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Simple Summary: Canine distemper virus (CDV) is a pathogen that affects wildlife with particular
regard to Canidae family such as red foxes, wolves, etc. In this study, we focus on CDV outbreaks in
the Aosta Valley territory, an alpine region in the NW of Italy which was affected by important waves
of this disease during the years 2015–2020 (hereinafter called τ). Ground data are collected on the
entire territory at a municipality level. The detection of the canine distemper virus is performed by
means of real-time PCR. By adopting satellite remote-sensing data, we notice that CDV trends are
strongly related to anomalies in the NDVI entropy changes through (τ). A tentative local model is
developed concerning on-the-ground data, helping veterinarians, foresters, and wildlife ecologists
enforce management health policies in a One Health perspective.

Abstract: Changes in land use and land cover as well as feedback on the climate deeply affect
the landscape worldwide. This phenomenon has also enlarged the human–wildlife interface and
amplified the risk of potential new zoonoses. The expansion of the human settlement is supposed
to affect the spread and distribution of wildlife diseases such as canine distemper virus (CDV),
by shaping the distribution, density, and movements of wildlife. Nevertheless, there is very little
evidence in the scientific literature on how remote sensing and GIS tools may help the veterinary
sector to better monitor the spread of CDV in wildlife and to enforce ecological studies and new
management policies in the near future. Thus, we perform a study in Northwestern Italy (Aosta
Valley Autonomous Region), focusing on the relative epidemic waves of CDV that cause a virulent
disease infecting different animal species with high host mortality. CDV has been detected in
several mammalian from Canidae, Mustelidae, Procyonidae, Ursidae, and Viverridae families. In
this study, the prevalence is determined at 60% in red fox (Vulpes vulpes, n = 296), 14% in wolf
(Canis lupus, n = 157), 47% in badger (Meles meles, n = 103), and 51% in beech marten (Martes foina,
n = 51). The detection of CDV is performed by means of real-time PCR. All the analyses are done
using the TaqMan approach, targeting the chromosomal gene for phosphoprotein, gene P, that is
involved in the transcription and replication of the virus. By adopting Earth Observation Data,
we notice that CDV trends are strongly related to an altitude gradient and NDVI entropy changes
through the years. A tentative model is developed concerning the ground data collected in the Aosta
Valley region. According to our preliminary study, entropy computed from remote-sensing data
can represent a valuable tool to monitor CDV spread as a proxy data predictor of the intensity of
fragmentation of a given landscape and therefore also to monitor CDV. In conclusion, the evaluation
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from space of the landscape variations regarding the wildlife ecological corridors due to anthropic
or natural disturbances may assist veterinarians and wildlife ecologists to enforce management
health policies in a One Health perspective by pointing out the time and spatial conditions of
interaction between wildlife. Surveillance and disease control actions are supposed to be carried
out to strengthen the usage of geospatial analysis tools and techniques. These tools and techniques
can deeply assist in better understanding and monitoring diseases affecting wildlife thanks to an
integrated management approach.

Keywords: CDV; GIS; remote sensing; NDVI entropy; Orfeo Toolbox; Google Earth Engine (GEE);
Sentinel-2; red foxes; wolves; badger; beech marten; PCR; Aosta Valley region

1. Introduction

Canine distemper virus (CDV) belongs to the Morbillivirus genus within the Paramyx-
oviridae family. It is an enveloped, single stranded, negative-sense RNA virus that encodes
for six structural proteins: matrix (M), fusion (F), hemagglutinin (H), nucleocapsid (n),
polymerase (L), and phosphoprotein (P) [1,2].

CDV is the causative agent of canine distemper (CD), a severe systemic disease,
characterized by fever, respiratory and enteric signs, and neurologic disorders [3]. CD is
a worldwide distributed viral disease that is highly contagious and has high morbidity
and mortality [4]. CDV transmission occurs most commonly through aerosolization of
body secretion and excretions as respiratory exudate or urine. Although CDV is quickly
inactivated in the environment, the virus can survive at low temperatures and may be
transmitted also through direct contact [5]. The canine distemper disease is therefore
more prevalent during the cold, humid, rainy season. The colder weather facilities the
maintenance and increases the survival time of CDV in the environment [6]. Although
the seasonal occurrence of CDV infection is not well defined, there has been observed a
significant increase in the number of cases during the winter months and a corresponding
decline during the hot seasons [7], when the relative humidity is low and the temperature
begins to rise.

