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Abstract
Scaling methods have been applied to study modern urban areas and how they create
accelerated, feedback growth in some systemswhile efficient use in others. For ancient cities,
results have shown that cities act as social reactors that lead to positive feedback growth in
socioeconomic measures. In this paper, we assess the relationship between settlement area
expressed through mound area from Late Chalcolithic and Bronze Age sites and mean
hollow way widths, which are remains of roadways, from the Khabur Triangle in northern
Mesopotamia. The intent is to demonstrate the type of scaling and relationship present
between sites and hollow ways, where both feature types are relatively well preserved. For
modern roadway systems, efficiency in growth relative to population growth suggests roads
should show sublinear scaling in relation to site size. In fact, similar to modern systems, such
sublinear scaling results are demonstrated for the Khabur Triangle using available data,
suggesting ancient efficiency in intensive transport growth relative to population levels.
Comparable results are also achieved in other ancient Near East regions. Furthermore, results
suggest that there could be a general pattern relevant for some small sites (0–2 ha) and those
that have fewer hollow ways, where β, a measure of scaling, is on average low (≈ < 0.2). On
the other hand, a second type of result for sites withmany hollowways (11 or more) and that
are often larger suggests that β is greater (0.23–0.72), but still sublinear. This result could
reflect the scale in which larger settlements acted as greater social attractors or had more
intensive economic activity relative to smaller sites. The provided models also allow
estimations of past roadway widths in regions where hollow ways are missing.
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Introduction

Urban scaling has been a major research topic not only for those interested in modern
urbanism (Bettencourt et al. 2010; Bettencourt 2013; Batty 2013; Schläpfer et al. 2014)
but also those studying the past (Ortman et al. 2014, 2015; Cesaretti et al. 2016; Ossa
et al. 2017; Smith 2018). Urban scaling work builds on theory that frames human
settlements as social reactors (Bettencourt 2013), where generally bigger cities create
social interaction opportunities that result in greater socioeconomic outputs per capita
(e.g., incomes, transport networks, technological innovations). These outputs scale
relative to the population of the city. Several past studies have demonstrated systematic
power law regularities between population size and socioeconomic outputs (e.g.,
Pumain et al. 2006; Bettencourt et al. 2007, 2010; Batty 2008; Samaniego and
Moses 2009). Other earlier anthropological work has looked at issues of system scaling
and complex organization, where larger systems have been argued as creating condi-
tions for greater social complexity and evident qualitative change to social structures
(e.g., Carneiro 1967, 2000). Intensification of interactions and feedbacks can help
create ever larger and more socially complex societies (Johnson and Earle 2000).
Power law relationships are also found in non-urban societies and their dwelling areas
(Wiessner 1974). While works on scaling could potentially investigate social transfor-
mations, scaling can also inform how population affects other urban systems, including
those that have economic implications (e.g., wealth, transport network, household
consumption, water supply system).

There are three kinds of urban scaling between population size and the magnitude of
socioeconomic outputs: (1) linear, where the output has the same growth rate as
population; (2) superlinear, where the output grows at a higher rate than population,
and (3) sublinear, where the output increases at a lower rate than population. For factors
such as innovation and wealth, cities have shown a pattern expressed by superlinear
power exponents at around 1.15 (Bettencourt et al. 2010), while systems such as
transport are typical of economies of scale that reflect efficiency accommodating
increasing populations, making them sublinear (Bettencourt et al. 2007). For ancient
urban systems, the challenge has been to find relevant measures that can be easily
compared to population in a similar manner for modern systems that can demonstrate
such power law relationship. Work by Ortman et al. (2014, 2015) demonstrate socio-
economic relationships that are similar between modern societies and past New World
settlements (e.g., population and residential settled area, public construction rates).
However, relative few proxies from different archaeological settings have been used
(e.g., estimated settlement area, area of public plazas and monuments, number of
inscriptions; see Cesaretti et al. 2016; Hanson and Ortman 2017; Hanson et al. 2017;
Ossa et al. 2017).

This work represents an exploratory analysis into the scaling relationship be-
tween settlement area and remnants of past interurban roadway systems. Such a
focus has not been conducted before and, therefore, our results are a preliminary
assessment. One area where data afford an opportunity to compare relationships
between proxies for urban population and other measures is the Near East i
(Fig. 1). Particularly in northern Mesopotamia, mounded Late Chalcolithic (LC)
to Bronze Age (ca. 4200–1200 BCE) sites, such as those studied from different
surveys, are often clearly visible on satellite imagery along with remnants of
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ancient roads, termed hollow ways (Wilkinson 1993; Fig. 2). This provides an
opportunity to understand how interurban road networks and roads that connected
agricultural areas relate and scale to mound area. In effect, if mound area reflects a
proxy for population, then the relationship between mounds and hollow ways can
inform on how past road systems were affected by and related to population. This
also informs how agricultural landscapes and settlements interacted. That relation-
ship, represented in a developed model, could be used to forecast characteristics of
ancient roads that are missing.

