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In this paper we present a minimal object oriented core calculus for modelling the biological notion
of type that arises from biological ontologies in formalisms based on term rewriting. This calculus
implements encapsulation, method invocation, subtyping and a simple form of overriding inheritance,
and it is applicable to models designed in the most popular term-rewriting formalisms. The classes
implemented in a formalism can be used in several models, like programming libraries.

1 Introduction

In biology, homogeneous biological entities are usually grouped according to their behaviour. Enzymes
are proteins that catalyse (i.e. increase the rates of) chemical reactions, receptors are proteins embed-
ded in a membrane to which one or more specific kinds of signalling molecules may attach producing
a biological response, hydrolases are enzymes that catalyse the hydrolysis of a chemical bond, and so
on. Such classification is greatly behaviour-driven: the lactase is a hydrolase, then its peculiarity with
respect to the other biological entities is that it catalyses the hydrolysis of a particular molecule. It sug-
gests Computer Science types: every biological entity can be classified with a type, containing the sound
operations for it. These operations describe only the general behaviours, that may be modelled by means
of different formalisms. Like Computer Science types, these Biological types are used to check the cor-
rectness of the chemical reactions. In fact, lactase is not just a hydrolase, but a glycoside hydrolase,
i.e. it catalyses the hydrolysis of the glycosidic linkage of a sugar to release smaller sugars. If in the
system the substrate or the products are not sugars, somewhere there is an error. Moreover, in Biological
types we can recognize a subtype relation. Lactase hydrolyse the lactose, that is a disaccharide. Since
the disaccharide is identified as a subtype of sugar, the hydrolysis operation associated to the glycoside
hydrolase type is correct.
Many formalisms originally developed by computer scientists to model systems of interacting compo-
nents have been applied to Biology: among these, there are Petri Nets [16], Hybrid Systems [2], and
the π-calculus [7, 21]. Moreover, new formalisms have been defined for describing biomolecular and
membrane interactions, for example [3, 5, 6, 9, 19, 20, 17]. Even if types are used by biologists and stud-
ied by computer scientists, curiously they are usually not implemented in Computer Science biological
models. Despite the number of formalisms developed by computer scientists and applied to model bio-
logical systems, just in the last few years there has been a growing interest on the use of type disciplines
to enforce biological properties. In [12] three type systems are defined for the Biochemical Abstract
Machine, BIOCHAM (see [1]). In [10] a type system for the Calculus of Looping Sequences (see [3])
has been defined to guarantee the soundness of reduction rules with respect to the requirement of certain
elements, and the repellency of other ones. Finally, in [4],group types are used to regulate compartment
crossing in the BioAmbients framework [20]. However, none of them exploits the similarities between
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E ::= element composition
v | x | E+E

R ::= rule declaration
E → E

Figure 1: Biological Rules

the types in Biology and in Computer Science.
In this paper we present a minimal object oriented core calculus for term-rewriting formalisms, i.e. for-
malisms based on term rewriting, that models the notion of types used in biology as above described. We
implement only the object oriented paradigm skills that, inour view, are basic in modelling biological
systems, that is encapsulation, method invocation, subtyping and a simple inheritance. The purpose of
this calculus is to facilitate the organizations of rules, and to improve their re-use in the model, or even in
other models. By means of subtyping, for example, modellerscreate a class hierarchy, that can be used
in different models like programming libraries: classes and methods are created by expert researchers,
but they can also be used by raw users.
The remainder of this paper is organized as follows. In Section 2 we formally present the core calculus.
In Section 3 we propose classes explaining some enzyme behaviours. In Section 4 we apply our frame-
work to two term-rewriting formalisms, the Calculus of Looping Sequences [3] and the P systems [17].
Finally, in Section 5 we draw conclusions and we discuss somefuture developments.