CDV has been detected in several mammalian species in the families Canidae, Mustel-
idae, Procyonidae, Ursidae, and Viverridae. The infection has also been reported in captive
and free-ranging large felids, in captive Japanese primates, and in Siberian seals [3]. CD
is considered an important threat to the conservation of different wild carnivore species
and has contributed to the population decline of several wild animals [8]. However, the
domestic dog (Canis lupus familiaris) is still considered to be the main reservoir of CDV
whose spread among domestic and wild animals is affected by the dynamics between
their populations, genetic characteristics of the virus, host receptors, and other factors that
are not fully understood [8]. Nevertheless, the virus may circulate in wildlife thanks to a
complex system where different interconnected populations may function as a single reser-
voir, even when the CDV circulation in domestic dogs is low, in the same study area [1,4].
These wild species that favor the spread of the virus in the wild ecosystems are named
“meta-reservoir” [4,9,10].

Epidemiological data from Europe about CDV seroprevalence in wildlife, particularly
in red foxes (Vulpes vulpes), revealed different rates in wild animals, with a prevalence
ranging from 4% to 30% in countries such as Spain, Portugal, Italy, and Germany [4].
Although the canine distemper virus is mainly spread by infected domestic dogs, that in
turn trigger the onset in wild animals, the CDV transmission from wildlife to domestic
canids is also possible [4]. The Alpine region of Northeastern Italy was hit by a canine
distemper outbreak affecting the wild carnivore population in 2006. Several red foxes,
badgers, and stone martens tested positive for CDV infection. The canine distemper virus
then reached the pre-Alps and urbanized areas in 2007, thus posing a risk to pets [8].
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A significant difference in numbers of seropositive foxes between urban, suburban,
and rural areas has been observed, suggesting that urban sprawl plays a role in CDV
transmission. It has been assumed that human population density is linked to the density
of domestic dogs. This in turn may affect the spread of CDV in wild carnivores, that share
the same habitats as domestic animals. Therefore, an association between urban sprawl
and CDV transmission in wild animals should be considered [11].

The remote sensing could support comprehension of the role of environmental patterns
in conditioning the CDV patho-system, such as for the infectious keratoconjunctivitis (IKC)
previously investigated in another study [12].

The landscape is an ecological term that refers to a complex system generated by
human and natural interactions. The spatial patterns of various land use in a landscape
show historical and present processes that shape the landscape’s dynamics and organization
as well as the capacity of disease spreading [13]. The understanding of these dynamics has
also become crucial in the face of the effects of climate change [14–16].

Nowadays, remote sensing missions realized by several public and private agencies
allow for the monitoring at different space-temporal resolution the changes that occur to the
environment and the identification of their magnitude [17–20]. Several studies in the public
health sectors used GIS to describe environmental conditions, especially concerning vector-
borne disease in Africa and Asia [21–28]. Nevertheless, the ongoing research focused
on the environment and the application of free satellite missions, such as those of the
Copernicus program, are few in the veterinary research [12]. Human and veterinarian
medicines are still far to reach consistent studies based on a One Health approach, even if
the relationship between the environment and diseases is well known [29–31]. SARS-CoV,
like many other zoonoses, has demonstrated that both animal and human health are deeply
linked to ecosystem health. Nowadays, the relationship between environmental patterns
and disease spread should be investigated to assess the best way to prevent the spread
of diseases in ecosystems. Following the path opened in a previous study [12], we focus
on the potential of remote sensing to achieve a better understanding of the relationships
between the environment and CDV at the landscape level.

