porin behaviour, and we present an example oétaptl its evaluation, in CLS and P systems
formalisms. In particular, we model two kinds of aquapariase kind transports only water, the other
one transports both urea and water.
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4.1 Calculus of Looping Sequences

A CLS model[3] is composed by:

e asets of elements;

e sets?’, Y and.7 ¥ of element, sequence and term variables, respectively;

e asetZ of reduction rules (callecewrite ruleg in the formP — P, according to the pattern syntax
in FigurelT;

e atermT, i.e. a pattern without variables.

P :=SP | (SP"JP | PIP | X
SP :=¢ \ a \ SP-SP \ X \ X
C ==0 | C|T | TIC | (9"]C

Figure 7: Syntax of Patterns, Sequence Patterns and Cemet.S

A rewrite rule P, — P, states that a terr®, g, obtained by instantiating variables i by some
instantiation functioro, a function that maps variables to terms preserving the &dride variables, can
be transformed into the ter®o. According to the context syntax in Figure 7, the t&€fR o] evolve in
the termC[P.a] by rewrite ruleP; — P», whereC[T] denotes the term obtained by replacing the unique
Owith T inC.

Since inCLSthe reduction rules have the forffn— P, the rule syntax of the classes becomes

Ri=P—=P

A model is a pai(T, %), whereT is the term depicting the initial state of the system, aads the set
of rewrite rules. Using classes and methods, the&&ecomes a set of method invocatioré= {1},
which must be evaluated in an initial phase of system igtdion, before the evaluation of the term, to
obtain the rewrite rules of the model.

A class modelling the porin behaviour with rewrite rules ibSCsyntax is the following:

class Porin extends Object

{

in(Molecule S)
S| (this-X)" | X — (this-X)" | (S|X)

out(Molecule S)
(this-X)" | (S|X) — S| (this-X)" | X
¥

We use the symbole for water, u for urea,AW for the aquaporin that transports only water #vU
for the aquaporins that transports both water and urea.riteam, both kinds of aquaporins are included
into a membrane:

T=w|...|wlu|... |ul (AW)" | (g)| (AWU)" | (¢)

The type environment is the following:

M= {AW:Porin,AWU:Porin,w:Molecule,u:Molecule}
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and the class tableT contains thePorin andMolecule classes. The triple i€CT,I",P), whereP is
composed by the terf and the rule set containing the following method invocagion

AW.in(w) AW.out(w) AWU.in(w)
AWU.out(w)  AWU.in(u)  AWU.out(u)

After the evaluation of the triple, the CLS model is compobgdhe termT and the rewrite rules

w| (AW-2" | X — (AW-)" | (W] X) (AW-3)" | (W[ X) — w| (AW-%)" | X
w| (AWU-)" | X — (AWU-R)" | (w]X)  (AWU-R)" | (w|X) — w| (AWU-)" | X
ul (AWU-X)" | X = (AWU-)" | (u|X) (AWU-%)" | (u]X) = u] (AWU-%)" | X

4.2 P systems
A P-system([1F7] is a n-tuplél = (V, 4, M1,...,Mn, (R1,01),---,(Rn, Pn),io0), where

e V: alphabet;

e (: membrane structure of degragwith the membrane and the regions labelled in a one-to-one
manner with elements in a given det

M;: multisets of symbols (or strings) W, the symbols contained in the membrane

R: finite sets of reduction rules (callevolution rule$ x — y contained in the membraneand
such tha € V* andy =y ory =y d, wherey € (V x {hergout})* U (V x {inj|j € L})*;

p;: partial order relations ove®;;

io: a label inL which specifies the output membrane. If empty, then the autmion is the
environment.