2 Core Calculus

Term-rewriting formalisms [3, 6, 9, 17] have been applied tomodelling biological systems. They are
characterized by the syntax of terms and the operational semantics. A term represents the structure of
the modelled system, and the reduction rules represent the possible evolutions of the system. Some term-
rewriting formalisms embed the rules in the terms, other prefer to divide them.
In our core calculus, a class contains methods (encapsulation) and extends another class (subtyping); a
class inherits all the methods of the class it extends (inheritance). Methods are formed by a sequence
of variables (the arguments) and a sequence of reduction rules, expressed in the syntax of the term-
rewriting formalism, containing these variables. The methods are called on values of the model, i.e. the
biological entities, with a sequence of values as arguments(method invocation). The method invocations
are replaced by the reduction rules which are method bodies,where the variables are replaced by the
values used as arguments. These reduction rules are then used for the evolution of the model.
For the sake of generality, in running examples we use the biological rule notation to represent reduction
rules: the syntax is depicted in Figure 1. We use the notationE1 ⇋ E2 instead of the pair of reduction

rulesE1 → E2 andE2 → E1.
For example, the hypothetical class of glycoside hydrolasecontains a method to hydrolyse a sugar into

two sugars, all of them passed as arguments. This method contains the sequence of reduction rules that
models hydrolysis. We assign to lactase the glycoside hydrolase type, and then call on it the hydrolysis
method, passing as arguments the lactose and the sugar products. By invocation, we obtain the reduction
rules specific for lactase, that will be used for the evolution of the model.
In this section we present the formal definition of the calculus. The syntax, definitions and rules of the
calculus are inspired by the ones proposed by Igarashi, Pierce and Wadler for Featherweight Java [14],
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a minimal core calculus for modelling the Java Type System.

2.1 Syntax

Syntax
CT ::= class table declaration

CL
CL ::= class declaration

class C extends D{M} (C 6= Object)
M ::= method declaration

m(C x) R
R ::= reduction rule declaration

according to the formalism syntax
contains variables, values andthis

I ::= method invocation
v.m(v)

x variable
v value
this this

Figure 2: Syntax

The syntax is given in Figure 2. The metavariablesC andD range over class names;m ranges over
method names;CL ranges over class declarations;M ranges over method declarations;R ranges over
reduction rules, according to the syntax of the formalism;I ranges over method invocations;x ranges
over parameter names;v ranges over values, i.e. the symbols of the model. We assume that the set of
variables includes the special variablethis. Notice that this is never used as argument of a method.
We write M as shorthand forM1 . . .Mn and writeC for C1, . . . ,Cn (similarly x, v, etc.). We abbreviate
operations on pairs of sequences similarly, writingC x for C1 x1, . . . ,Cn xn, wheren is the length ofC and
x. Sequences of parameter names and method declarations are assumed to contain no duplicate names.
The declarationclass C extends D{M} introduces a class namedC with superclassD. The new
class has the suite of methodsM. The methods declared inC are added to the ones declared byD and its
superclasses, and may override methods with the same names that are already present inD, or add new
functionalities. The classObject has no methods and does not have superclasses.
The method declarationm(C x) R introduces a method namedmwith parametersx of typesC. The body
of the method is a sequence of reduction rulesR, expressed in the syntax of the formalism. The variables
x and the special variablethis are bound inR.
A class tableCT is a mapping from class namesC to class declarationsCL. We assume a fixed class table
CT satisfying some sanity conditions:(1) CT(C) = class C. . . for everyC∈ dom(CT); (2) Object /∈
dom(CT); (3) for every class nameC (exceptObject) appearing inCT, we haveC∈ dom(CT); (4) there
are no cycles in the subtype relation induced byCT, i.e. a class cannot extends one of its subclasses.
The fixed type environmentΓ contains the association between valuesv and their typesC, written v : C.
We assume thatΓ satisfies some sanity conditions:(1) if v : C ∈ Γ for somev, thenC ∈ dom(CT); (2)
every value in the set of values (according to the formalism specifications) is associated to exactly one
type inΓ.
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For example, we define the class of molecules as follows:

class Molecule extends Object{}

TheMolecule class has theObject class as superclass, and it does not have methods, i.e. molecules do
not have any particular behaviour.
An enzyme is a protein that catalyse chemical reactions. In an enzymatic reaction, the molecules at the
beginning of the process (called substrates) are convertedinto different molecules (called the products),
while the enzyme itself is not consumed by the reaction. We define the class of enzymes as follows:

class Enzyme extends Object

{
action(Molecule S, Molecule P)