The considered study area is the Aosta Valley region located in the Northwestern
Italian Alps. A new analysis approach is adopted to assess the relationship between land
use and CDV spread. Land use changes and urban sprawl are discussed as possible predis-
posing factors for the spread of canine distemper, among the Alpine wild carnivores [32,33].
To better understand these preliminary results, we introduce a possible novelty in wildlife
CDV knowledge, developing a tentative local forecasting model of CDV spread based on
ecological open-source remote-sensing data. We use a spatiotemporal analysis of entropy-
related indices of Normalized Difference Vegetation Index (NDVI) time series, focusing on
its anomalies to investigate the interaction of order and disorder in ecological landscapes
(hereinafter called EL). This index could be helpful with complex systems analysis and the
assessment of EL changes. In fact, EL variations seem to have a huge role in the condition of
CDV spread. Our overarching goal is to demonstrate a possible relationship between CDV
spread and entropy change anomalies. Therefore, our main aim is to depict the presence of
CDV in Aosta Valley as well as explore a possible relationship between entropy variations
and CDV spread, providing a useful tool for veterinarians to enforce ecological studies and
new management policies.

2. Study Area

The Aosta Valley Autonomous Region, located in the Northwestern Italian Alps, was
considered in this study (see Figure 1). The National Reference Center of Wildlife Disease
(hereinafter called CeRMAS) has its headquarters in this Italian–Francophone territory. It is
worth remembering that CeRMAS has a large dataset of zoonoses and wildlife diseases that
has been collected here for several years or longer, and this exists at the Italian level too.
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Figure 1. Study area. The Aosta Valley region in NW Italy. Reference system ED50-UTM 32 N.

Despite the small size of this Alpine region, the presence of wildlife, and biodiversity
in general, is very high in general, making it an open-air laboratory for many scientific
areas [34].

3. Materials and Methods

Sample collection. The brain, the lung, the bladder, and the spleen of different wild
animals were collected between 2015 and 2020 in Aosta Valley, an Italian region located
in the northwestern Alps between Switzerland and France. The specimens were obtained
from different wild species found dead or shot during the hunting seasons, previously
collected thanks to the Corpo Forestale della Valle d’Aosta (Forest Guards). Subsequently
the samples were placed in sterile tubes and stored at −80 ◦C before being tested. The wild
animals investigated for the presence of CDV, through real-time polymerase chain reaction
(RT-PCR) were red fox (Vulpes vulpes, n = 281), wolf (Canis lupus, n = 18), beech marten
(Martes foina, n = 47), and badger (Meles meles, n = 101).

Deoxyribonucleic acid (DNA) extraction and real-time PCR conditions. The brain, the
lung, the bladder, and the spleen of each wild animal included in the study were individu-
ally weighed (50 mg) and placed in Precellys CK 28 tubes containing zirconium oxide beads
(VWR, Radnor, PA, USA). Subsequently, 1 mL of QIAzol Lysis reagent (Qiagen, Hillden, Ger-
many) was added to the tubes containing the samples, which in turn were homogenized by
means of the tissue homogenizer Precellys 24 (Bertin instrument, Montigny-le-Bretonneux,
France). The RNeasy Lipid Tissue Mini kit (Qiagen, Germany) was then used for the
extraction of total RNA, following the manufacturer’s instructions. The detection of canine
distemper virus was performed by means of real-time PCR. All the analyses were carried
out by means of the StepOnePlus™ Real-Time PCR System (Thermofisher, Waltham, MA,
USA). The CDV detection employed the TaqMan approach, targeting the chromosomally
gene for phosphoprotein (gene P) that is involved in the transcription and replication of
the virus. The real-time PCR protocol was applied, according to Scagliarini et al. [35], using
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the SuperScript III Platinum One-step Quantitative RT-PCR System (Invitrogen, Carlsbad,
CA, USA) and the primers and probe manufactured by Thermofisher. The PCR reaction
mixture consisted of 500 nM of the forward (5′-AACCACAGGCATGCAGGAA-3′) and
the reverse (5′-GCCGACATAGTTTGATCCTTTT-3′) primer, 200 nM of the probe (5′-FAM-
CTCTCAGAATCTCGATGAATCACACGAGCC-3′-TAMRA), and 5 µL of template, in a
total volume of 25 µL. The PCR cycling conditions consisted of an initial reverse transcrip-
tion step with a temperature of 50 ◦C for 15 min, followed by 45 cycles at 95 ◦C for 15 s and
60 ◦C for 30 s. An internal positive control (IPC) was added to the PCR reaction mixture, us-
ing Armored RNA (Ambion, Austen, TX, USA), a pseudoviral particle containing the NS5-2
region of the West Nile virus genome packaged inside bacteriophage coat proteins [36].
The primers and the probe for the NS5-2 region were manufactured by Thermofisher. If the
IPC cycle threshold value was higher than 39, the template was then diluted at 1:10 with
ddH2O and subjected to a second amplification. Prevalence data were finally computed
by Equation (1) with reference to the entire regional territory for all the monitored years
(2015–2020).