Consider an evolution rulg — y in the setR;: if the symbols inx appear inM;, then these symbols
are replaced by the symbols ynaccording to the rule. If a symbal appears iry in a pair (a, here),
then it will remain inM;. If a symbola appears iry in a pair(a,out), then it becomes a symbol of the
membrane immediately outside the membrangccording to the membrane structyre If a symbol

a appears iry in a pair (a,inj), and the membrangis contained in the membraneccording to the
membrane structurg, then it becomes a symbol of the membran# y =y, then the membrarieand
the evolution rules iR, disappear, and all the symbolshf are added to the symbols of the membrane
immediately outside the membraneEvolution rules are applied following the priority m, and in a
non-deterministic way in case of same priority. In a singlelation step, all symbols in all membranes
evolve in parallel, and every applicable evolution ruleppléed as many times as possible.

According to the definitions of evolution rules, the rule synbecomes

Ri=x—y

Using classes and methods, eachRsétecomes a set of method invocatioRs= I;.

In P systems we have two kinds of symbols which may be invoimeah evolution rule: the biological
entities (contained i) and the labels of membranes (contained)nSince they are different entities,
we must design a distinct class for everyone of them. As disaluwe construct the claggioObject
for biological entities, and.abel for labels, both extendingbject.

class BioObject extends Object{}
class Label extends Object{}
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All the biological entities must exterglioObject or one of its subclasses. For example, the definition
of the clasloleculeis
class Molecule extends BioObject{}

A class modelling the porin behaviour with P-system evolutiules is the following:

class Porin extends BioObject
{
in(Molecule SLabel J)
S— S(inJ)

out(Molecule S
S— Sout)
}

In this case, the aquaporin that transports only watig contained into the membrane labelled by 1,
and the other one, that transports both urgatid water, is contained into the membrane labelled by 2.
The type environment is the following:

= {A:Porin,w:Molecule,u:Molecule,0:Label,1:Label,2:Label}

and the class tabléT contains thePorin, Molecule andBioObject classes. The triple i€CT,I, M),
wherell is the following:

N= {uwA} [[]2[]s]1,{u,...-u,w,...,w},00, (Ain(w, 1), Ain(w,2),
Ain(u,2)), (A.out(w)), (A.out(w),A.out(u)),1)

After the evaluation of the method invocations, we obtaaPhsystem

(3], {u,...uw,... . w} 0,0, (w— w(ing),w — w(iny),

M= ({uwA} [[2
, (W — w(out)), (w — w(out),u — u(out)), 1)

u— u(ing))

5 Conclusions and Future Developments

Modularity is the key idea to manage the complexity of biadagprocesses, because it allows molecules
or compartments to be specified and then combined. It is lyscainbined with abstraction, that al-
lows generic properties to be specified independently ofiBpenstances: the result are parametrised
modules. These are widely used in formalisms designed teehimdlogical systems: for example, P-
Lingua [11] is a programming language for membrane comguiihich aims to be a standard to define
P systems. A P-Lingua program consists of a set of pararedtgsogramming modules composed by
a sequence of sentences in P-lingua: these sentences aremfigrane structure of the model or the
rules and objects contained into these membranes. Mod@executed by using calls, that assign some
values to their parameters.

Modules, in particular if parametrised, permit to defineractture and re-use it, but they have a limita-
tion: they are applicable to every molecule, without liridas, while usually modules are designed only
for some kinds of molecules. To manage this problem, sonmadiisms add a simple Type System to
modularity and abstraction: this Type System just checksctirrespondence between the types of the
arguments and the types of the parameters in a module ca#itogge Biochemical Systems (LBS) [18]
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combine rule-based approaches to modelling with modylakitodules may be parametrised on com-
partments, rates, and species. Species are typed by thes mdirtiesir component atomic species and
of their modification site types: when a method is called, Tigpe System checks the correspondence
between the types of the arguments and the types of the panané simple Type System is also im-
plemented in Little bl[15], a high-level programming langadgor modular model building. In Little b

a modeller can define monomers, composed by a name and a seguidiond sites: these can connect
each other by labelling their bond sites, creating complereactions are pairs of patterns that specify
the transformation of complexes matching the first patterth¢ second one, and may create or delete
links between sites. Sites can be labelled with tags, thetigpthe kind of link of the site and the kind
of links it accepts: this tag-based system serves as Tyger8yand in particular as a type checker.