S+this→ this+P
}

For the sake of simplicity, in our example an enzyme extends an object rather than a protein, jumping
a hierarchy level. According to the enzyme definition, the only method of theEnzyme class isaction,
which converts the variable moleculeS(the substrate) into the variable moleculeP (the product) in pres-
ence of the enzyme (thethis variable). In the rest of the paper, theMolecule class and its extensions
denotes biological object having no particular behaviour,and theEnzyme class and its extensions denotes
biological object having a behaviour.
Class tables and environment types are used to create a triple (CT,Γ,P), whereP is a model designed
according to the formalism specifications. InP we use method invocations instead of reduction rules.
The class tableCT and the type setΓ are fixed, i.e. they are determined during the model creationand
cannot vary during model evolution.

2.2 Auxiliary Definitions

For the typing and evaluation of rules, we need a few auxiliary definitions: these are given in Figure 3.
The type of a methodm in a classC, writtenmtype(m,C), is a sequence of typesC. The sequence gives
the types of the arguments of the methodm defined in the classC, or in one of its superclasses, if not
defined inC. For example,

mtype(action,Enzyme) = (Molecule,Molecule)

The body of a methodm in a classC, written mbody(m,C), is a pair(x,R) of a sequence of variablesx
and a sequence of reduction rulesR. The elements of the pair are the arguments and the reductionrules
of the methodmdefined in the classC, or in one of its superclasses, if not defined inC. For example,

mbody(action,Enzyme) = ((S,P),S+this→ this+P)

2.3 Evaluation

The unique evaluation rule concerns the method invocationv.m(t). In this case, if the valuev has type
C in Γ, and the methodm has argumentsx and bodyR in C, then its evaluation is the sequence of re-
duction rulesR, in which all the occurrences of the variablesx are replaced with the valuest, and all the
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Method type lookup

CT(C) = class C extends D{M} m(C x) R∈ M

mtype(m,C) =C

CT(C) = class C extends D{M} m is not defined inM

mtype(m,C) = mtype(m,D)

Method body lookup

CT(C) = class C extends D{M} m(C x) R∈ M

mbody(m,C) = (x,R)

CT(C) = class C extends D{M} m is not defined inM

mbody(m,C) = mbody(m,D)

Figure 3: Auxiliary Definitions

Method Invocation

v : C∈ Γ mbody(m,C) = (x,R)
(e-meth)

v.m(t)→ [x 7→ t, this 7→ v]R

Figure 4: Evaluation

occurrences ofthis are replaced with the valuev. A method invocation is placed in the model instead
of the reduction rules: once evaluated, the reduction rulesof the method become the reduction rules of
the model.
Phosphoglucose isomerase is an enzyme that catalyses the conversion of glucose-6-phosphate into fruc-
tose 6-phosphate (and vice versa) in the second step of glycolysis. In order to model this behaviour, in
Γ we associate to the valueph-iso (the phosphoglucose isomerase) the typeEnzyme, and to the val-
uesglu-6-ph andfru-6-ph (the glucose-6-phosphate and fructose 6-phosphate, respectively) the type
Molecule

Γ = {ph-iso : Enzyme,glu-6-ph : Molecule,fru-6-ph : Molecule}

Instead of the reduction rules, in the model we place the calling of theaction method on theph-iso
enzyme, using the molecules as arguments

ph-iso.action(glu-6-ph,fru-6-ph)

Following the evaluation rule in Figure 4, this method invocation is replaced by the reduction rule

glu-6-ph+ph-iso→ ph-iso+fru-6-ph

As a consequence, we obtain the reduction rule modelling theconversion of glucose-6-phosphate into
fructose 6-phosphate. In order to obtain the conversion in the other side, we call theactionmethod on
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theph-iso enzyme swapping the arguments

ph-iso.action(fru-6-ph,glu-6-ph)

This method invocation is then replaced by the reduction rule

fru-6-ph+ph-iso→ ph-iso+glu-6-ph

After method evaluation, we obtain the reduction rules of the model, representing the possible evolution
of the system.