Pr =
C
P
× 100 (1)

where Pr = disease of the CDV in wild animals (%), C = number of wild animals who tested
positive for CDV, and P = number of wild animals examined.

Earth Observation Data processing and GIS. The EO Data were obtained and processed
in Google Earth Engine (hereinafter called GEE) [37] and the Sentinel-2A data were used.
European Space Agency (ESA) Copernicus Sentinel-2 (hereinafter called S2) is a wide-
swath, high-resolution, multi-spectral imaging satellite mission supporting Copernicus
Land Monitoring studies, including the monitoring of vegetation, soil, and water cover, as
well as observation of inland waterways and coastal areas. The spatial resolution ranges
between 10 and 60 m depending on the band considered. The temporal resolution of
10 days (S2A and S2B, respectively; combined they have 5 days of temporal resolution) and
a spectral resolution as described in Table 1.

Table 1. Sentinel-2 bands, ground sample distance, and wavelengths.

Sentinel-2 Bands (B*) Central Wavelength (nm) Bandwidth (nm) Geometric
Resolution (m)

B1–Coastal aerosol 442.7 21 60
B2–Blue 492.4 66 10

B3–Green 559.8 36 10
B4–Red 664.6 31 10

B5–Vegetation red edge 704.1 15 20
B6–Vegetation red edge 740.5 15 20
B7–Vegetation red edge 782.8 20 20

B8–NIR 832.8 106 10
B8A–Narrow NIR 864.7 21 20
B9–Water vapor 945.1 20 60

B10–SWIR–Cirrus 1373.5 31 60
B11–SWIR 1613.7 91 20
B12–SWIR 2202.4 175 20

The S2 L2 data were downloaded from ESA Copernicus Scihub (https://scihub.
copernicus.eu/ last access 5 March 2022). They were computed by running sen2cor (a script
provided by European Space Agency (ESA) working in many platforms such as ESA SNAP
tool v.7.0.0, that allows for the performance of ortho-rectification and applies the radiative
transfer model to calibrate the imagery to surface reflectance—SR).

For this study, the COPERNICUS/S2 collection in GEE was adopted because it pro-
vides the temporal coverage requested for performing the whole necessary analysis ranging
from 2015 to 2020. It is worth remembering that GEE provides calibrated SR S2 data only
from 28 March 2017 to present. COPERNICUS/S2 asset contains 12 UINT16 spectral bands

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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representing top of the atmosphere (TOA) reflectance scaled by 10,000. In addition, three
QA bands are present where one (QA60) is a bitmask band with cloud mask information.
Clouds can be removed by using COPERNICUS/S2_CLOUD_PROBABILITY.

The adopted collection has pre-processed Level-1C products that include radiometric
and geometric corrections including orthorectification and spatial registration on a global
reference system with sub-pixel accuracy. In this study, clouds were masked by applying
QA60 to the entire image collection while also considering cirrus. To do this, on the entire
collection, the Fito Principe library, available freely on GEE, was adopted. This extensive
package requires “users/fitoprincipe/geetools:cloud_masks” which permits iteratively
masking out all the clouds in S2 images (https://github.com/fitoprincipe/geetools-code-
editor) (accessed on 14 March 2022).