Fig. 1 Map of the study area and of the key sites analyzed. The inset shows the Khabur Triangle (KT)
illustrated in Fig. 2

Fig. 2 Network of hollow ways and mounded sites dating to the LC and Bronze Age in the Khabur Triangle
(KT). The numbered polygons represent the spatial extent of the archaeological surveys carried out in the area
(see Table 1 for references)
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In presenting this work, we first provide background data on the archaeological data
used to measure urban scaling. Then, the research method undertaken to determine the
relationship between urban area and hollow ways is presented. Different results are
given based on varied site areas and hollow ways, including how they may affect
measurement values. The implications and archaeological significance of the results are
discussed, helping to extend the finds for other cases. In concluding, methods to
improve the results and future direction are presented.

Background to Case Study

Late Chalcolithic and Bronze Age Sites in Northern Mesopotamia

For the purpose of this paper, we chose the Khabur Triangle (KT) as the case study, an
area located within the Syrian-Iraqi Jazira, measuring some 37,500 km2 and extending
between the Tigris and Euphrates rivers. It is bounded by what is today the Syrian and
Turkish border to the north, the Jebel Sinjar and the Jebel ‘Abd-al-Aziz to the south,
and the Khabur River to the west (Fig. 2). The choice of this region is motivated by the
wealth of archaeological settlement data spanning between the late fourth millennium
and the late second millennium BCE, which is the result of an intensive survey research
activity in the past three decades, as indicated in Fig. 2, and by the good state of
preservation of hollow ways.

From the end of the fifth millennium BCE to the end of the second millennium BCE,
the KT was characterized by fluctuating trajectories of social complexity in urbaniza-
tion, administrative hierarchy, political structure, and agricultural and transport infra-
structures. Although there is a general tendency among scholars to consider southern
Mesopotamia as the heartland of early social complexity and urbanism (Algaze 2001,
2008; Liverani 2006), in the KT during the LC 2 (ca. 4200–3800 BCE), settlements
such as Tell Brak, al-Andalus, and Khirbet al-Fakhar reached large areas (55, 64, and
30 ha respectively), with high population densities possibly reached earlier than sites in
Southern Mesopotamia (Ur et al. 2007, 2011; Oates et al. 2007; Wright et al. 2006–
2007; Ur 2010a, b; Lawrence and Wilkinson 2015, 329–333). During the LC 3–4
(around 3800–3300 BCE), Tell Brak grew steadily and reached an area of 130 ha (Ur
et al. 2007, 2011), which may have epitomized north Mesopotamia’s early urbanism
and showing traits of complex societies such as political centralization and economic
specialization.

Northern Mesopotamia in the Early Jazirah (EJ) I-II period (ca. 2900–2500 BCE)
was characterized by the reduction of social complexity and the landscape consisted of
dispersed small settlements, with a few centers measuring 15–25 ha (Stein and
Wattenmaker 2003; Ur 2010a, 401–403; McMahon 2013, 464). At the end of the EJ
II (ca. 2600–2500 BCE) and in the EJ III periods (ca. 2500–2300 BCE), northern
Mesopotamia experienced a rapid process of urbanization, where cities such as Tell
Mozan, Tell Leilan, and Tell Hamoukar expanded from 15 ha to around 90–120 ha
(Ristvet 2005, 59; Ur 2010a, 405; Ur 2010b, 105–109; McMahon 2013, 464; Lawrence
and Wilkinson 2015, 333–335). Some sites, such as Tell Brak (65–70 ha), Tell Beydar
(25 ha), and Tell Mohammed Diyab re-expanded (Ristvet 2005, 59; Ur and Wilkinson
2008, 307–308; Ur et al. 2011, 9–11), while new major cities, such as Tell al-Hawa, just
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to the east of the KT, emerged (Wilkinson and Tucker 1995, 50–53). Although
historical texts are largely missing from this period, with the exception of sites such
as Ebla, Mari, and Tell Beydar, scholars have generally assumed this was a period of
city-state competition (Archi 1998; Akkermans and Schwartz 2003; Archi 1998). In the
late third millennium (EJ IV-V, ca. 2300–2000 BCE), settlement area reduced and the
number of sites decreased. The causes of this change are still unclear and some scholars
link the abandonment of settlements or their reduction in size to global climate change
events (Weiss et al. 1993; Weiss 2017), while others advocate an interplay of unfavor-
able climate conditions in tandem with the exceeding carrying capacity of the land by
the large urban centers (Wilkinson 1997; Wilkinson et al. 2007).