2.4 Typing

Subtyping

C <: C (t-sub1)
C <: D D <: E

(t-sub2)
C<: E

CT(C) = class C extends D{M}
(t-sub3)

C <: D

Figure 5: Subtyping

The rules for subtyping are formally defined in Figure 5. The subtype relation between classes is
given by the class declarations in the class tableCT. The subtype relation is reflexive and transitive. For
Enzyme andMolecule classes we derive the following subtype relations:

Enzyme<: Enzyme Molecule<: Molecule (by rule (t-sub1))
Enzyme<: Object Molecule<: Object (by rule (t-sub3))

Note thatEnzyme is not a subtype ofMolecule, then an enzyme cannot be a substrate nor a product of
theEnzyme’s actionmethod.

The typing rules for method invocations and for method and class declarations are given in Figure 6.
Typing statements for method invocations have the formv.m(t) OK, asserting that the method invocation
v.m(t) is well formed. The typing rule checks that the types of the values used as arguments in a method
invocation are subtypes of the types of the arguments required by the method.
Typing statements for method declarations have the formM OK in C, and assert that the method dec-
larationM is well formed in the classC. The typing rule checks that the reduction rules in the method
of a class are well formed, according to the types of the arguments and the class. The relation⊢ serves
this purpose, by using the type assignments on its left in thetype checking of the element on its right.
Different formalisms have different constraints to check if a rule is well formed. For this reason, the
modeller must add the proper typing rules to check the well-formedness of a rule, according to the types
of the arguments and the class in which it is contained, in addition to the typing rules in Figure 6.
Typing statements for class declarations have the formCL OK, stating that the class declarationCL is well
formed. The typing rule checks that each method declarationin the class is well formed.
As expected, bothEnzyme andMolecule classes areOK.
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Invocation typing

v : C ∈ Γ mtype(m,C) =C t : D ∈ Γ D <: C
(t-invmeth)

v.m(t) OK in C

Method typing

x : C,this : C ⊢ ROK
(t-clmeth)

m(C x) ROK in C

Class typing

CT(C) = class C extends D{M} M OK in C
(t-class)

class C extends D{M} OK

Figure 6: Typing

Note that the inheritance is very simple: a class inherits all the methods of its superclass, and it can mod-
ify the body and the arguments of a method declared in its superclass, i.e. it can change the reduction
rules and the arguments associated to a method name. In this way, lower classes can reuse the names of
higher classes methods, i.e. more specialised biological entities can focus and specialise the behaviour of
more generic biological entities by reusing the name associated to a generic reduction rule. For example,
an hydrolase is an enzyme, but it cannot catalyse any reaction except hydrolysis. For this reason, we
design hydrolase class as follows:

class Hydrolase extends Enzyme

{
action(Molecule S, Molecule P1, Molecule P2)

S+H2O+this→ this+P1+P2

}

TheHydrolase class is an extension of theEnzyme class that overrides theactionmethod. In this way,
the generic catalysis described in theEnzyme’s action method is no more available in theHydrolase
class, but the overrideactionmethod makes available the specific hydrolysis.
In the same way, the glycoside hydrolase is an hydrolase, butits substrate and products are sugars. Then
the glycoside hydrolase class is designed as an extension ofHydrolase class, that overrides theaction
method by modifying the types of the arguments, from molecules to sugars:

class Sugar extends Molecule{}

class GlycosideHydrolase extends Hydrolase

{
action(Sugar S, Sugar P1, Sugar P2)

S+H2O+this→ this+P1+P2

}
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3 Example

In this section we show how our calculus can be used to model biological behaviours. As an example, we
design classes and method invocations to describe Michaelis-Menten enzyme kinetic, the two-substrates
enzyme kinetic and the competitive inhibition kinetic.