To get BOA (Bottom of the Atmosphere) data, the whole TOA collection was calibrated
in GEE adopting the Sensor Invariant Atmospheric Correction (SIAC) algorithm realized
by the Department of Geography of the University College of London [38–40].

This atmospheric correction method uses MODIS MCD43 BRDF product to get a coarse
resolution simulation of Earth’s surface. A model based on MODIS PSF is built to deal with
the scale differences between MODIS and Sentinel-2 as well as Landsat 8 satellite missions.
In addition, the ECMWF CAMS prediction was considered in the method, as a prior for
the atmospheric states, coupling with 6S model to solve for the atmospheric parameters.
The algorithm in its present form does not include topographic correction considering the
ground as a homogeneous surface. Since Aosta Valley has a geomorphological complex
territory in a prevalently mountainous region, a topographic correction was performed by
adding in the SNIC algorithm to the DTM to consider the BRDF (Bidirectional Reflectance
Distribution Function) effects. The Aosta Valley DTM provided by the regional cartographic
resources (https://geoportale.regione.vda.it/ accessed 5 March 2022) was obtained during
a lidar flight that occurred in 2008 and it has a native ground sample distance of 2 m. Thus,
it was resampled to 10 m in SAGA GIS v.8.0.0 [41] as a reference grid target of the S2 stack
of images adopted.

The altitude of each sample was obtained directly by the data thanks to the fact that
it was determined during the discovery of the animal. In the case of the samples without
altimetric reference, the altitude was obtained starting from GIS analyses (intersect with
DTM) which provided for the assignment of a centroid on the geometry of the municipality
or municipal fraction indicated by the forestry officials at the time of the discovery. The
analysis was performed in QGIS [42].

Entropy computation. Starting from the S2 filtered and calibrated stacked collection
ranging from 2015 to 2020 for each year, the median NDVI was computed as follows at a
pixel level [43]:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(2)

where ρNIR and ρRED are S2 B8 and B4 reflectance values, respectively.
Yearly NDVIs had thresholds in SAGA GIS v.8.0.0 to define two types of land cover.

A vegetation cover (including agriculture, forests, grasslands) and an urban-anthropic
cover (including built-up areas and bare soils and low vegetation). Water bodies and water
courses as well as glaciers and rocks were masked out by adopting local cartography (the
official Land Cover of Aosta Valley that is also going to be published in a scientific journal).

NDVIt = NDVI > 0.3 (3)

The masking adopted is reported in the image below (please see Figure 2).

https://github.com/fitoprincipe/geetools-code-editor
https://github.com/fitoprincipe/geetools-code-editor
https://geoportale.regione.vda.it/
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Figure 2. Surfaces not included in the computation of NDVIt Entropy and that are therefore masked.
Reference system WGS84.

Starting from this spectral index, we computed the HNDVIt as follows:

HNDVIt = −
N−1

∑
i=0

N−1

∑
j=0

NDVIti,j log
(
NDVIti,j

)
(4)

where NDVIti,j is the NDVI value at the i-th row and j-th column in the local square window
measuring N pixels. For this study, a kernel window size of 10 × 10 pixels was adopted.

The entropy was computed on Orfeo Toolbox vers. 8.0.0, an open-source tool for remote-
sensing analysis. In particular, the Haralick texture features function was adopted [44,45].
This application computes Haralick, advanced, and higher order texture features on every
pixel in the selected channel of the input image, in this case the NDVI.