In the first half of the second millennium BCE (Old Jazirah I-II, ca. 2000–
1600 BCE), there is a resurgence of urbanism and the KT consists of a three-tiered
hierarchy of settlement area, with few dominating large urban centers measuring 60–
90 ha (Tell Leilan, Tell Farfara, and Tell al-Hawa), several medium-sized sites of 15–
35 ha (e.g., Tell Muhammed Diyab, Tell Brak, Dumdum, Tell Mozan), and many small
villages and farmsteads. This settlement structure arguably reflects the actual political
landscape in the early second millennium, which was mostly fragmented into several
independent city-states (see Charpin and Ziegler 2003; Veenhof and Eidem 2008, 290–
321; Ristvet 2008, 2012; Palmisano 2015, 2017; Palmisano and Altaweel 2015), except
when it was part of the Amorite kingdoms of Shamshi Adad I (ca. 1808–1776 BCE)
and Zimri-Lim (ca. 1780–1758 BCE; Villard 1995, 873; Charpin and Ziegler 2003;
Eidem 2000, 2008). The late second millennium BCE witnessed the rise of the Mitanni
and Middle Assyrian Empires respectively, but by the eleventh century the Assyrians
had declined (Radner 2015). Throughout this period, large and small sites were often
present within mounded settlements. Table 1 lists some of the key surveys and works in
the KT that reflect LC and Bronze Age (ca. 4200–1200 BCE) settlements (Fig. 2).

Hollow Ways and Sites

Many of the dated sites have associated hollow ways, which are informal landscape
features (tracks or paths) generated by human or animal movement and radiating out
from known mounded settlements (Wilkinson 1993, 1994; Altaweel 2003, 2008; Ur

Table 1 List of archaeological surveys carried out in the Khabur Triangle. The map numbers align with Fig. 2,
showing where the surveys took place

Map no. Season Reference Area (sq. km) Total no. of sites

1 1988 Eidem and Warburton 1996 193 56

2 1989–1991 Lyonnet 2000 5100 161

3 1976–1977, 1979 Meijer 1986 2296 290

4 1984, 1987, 1995, 1997 Ristvet 2005 1919 335

5 1999–2001 Ur 2010a, b 127 60

6 1997–1998 Ur and Wilkinson 2008 454 83

7 1986–87, 1989–90 Wilkinson and Tucker 1995 475 183

8 2002–2003 Wright et al. 2006–2007 1275 268
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2003 and 2009; Casana 2013). Hollow ways are broad and shallow (often 60–120 m
wide and 0.50–2 m deep) linear depressions in the landscape (Ur 2010b, 76–78;
Wilkinson et al. 2010, 766–767). Despite their size, these features are very difficult
to detect on the ground: the largest ones can be visible with specific light conditions and
oblique angles or after atmospheric events such as a flooding when these features infill
with water. Figure 3 illustrates a relatively rare example when these features become
evident from ground level. Given this, the detection of hollow ways often necessitates
the use of aerial imagery. Therefore, a major contribution in detecting hollow ways has
been made by aerial photography and satellite imagery, especially declassified CORO-
NA satellite images. The CORONA program, in operation from 1959 to 1972, was
launched by US intelligence with the purpose of monitoring sensitive strategic areas by
spy satellites.1 High-resolution CORONA satellite images have been widely used in the
Middle East to detect small, often mounded sites, including small sites (< 1 ha), ancient
tracks, and irrigation channels (Philip et al. 2002; Altaweel 2008; Casana et al. 2012;
Casana and Cothren 2013; Casana 2013).2 The available data have allowed the
mapping of about 6000 km of tracks in the Upper Khabur valley (Ur 2010b, 76),
highlighting a busy landscape characterized by interconnecting and overlapping tracks.
The use of hollow ways as pathways or tracks has been widely accepted by most
scholars despite some interpreting these features either as channels to harvest rainwater
(McClellan et al. 2000) or as modern roads (Weiss and Courty 1994). The association
of these features with ancient roadways has been based on hollow ways traversing
multiple watersheds and often leading to known gates at ancient sites (Wilkinson 1993,
1994; Altaweel 2008). Recent geomorphological studies have demonstrated that these
informal linear tracks were already incised during the fourth millennium BCE
(Wilkinson et al. 2010). Furthermore, Casana (2013) in his recent cross-regional study
in the Near East has demonstrated that hollow ways are associated with nucleated
settlements and specific modes of pastoral activities and land management.