3.1 Michaelis-Menten Model

In the Michaelis-Menten Model, the enzyme reaction is divided in two stages. In the first stage, the
substrateS binds reversibly to the enzymeE, forming the enzyme-substrate complexES, then in the
second one the enzyme catalyses the chemical step in the reaction and releases the productP:

E+S ⇋ ES→ E+P

This basic behaviour is also used in most complex enzyme reactions. In order to model this behaviour,
we create two classes, theEnzyme class and theEnzymeComplex class. The first one models an enzyme:
it associates itself with a substrate and produces an enzyme-substrate complex. The second one models
an enzyme-substrate complex: it dissociates itself in an enzyme and a product.

class Enzyme extends Object class EnzymeComplex extends Enzyme

{ {
ass(Molecule S, EnzymeComplex ES) dis(Enzyme E, Molecule P)

S+this→ ES this→ E+P
} }

Since an enzyme-substrate complex can act as an enzyme, theEnzymeComplex class extends theEnzyme
class. In this way, theEnzymeComplex class inherits fromEnzyme theassmethod by auxiliary defini-
tions.
The type environment is

Γ = {E : Enzyme,ES: EnzymeComplex,S: Molecule,P : Molecule}

The method invocations for reproducing the described behaviour are

E.ass(S,ES) ES.dis(E,S) ES.dis(E,P)

3.2 Two-substrates Enzymes

Some enzymes catalyse reaction between two substrates. This reaction is usually divided into three
stages. In the first, the substrateS1 binds reversibly to the enzymeE, forming the enzyme-substrate
complexES1, then in the second the substrateS2 binds reversibly to the enzyme-substrate complexES1,
forming the enzyme-substrate complexES1S2. Finally the enzyme complexES1S2 catalyses the chemical
step in the reaction and releases the productP:

E+S1 ⇋ ES1 +S2 ⇋ ES1S2 → E+P

Note that this is only one of all the possible interactions between an enzyme and two substrates. To
model this behaviour, we assign the following types:

Γ = {E : Enzyme,ES1 : EnzymeComplex,ES1S2 : EnzymeComplex,
S1 : Molecule,S2 : Molecule,P : Molecule}
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The method invocations are the following:

E.ass(S1,ES1) ES1.dis(E,S) ES1.ass(S2,ES1S2)
ES1S2.dis(ES1,S2) ES1S2.dis(E,P)

3.3 Competitive Inhibition

In Biology, enzyme reaction rates can be decreased by molecules called enzyme inhibitors. There exist
a lot of inhibitors kinetics: among others, in Competitive Inhibition the inhibitorI binds to enzymeE
producing the complexEI and stops a substrateS from entering the enzyme’s active site and producing
the complexES. The inhibitor and substrate compete for the enzyme (i.e. they cannot bind at the same
time):

E+S ⇋ ES→ E+P

E+ I ⇋ EI

This case is an extension of the Michaelis-Menten Model in Section 3.1, and is modelled by adding the
following type environment and method invocations:

Γ′ = {EI : EnzymeComplex, I : Molecule}
E.ass(I ,EI) EI.dis(E, I)

4 Use of Classes in Term-Rewriting Formalisms

The calculus in this paper aims to be easily applicable to themost popular term-rewriting formalisms for
modelling biological systems. To do so, we just act as follows:

1. set the syntax of reduction rules of the term-rewriting formalism as the syntax of reduction rules
of the core calculus;

2. if the reduction rules must respect certain conditions handled by typing, then add the proper typing
rules to check their well-formedness;

3. define the class tableCT and assign types to values in the type environmentΓ according to their
biological behaviour;

4. create a triple(CT,Γ,P), whereP is a model designed according to the formalism specifications,
except for the reduction rules, that are replaced by method invocations.

After the evaluation of the method invocations inP, we obtain the modelP′ in the formalism form, in
which all the reduction rules are consistent with the biological classification and behaviour defined inCT
andΓ.

We present an implementation of the calculus in two different term-rewriting formalisms: the Cal-
culus of Looping Sequences (CLS) and the P systems. As case study, we present the Porins behaviour.
Porins are proteins that cross a cellular membrane and act asa pore through which molecules can diffuse.
The molecules which diffuse across the porin depends on the porin itself. Among the porins, aquaporins
selectively conduct water molecules in and out of the cell, while preventing the passage of ions and other
solutes. Some of them, known as aquaglyceroporins, transport also other small uncharged solutes, such
as glycerol, CO2, ammonia and urea across the membrane (see [13]). We design thePorin class to
model the porin behaviour, and we present an example of triple and its evaluation, in CLS and P systems
formalisms. In particular, we model two kinds of aquaporins: one kind transports only water, the other
one transports both urea and water.
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4.1 Calculus of Looping Sequences

A CLS model [3] is composed by:

• a setE of elements;
• setsX , S V andT V of element, sequence and term variables, respectively;
• a setR of reduction rules (calledrewrite rules) in the formP→ P, according to the pattern syntax

in Figure 7;
• a termT, i.e. a pattern without variables.