NDVI entropy (HNDVI) was thought to be a suitable image texture parameter capable of
distinguishing the intensity of changes in both the natural (woods, grasslands, agriculture)
and anthropic systems. As demonstrated by [46], entropy is also a valuable tool to define
agricultural production systems. Starting from these premises, we considered that abrupt
changes (higher than 0.05 HNDVIt to exclude internal vegetation variation due to biological
factor) cause an effect on the landscape and therefore on wildlife movements and the
possibility of their interaction. Lower values of HNDVIt means order in the landscape
while higher values define a great degree of disorder and therefore entropy in the system.
According to [32], changes in land use as well as land cover (hereinafter called LULC)
involve a major risk of CDV spread. Starting from this study’s preliminary results, we
considered HNDVIt space and temporal distribution as a possible factor of disease spreading.
In the Aosta Valley landscape, changes in LULC evaluating NDVI entropy were more varied
and dispersed, resulting in increased HNDVIt of these patches. With these conditions, the
most important component of the workflow was detecting the anomaly of entropy on a
reference time to compare the mean HNDVIt of the territory (assumed as reference typical
conditions) to differences that occurred on a given year. The anomaly of entropy (AH) was
computed as follows:

AH =
HNDVIt

µHNDVIt
(5)
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where HNDVIt is the entropy of NDVI in a given time (in the example, a given year) and
µHNDVIt is the mean NDVI entropy computed in the reference time 2015–2020. Statistics
such as the AH were computed in SAGA GIS vers. 8.0.0, RStudio [47–49], and PAST [50,51]
and the map visualization was conducted on QGIS v.3.16.4. In this analysis, the DTM
was used to assess a possible relationship between the CDV and the altitude starting from
ground data.

4. Results

Canine distemper virus prevalence (Pr) was computed according to the available
ground dataset, by Equation (1) after detecting the presence of the CDV in the wild animals,
collected by Corpo Forestale della Valle d’Aosta, by means of real-time PCR. The num-
bers of collected samples can be considered statistically significant by applying statistical
inference, taking into account the population data (available https://www.regione.vda.
it/corpoforestale/competenze/fauna_selvatica_i.aspx, last access on 9 March 2022) to all
species considered, apart from the wolf. Values reported in Table 2 refer to the period
2015–2020. Despite the fact that the number of samples is not uniform to all wild species
considered in this study, the red foxes that were positive for CDV weighed on the entire
analyzed population, resulting in the highest occurrence followed by mustelids. To assess
CDV trends through time, the yearly prevalence was computed at a regional level for the
entire period starting from 2015 to 2020 (see Table 3).

Table 2. CDV prevalence in the Aosta Valley region. Data refers to the years 2015–2020.

Animal Species CDV Prevalence (%) Number of Samples
Analyzed Positive for CDV

red fox 58 281 164
wolf 37.5 18 3

beech marten 51 47 24
badger 47.5 101 48

Table 3. CDV prevalence in the Aosta Valley region. Data refers to each year from 2015 to 2020.

Year CDV Prevalence (%)

2014 85.7
2015 66.2
2016 38.5
2017 40.8
2018 79.0
2019 47.5
2020 13.2

To perform analysis taking into account the NDVI entropy, CDV prevalence was
grouped into a single one value without considering the single species, starting from the
following assumptions: (1) changes in LULC affect movements and possible interaction in
the whole wildlife population, (2) the CDV spread involves all canine families, (3) some
species, such as wolves, do not have a statistically significant number of samples to perform
statistic inference, and (4) GIS and remote-sensing analysis usually works better with a
high number of ground data especially in developing a tentative local model.

Therefore, the CDV data were grouped together without considering the species for
each year as follows:

A tentative local model simply based on the CDV outbreak throughout the year was
developed (see Figure 3). Even if the determination coefficient is high, adopting a 3rd
degree polynomial order equation, a non-parametric trend test (Mann–Kendall trend test)
was performed to assess the p-value. The trend observed is not significant because the
p-value is higher than 0.05. We know that this model is not robust enough and that it

https://www.regione.vda.it/corpoforestale/competenze/fauna_selvatica_i.aspx
https://www.regione.vda.it/corpoforestale/competenze/fauna_selvatica_i.aspx
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is based on a short time series due to the lack of past data. Nevertheless, it represents a
preliminary tentative tool to better understand how the disease affects wildlife in a specific
area, and we hope that it can help local veterinarians, as well as researchers, to improve
studies at a different level. 
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Figure 3. CDV trends in Aosta Valley.