All the above samples do not let to specify a hierarchy betviae typed objects (species for LBS and
sites for little b): a hierarchic structure permits more abed tools and analyses. An example of use
of hierarchy to manage the complexity of biological systsrthe extension of Kappa with agent hierar-
chies [8]. A Kappa model consists of a collection of rules agdnts; each agent has an associated set
of sites. Modellers can define variants on an agent by addingptacing its sites: the variance relation
create an agent hierarchy. A generic rule is then expandedhiset of concrete rules by replacing each
agent in the rule with all appropriate agents below it in tlerdrchy: so the hierarchy is used with the
purpose to enable rapid development of large rule sets gimngthanism of generic rules. Moreover, the
same hierarchic structure is used for a static analysiseofule set: an analyser navigates the space of
variants of a model looking if, with the current rule set, adfic concrete rule can or cannot take place
under a sequence of conditions. Even if this procedure ceermpeove that a rule is correct, it can be
used to reject rules that lead to behaviour incompatibléa @xperimental results.

Our calculus takes advantage of modularity, abstractiahta@rarchy by constructing a parametrised
module hierarchic structure for expressing reductionsiuldsing classes instead of modules, our calcu-
lus can express the hierarchic structure of Biological lagies, and also exploit the features of Object-
Oriented programming, such as inheritance and subtyping.th® other side, the rules in a class are
not visible from outside, then the resolution of the erraesdmes more difficult. Finally, our calculus
does not specify a meta-language, because it aims to be utedifferent term-rewriting formalisms:
this lack of structure is the more evident difference with thther approaches, but it pays off in terms of
expressiveness, because we cannot exploit the expressivar pf a particular syntax.

Summarizing, modularity allows behaviours to be specified #hen combined; hierarchy allows
typechecking and re-use of the behaviour; abstractiomvalgeneric properties to be specified indepen-
dently of specific instances. The modularity, hierarchy abstraction of the classes enables libraries to
be created for generic biological processes, which candtantiated and re-used repeatedly in different
contexts with different arguments. These libraries codddbsigned and refined by experts, and then
made available to all modellers, thereby creating a sdiemdmmons for model building. Moreover,
they can be used in different models, ensuring that theirateh rules are consistent with the biological
ontology defined in them. These libraries could also be &dbfstom a formalism to another, rewrit-
ing the reduction rules and with small alteration to the dmielny, if needed. That modularity allows the
Bioinformatics field to evolve in a decentralized mannecause any user can develop novel abstractions
of the biology being studied in any formalism and contrikiiiese back to the community, that can adapt
these classes to any particular formalism.

The calculus proposed in this paper implements only vericli@atures of object-oriented paradigm.
In the opinion of the author, these features are the most aomand useful in biological modelling, but
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increasing the complexity of the modelled systems the néadw features could emerge. For example,
sometimes molecules may have different roles depending@ndntext: our calculus cannot deal with

this behaviour, because every value is associated to yawl type. For this reason, a possible devel-
opment is surely the study and implementation of other basd high-level constructs of imperative

and object-oriented paradigms, such as data structurdsplie@inheritance or parametric polymorphism

(also known as generics).

In our calculus, the modeller decide which reduction rutgatlude in a model, but in this way a raw
modeller could forget some important rule. A possible etiofuis to infer the reduction rules directly
from the composition of the model, according to the assidtetween classes and values defined in
the type environment. For example, if the term of the modataios a porin, then the system may infer
the proper reduction rules to include, in this case the onaedetting the passage of elements through
membranes. Moreover, in this way the reduction rules in aghoduld become dynamic: they could
evolve following the evolution of the model, in a correcoffr a biological point of view) way, without
any external intervention. For example, if, during the atioh of the model, a lactase is created in the
term, then the type system may add the proper reduction, inlt#sis case the ones modelling hydrolysis.
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