P ::= SP
∣∣ (SP)L ⌋P

∣∣ P|P
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP·SP
∣∣ x̃

∣∣ x
C ::= �

∣∣ C|T
∣∣ T |C

∣∣ (S)L ⌋C

Figure 7: Syntax of Patterns, Sequence Patterns and Contexts in CLS

A rewrite rule P1 → P2 states that a termP1σ , obtained by instantiating variables inP1 by some
instantiation functionσ , a function that maps variables to terms preserving the kindof the variables, can
be transformed into the termP2σ . According to the context syntax in Figure 7, the termC[P1σ ] evolve in
the termC[P2σ ] by rewrite ruleP1 → P2, whereC[T] denotes the term obtained by replacing the unique
� with T in C.
Since inCLSthe reduction rules have the formP→ P, the rule syntax of the classes becomes

R ::= P→ P.

A model is a pair(T,R), whereT is the term depicting the initial state of the system, andR is the set
of rewrite rules. Using classes and methods, the setR becomes a set of method invocations,R = {I},
which must be evaluated in an initial phase of system initialisation, before the evaluation of the term, to
obtain the rewrite rules of the model.
A class modelling the porin behaviour with rewrite rules in CLS syntax is the following:

class Porin extends Object

{
in(Molecule S)

S| (this · x̃)L ⌋X → (this · x̃)L ⌋(S|X)

out(Molecule S)
(this · x̃)L ⌋(S|X)→ S| (this · x̃)L ⌋X

}

We use the symbolsw for water,u for urea,AW for the aquaporin that transports only water andAWU
for the aquaporins that transports both water and urea. In our term, both kinds of aquaporins are included
into a membrane:

T = w| . . . |w|u| . . . |u| (AW)L ⌋(ε) | (AWU)L ⌋(ε)

The type environment is the following:

Γ = {AW : Porin,AWU : Porin,w : Molecule,u : Molecule}
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and the class tableCT contains thePorin andMolecule classes. The triple is(CT,Γ,P), whereP is
composed by the termT and the rule set containing the following method invocations:

AW.in(w) AW.out(w) AWU.in(w)
AWU.out(w) AWU.in(u) AWU.out(u)

After the evaluation of the triple, the CLS model is composedby the termT and the rewrite rules

w| (AW · x̃)L ⌋X → (AW · x̃)L ⌋(w|X) (AW · x̃)L ⌋(w|X)→ w| (AW · x̃)L ⌋X
w| (AWU· x̃)L ⌋X → (AWU· x̃)L ⌋(w|X) (AWU· x̃)L ⌋(w|X)→ w| (AWU· x̃)L ⌋X
u| (AWU· x̃)L ⌋X → (AWU· x̃)L ⌋(u|X) (AWU· x̃)L ⌋(u|X)→ u| (AWU· x̃)L ⌋X

4.2 P systems

A P-system [17] is a n-tupleΠ = (V,µ ,M1, . . . ,Mn,(R1,ρ1), . . . ,(Rn,ρn), i0), where

• V: alphabet;
• µ : membrane structure of degreen, with the membrane and the regions labelled in a one-to-one

manner with elements in a given setL;
• Mi: multisets of symbols (or strings) inV, the symbols contained in the membranei;
• Ri: finite sets of reduction rules (calledevolution rules) x → y contained in the membranei and

such thatx∈V∗ andy= y′ or y= y′δ , wherey′ ∈ (V ×{here,out})∗ ∪ (V ×{in j | j ∈ L})∗;
• ρi: partial order relations overRi ;
• i0: a label inL which specifies the output membrane. If empty, then the output region is the

environment.