Before performing entropy analysis, we analyzed if altitude was able to condition the
CDV spread. We started from the assumption that in Aosta Valley the most intense changes
in LULC in terms of surface occurred in the bottom of the valley. Therefore, we performed
a regression considering the positive CDV wildlife with respect to the altitude considering
all the analyzed years. We know that wildlife moves but it is true that wildlife hunting
activities and their feedings generally happen in transitional ecological patches, such as
anthropic and natural patches (this is particularly true for red foxes). Therefore, changes
in these areas due to agriculture, urbanization, forestry, and natural disturbances deeply
affected wildlife interaction and consequently CDV spread. Below we report the tentative
model realized considering the altimetry and in particular the CDV positive samples in the
period 2015–2020 (see Figure 4). 
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Figure 4. CDV trends in Aosta Valley.
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The trend to model the relationship is exponential and the major positive animals are
located at lower altitude and appear to decrease when the altitude increases. This is likely
due to a lower possibility of interaction between animals and a context of sudden variation
of the landscape due to anthropogenic activities. Therefore, these results seem to confirm
the analyses carried out considering entropy.

CDVpr = 44.76 e−0.002q (6)

where CDVpr is the CDV prevalence while q the quote (m) detected during the collection
of the wildlife sample.

Statistical analysis has shown a coefficient of determination R2 = 0.75 and a statistically
significant trend p-value < 0.005. In Aosta Valley, this model that considers the quote is
strong enough to be adopted by veterinarians, ecologists, and foresters to model local CDV
spread. This analysis allowed us to assess the previous assumption and focus the research
on the variation in terms of distribution of the patches, detecting the variations in terms of
increased disorder in the components of the landscape under study. By computing from EO
data the mean entropy in the period ranging from 2015 to 2020 and assessing for each year
the anomaly including both the vegetational and urban component, a tentative forecasting
general linear model GLM was developed as follows (see Figure 5). In order to better
explain the entropy analysis, we computed the anomalies through the year. In particular,
for each year, we computed the entropy and then we calculated the mean entropy for the
whole period ranging from 2015 to 2020 as reference.
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Figure 5. GLM between anomalies in NDVI entropy and CDV spread (data were grouped annually
considering the entire Aosta Valley territory).

The tentative local model realized has shown that there is a strong correlation between
changes in landscape patches and the CDV prevalence. Statistical analysis has shown
a coefficient of determination R2 = 0.85. Nevertheless, a significant non-parametric test
(Mann–Kendall) applied to data on PAST software has shown a p-value > 0.05. Therefore,
to evaluate the quality of these preliminary results, only cross-validation with the future
ground date with this empirical model may help to better understand the solidity of the
realized model. Below we report the tentative remote-sensing approach based on NDVI
entropy to try to model canine distemper virus (CDV) in the Aosta Valley territory.

CDVpr = 540.75 ∗ AH − 487.76 (7)
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where CDVpr is the CDV prevalence in the tentative local model performed in Aosta Valley
region (%) and AH is the anomaly of entropy computed according to Equation (5). In
conclusion, below we report a flowchart of the procedure adopted and the relative maps of
HNDVIt obtained (see Figure 6). 

6 

 

 

 

6 

Figure 6. HNDVIt maps adopted and calculated at a pixel level, grouped into two classes, and finally
merged into a final one. Reference system WGS84.

5. Discussion

CD is a multisystemic disease and its clinical severity both depends on the strain
pathogenicity and the host immune status [1]. Although host range expansion has been
reported, the domestic dog is still regarded to be the principal viral reservoir and the risk
factors associated with CDV exposure in wildlife are not fully understood [16]. The canine
distemper virus appeared to circulate throughout Northwestern Italy between 2013 and
2015, with the highest prevalence in the Aosta Valley region. It has been suggested that
environmental factors such as the geographical characteristics of Northwestern Italy could
be a key factor in the spread of CDV [1]. In addition, a high lethality rate of CD has both
been reported in mustelids and in red foxes. Although the spatial distribution of the red
fox population has not been reported in the northwest of Italy, this wild animal has the
widest geographic distribution among the canids. Therefore, a potential role of the red
fox in the spread and maintenance of CD in this study area is possible [1]. Based on the
results of this study, the circulation of the canine distemper virus in the wildlife located in
Aosta Valley did not end in 2015 but continued until at least 2020. The prevalence of CDV
in wild carnivores appears to be consistent with that reported by Di Blasio et al. [1] and no
significant difference in susceptibility to canine distemper virus was observed among the
mustelids investigated (beech marten 51% and badger 47.5%), except for the canids (red
fox 58% and wolf 37.5%).