Hollow ways starting from archaeological sites show a radial pattern (Fig. 4). This is
similar to some modern towns or villages in the region today with regard to their road
networks. Area around sites were also possibly intensively cultivated and movement of
farmers and shepherds and their flocks were constrained by the presence of agricultural
fields, with boundaries regulated by patterns of land tenure and social norms (Schloen
2001; Casana 2007, 212–214; Ur 2009, 194; Casana 2013, 268). In fact, at a certain
distance from settlements (generally 3–5 km), hollow ways gradually fade out, possibly
because they reached the limits of the cultivation zone and the start of pastoral lands,
where dispersed movement not constrained by particular fields does not create de-
pressed tracks (Wilkinson 1994, 493; Ur 2009, 194; Fig. 4). These patterns of linear
tracks radiating out from settlements are known cross-culturally in societies practicing
dry-farming economies (Chisholm 1962; Wilkinson 2007). Wide hollow ways
(measuring 80–130 m) radiating out from large urban centers such as Ebla,

1 The declassification of US Corona satellite images by the US government in 1995 and consequently their
open dissemination to any user at low prices (about 30$ per scene), the relatively high resolution of these
images (2 m), and the almost total coverage of western Asia make these data an essential tool for landscape
archaeology in the Near East.
2 On the website of the the University of Arkansas’ Center for Advanced Spatial Technologies (CAST), it is
possible to have access to a database of georeferenced CORONA satellite images covering most of the Middle
East: http://corona.cast.uark.edu/.
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Tell Brak, Tell Leilan, and Tell Mozan resemble large droveways (tratturi) used
in the Appenines of Italy and in Scotland to herd sheep and cattle between
highlands and lowlands pastures (cf. Barker 1995, 34–36; Haldane 1997; Bell
et al. 2002, 172;). The analysis of the radial pattern of hollow ways surround-
ing a settlement may be useful for estimating the area of agricultural

Fig. 3 Flooded hollow ways to the north of Tell Brak after heavy precipitations (picture taken by A.
Palmisano on 1 May 2011)

Fig. 4 Schematic, highly stylized model of settlement, roadways, and land-use zones in the Near East
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catchments (Wilkinson 1994, 493; Deckers and Riehl 2008; Ur 2009, 195;
Kalayci 2016).

Most of the hollow ways in the KT are associated with Bronze Age sites, although
some of them could be dated to the fourth millennium BCE, when extensive proto-
urban centers arose in the alluvial plains of northern Mesopotamia (Ur 2010a, 395–396;
Wilkinson et al. 2010). In this area, Byzantine and early Islamic sites dated to the
second half of the first millennium AD are associated with these features that, none-
theless, are narrower in width (around 10/15 m) and never are as broad as the ones
dating to the Early Bronze Age site, which can be more than 50-m wide and reach 100–
130 m in exceptional cases (Van Liere and Lauffray 1954–1955; Ur 2010b, 145;
Casana 2013, 259).

The North Jazirah and northern Mesopotamia in general, including the KT, are ideal
for the preservation of hollow way features due to the semi-arid nature of the present
landscape and the fact that settlement activity and agriculture were not as intensive in
later periods. Other parts of the Middle East, such as Iraqi Kurdistan (e.g., Altaweel
et al. 2012), are not as well preserved or preservation is relatively more limited in other
places (Casana and Cothren 2013). Nevertheless, examples of these road systems and
their associated settlements have been found in the southern Levant (e.g., Tell Sera/
Ziklag; see Fig. 1), the northern Levant (e.g., Ebla, Tell Sheikh Mansour), the Balikh
valley (e.g., Tell Hammam et-Turkman, Parapara), the Amuq plain (e.g., Tell
Kirkaoglu, Tell Selam; cf. Casana 2003), the Upper Tigris region of northern Iraq
(e.g., Tulul Bashmanah, Tell Dhuwayj; cf. Altaweel 2003, 2005; Mühl 2012), and in
southern Mesopotamia (e.g., Ur, Tell Ghanime).