Consider an evolution rulex → y in the setRi: if the symbols inx appear inMi , then these symbols
are replaced by the symbols iny according to the rule. If a symbola appears iny in a pair(a,here),
then it will remain inMi. If a symbola appears iny in a pair(a,out), then it becomes a symbol of the
membrane immediately outside the membranei, according to the membrane structureµ . If a symbol
a appears iny in a pair (a, in j ), and the membranej is contained in the membranei according to the
membrane structureµ , then it becomes a symbol of the membranej. If y= y′δ , then the membranei and
the evolution rules inRi disappear, and all the symbols inMi are added to the symbols of the membrane
immediately outside the membranei. Evolution rules are applied following the priority inρi , and in a
non-deterministic way in case of same priority. In a single evolution step, all symbols in all membranes
evolve in parallel, and every applicable evolution rule is applied as many times as possible.
According to the definitions of evolution rules, the rule syntax becomes

R ::= x→ y

Using classes and methods, each setRi becomes a set of method invocations,Ri = Ii.
In P systems we have two kinds of symbols which may be involvedin an evolution rule: the biological
entities (contained inV) and the labels of membranes (contained inL). Since they are different entities,
we must design a distinct class for everyone of them. As a solution, we construct the classBioObject
for biological entities, andLabel for labels, both extendingObject.

class BioObject extends Object{}
class Label extends Object{}
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All the biological entities must extendBioObject or one of its subclasses. For example, the definition
of the classMolecule is

class Molecule extends BioObject{}

A class modelling the porin behaviour with P-system evolution rules is the following:

class Porin extends BioObject

{
in(Molecule S,Label J)

S→ S(inJ)

out(Molecule S)
S→ S(out)

}

In this case, the aquaporin that transports only water (w) is contained into the membrane labelled by 1,
and the other one, that transports both urea (u) and water, is contained into the membrane labelled by 2.
The type environment is the following:

Γ = {A : Porin,w : Molecule,u : Molecule,0 : Label,1 : Label,2 : Label}

and the class tableCT contains thePorin, Molecule andBioObject classes. The triple is(CT,Γ,Π),
whereΠ is the following:

Π = ({u,w,A}, [[]2[]3]1,{u, . . .u,w, . . . ,w}, /0, /0,(A.in(w,1),A.in(w,2),
A.in(u,2)),(A.out(w)),(A.out(w),A.out(u)),1)

After the evaluation of the method invocations, we obtain the P-system

Π′ = ({u,w,A}, [[]2[]3]1,{u, . . .u,w, . . . ,w}, /0, /0,(w → w(in1),w→ w(in2),
u→ u(in2)),(w→ w(out)),(w→ w(out),u→ u(out)),1)