This CDV latency that was shown to have lasted until 2020 may be attributable to
changes in homogeneity and inhomogeneity across the landscape. Changes in LULC due
to anthropogenic activities and natural disturbances, especially in urban–natural interface
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contexts, have strong repercussions on the spread of the pathogen. This is due to the fact
that the variation of ecological corridors can affect the possibility of animal interaction.
Similarly, the risk of interaction between domestic and wild animals is greater in urbanized
contexts, which in the Aosta Valley territory are mainly concentrated in the bottom of
the valleys. This factor seems to explain the close relationship between altitude and CDV
positivity. The altitude gradient seems to be a conditioning factor for wildlife positivity. This
aspect seems to corroborate the thesis proposed in the experimental study of the following
work in which the anomaly in the entropy of NDVI appears to be a good predictor of the
risk of CDV spread. In fact, the areas with higher entropy (disorder and inhomogeneity)
are in correspondence to anthropized areas and the urban–natural interface. Think of the
different agronomic cultures, types, and distribution of urbanized areas.

As shown in previous studies on the same topic [13,52,53], it is difficult to find the best
spatial resolution for studying patterns at the ecosystem level, yet it is critical to comprehend
and interpret emergent patterns because no single spatial resolution is appropriate for all
ecological phenomena [10,12].

The results obtained confirmed the findings performed by [32,33,54,55] and hopefully
they open new perspectives in future studies concerning CDV environmental dynamics. It
would certainly be interesting to increase and deepen the study in other areas about the
role of altimetry and entropy by adopting a remote-sensing approach.

Finally, the evaluation from space of the landscape variations with particular regard to
wildlife ecological corridors due to anthropic or natural disturbances may help veterinarians
and wildlife ecologists to enforce management health policies in a One Health perspective
by pointing out time and spatial conditions of interaction between wildlife. Surveillance
and disease control actions have to be carried out to strengthen the usage of geospatial
analysis tools and techniques that can strongly better the understanding and monitoring
of diseases affecting wildlife thanks to an integrated management approach favored by
technology transfer in the various sectors of knowledge.

6. Conclusions

CDV spread proved to be conditioned by changes along an altimetry gradient and
LULC changes with a focus on the distribution on the landscape in terms of order and
disorder. In particular, the evaluation of anomalies in the Normalized Difference Vegetation
Index (NDVI) entropy on the vegetational and urban component seemed to be a good
predictor. Today, the huge amount and availability of free and global remote-sensing data is
certainly a valid “systemic” tool for risk analysis and modelling that can support ordinary
diagnostic techniques, allowing continuous monitoring of the effects of LULC changes in
mountain and wilderness environments. Therefore, GIS processing considering quote and
time series analysis in order and disorder in EL can be a good way to monitor CDV in
wildlife. As a preliminary result, we found a possible relationship between CDV spread and
entropy change anomalies at a local level. We know that further studies must be performed
to establish the quality of the present study and obtain evidence in scientific literature.
Nevertheless, these tentative models obtained may represent another step to perform a
One Health approach. In fact, we hope that GIS instruments and procedures coupled to
ordinary health techniques may help veterinarians, foresters, and urban planners to enforce
ecological studies and new management policies. In conclusion, surveillance and disease
control actions should be carried out by strengthening the usage of geo-spatial analysis
tools and techniques. This can help significantly in the monitoring of diseases affecting
wildlife thanks to an integrated management approach favored by technology transfer in
the various sectors of knowledge, including veterinary medicine.
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