5 Conclusions and Future Developments

Modularity is the key idea to manage the complexity of biological processes, because it allows molecules
or compartments to be specified and then combined. It is usually combined with abstraction, that al-
lows generic properties to be specified independently of specific instances: the result are parametrised
modules. These are widely used in formalisms designed to model biological systems: for example, P-
Lingua [11] is a programming language for membrane computing which aims to be a standard to define
P systems. A P-Lingua program consists of a set of parametrised programming modules composed by
a sequence of sentences in P-lingua: these sentences are themembrane structure of the model or the
rules and objects contained into these membranes. Modules are executed by using calls, that assign some
values to their parameters.
Modules, in particular if parametrised, permit to define a structure and re-use it, but they have a limita-
tion: they are applicable to every molecule, without limitations, while usually modules are designed only
for some kinds of molecules. To manage this problem, some formalisms add a simple Type System to
modularity and abstraction: this Type System just checks the correspondence between the types of the
arguments and the types of the parameters in a module call operation. Biochemical Systems (LBS) [18]
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combine rule-based approaches to modelling with modularity. Modules may be parametrised on com-
partments, rates, and species. Species are typed by the names of their component atomic species and
of their modification site types: when a method is called, theType System checks the correspondence
between the types of the arguments and the types of the parameters. A simple Type System is also im-
plemented in Little b [15], a high-level programming language for modular model building. In Little b
a modeller can define monomers, composed by a name and a sequence of bond sites: these can connect
each other by labelling their bond sites, creating complexes; reactions are pairs of patterns that specify
the transformation of complexes matching the first pattern to the second one, and may create or delete
links between sites. Sites can be labelled with tags, that specify the kind of link of the site and the kind
of links it accepts: this tag-based system serves as Type System, and in particular as a type checker.
All the above samples do not let to specify a hierarchy between the typed objects (species for LBS and
sites for little b): a hierarchic structure permits more advanced tools and analyses. An example of use
of hierarchy to manage the complexity of biological system is the extension of Kappa with agent hierar-
chies [8]. A Kappa model consists of a collection of rules andagents; each agent has an associated set
of sites. Modellers can define variants on an agent by adding or replacing its sites: the variance relation
create an agent hierarchy. A generic rule is then expanded into a set of concrete rules by replacing each
agent in the rule with all appropriate agents below it in the hierarchy: so the hierarchy is used with the
purpose to enable rapid development of large rule sets via the mechanism of generic rules. Moreover, the
same hierarchic structure is used for a static analysis of the rule set: an analyser navigates the space of
variants of a model looking if, with the current rule set, a specific concrete rule can or cannot take place
under a sequence of conditions. Even if this procedure can never prove that a rule is correct, it can be
used to reject rules that lead to behaviour incompatible with experimental results.
Our calculus takes advantage of modularity, abstraction and hierarchy by constructing a parametrised
module hierarchic structure for expressing reduction rules. Using classes instead of modules, our calcu-
lus can express the hierarchic structure of Biological ontologies, and also exploit the features of Object-
Oriented programming, such as inheritance and subtyping. On the other side, the rules in a class are
not visible from outside, then the resolution of the errors becomes more difficult. Finally, our calculus
does not specify a meta-language, because it aims to be used with different term-rewriting formalisms:
this lack of structure is the more evident difference with the other approaches, but it pays off in terms of
expressiveness, because we cannot exploit the expressive power of a particular syntax.

Summarizing, modularity allows behaviours to be specified and then combined; hierarchy allows
typechecking and re-use of the behaviour; abstraction allows generic properties to be specified indepen-
dently of specific instances. The modularity, hierarchy andabstraction of the classes enables libraries to
be created for generic biological processes, which can be instantiated and re-used repeatedly in different
contexts with different arguments. These libraries could be designed and refined by experts, and then
made available to all modellers, thereby creating a scientific commons for model building. Moreover,
they can be used in different models, ensuring that their reduction rules are consistent with the biological
ontology defined in them. These libraries could also be adapted from a formalism to another, rewrit-
ing the reduction rules and with small alteration to the hierarchy, if needed. That modularity allows the
Bioinformatics field to evolve in a decentralized manner, because any user can develop novel abstractions
of the biology being studied in any formalism and contributethese back to the community, that can adapt
these classes to any particular formalism.

The calculus proposed in this paper implements only very basic features of object-oriented paradigm.
In the opinion of the author, these features are the most common and useful in biological modelling, but
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increasing the complexity of the modelled systems the need of new features could emerge. For example,
sometimes molecules may have different roles depending on the context: our calculus cannot deal with
this behaviour, because every value is associated to exactly one type. For this reason, a possible devel-
opment is surely the study and implementation of other basicand high-level constructs of imperative
and object-oriented paradigms, such as data structures, multiple inheritance or parametric polymorphism
(also known as generics).

In our calculus, the modeller decide which reduction rules to include in a model, but in this way a raw
modeller could forget some important rule. A possible evolution is to infer the reduction rules directly
from the composition of the model, according to the association between classes and values defined in
the type environment. For example, if the term of the model contains a porin, then the system may infer
the proper reduction rules to include, in this case the ones modelling the passage of elements through
membranes. Moreover, in this way the reduction rules in a model could become dynamic: they could
evolve following the evolution of the model, in a correct (from a biological point of view) way, without
any external intervention. For example, if, during the evolution of the model, a lactase is created in the
term, then the type system may add the proper reduction rules, in this case the ones modelling hydrolysis.

Acknowledgements. The author thanks the referees for their helpful comments. The final version of
the paper improved due to their suggestions, in particular the Section 5.
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