Research Approach

Site and Hollow Way Measurements from Satellite Imagery

To assess archaeological sites and hollow ways used in this study, we conducted a
comprehensive review, standardization, and synthesis of settlement data from reports
and gazetteers of archaeological surveys carried out in the KT (see Meijer 1986;
Wilkinson and Tucker 1995; Eidem and Warburton 1996; Lyonnet 2000; Ristvet
2005; Wright et al. 2006–2007; Ur and Wilkinson 2008; and Ur 2010a, b; see Table 1
and Fig. 2). This step allowed us to identify and spatially locate settlements occupied in
the KT in the LC (ca. 4200–3000 BCE) and in the Bronze Age (ca. 3000–1200 BCE).
Although soil micro-morphological techniques can be used to date hollow ways (e.g.,
Wilkinson et al. 2010), generally they are dated on the basis of the occupation periods
of the mounds from which they depart. Therefore, one major caveat is represented
by multi-period sites that have been occupied for hundreds of years, where we cannot
guarantee an accurate chronology for hollow ways radiating out from sites. Neverthe-
less, preserved remains of mounds and hollow ways provide minimum values that can
be used for measurements looking at relationships across time. We assess the chrono-
logical evolution of the network of hollow ways distributed over the KT and we focus
our analysis exclusively on these features’ spatial association with the site mounds from
which they depart. To measure sites and hollow ways, we made use of the CORONA
Atlas of the Middle East (see Casana et al. 2012; Casana and Cothren 2013), which
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represents an excellent source of more than 1000 images georeferenced and
orthorectified and freely downloadable.3 Hence, settlement data have been recorded,
where possible, as georeferenced polygons, with hollow ways departing from them
being digitized.

Different measures were initially investigated, before we made a selection of
what variables to measure, including overall area and minimum and maximum
area estimates for mounded sites. For hollow ways, widths, number of hollow
ways from sites, lengths, and combination measurements that included different
measures (e.g., length and width) and number of hollow ways were assessed
(Fig. 5). We eventually simply used the measured mounded area for sites,
which seemed to be the best proxy for population where larger sites generally
represent greater population at some point during the mound’s history. Although
this assumption is not consistent across different regions of the world (cf.
Drennan et al. 2015, 20–25), we prefer this approach and do not multiply the
mounded area by a population density constant, which is likely to covariate
with settlement area and that is still the subject of a long-lasting debate among
scholars (cf. Adams 1981; Postgate 1994; Colantoni 2017; Steinkeller 2017;
Stone 2017). In addition, one issue is that most existing publications indicate
only the overall extent of mounds but neither the size for a particular chrono-
logical phase nor the extent of the surrounding lower town. In the present
study, we adopted a more cautious and conservative approach and chose the
mean of hollow way widths to compare to mound area, as these showed a more
developed relationship based on visual assessment and goodness-of-fit mea-
sures. Testing the hypothesis that there is a statistically significant positive
relationship between mean hollow way widths and site mound area shows we
can reject the null, at p < 0.01 level, using a Pearson correlation coefficient, on
mean hollow widths and mound area. Given the evident relationship between
mound area and mean hollow way widths, we chose to focus on these two
measures.

One issue is that hollow way preservation, including their lengths, are likely
affected by continual land use, such as modern agriculture that destroys these
features. We decided to exclude the hollow ways’ length and number from the
analysis due to their weaker relationship to site area, although we suspect there
could have been a relationship. For area measurements, not all archaeological
surveys carried out in the KT provide estimated extent of sites per cultural period
and very few examples record the area of surrounding lower towns (e.g.,
Wilkinson and Tucker 1995; Ur and Wilkinson 2008; Ur 2010a, b; Ur et al.
2011). For all hollow ways, we took three measurements, using their widths
(i.e., one at the beginning, one at the middle, and one at the end; see Fig. 5).
From these three measures for each hollow way, averages were then used for all
hollow ways associated with a site so that there was one average width measure-
ment for each site. This gives one hollow way measure to then compare to site
area. For each measurement used to create the average, we recorded the maximum

3 On the website of the University of Arkansas’ Center for Advanced Spatial Technologies (CAST), it is
possible to have access to a database of georeferenced CORONA satellite images covering most of the Middle
East: http://corona.cast.uark.edu/.
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visible width. These measurements have been standardized by taking into account
how the appearance of hollow ways can vary from CORONA images taken at
different times of the year due to changing soil moisture conditions (Ur 2010a, b).
In practice, for a given specific area, we scrutinized and compared several
CORONA images taken in different months of the year. This is because different
seasonal images may affect the perception of how wide a given hollow way is
(e.g., more water in a hollow way could make it appear wider). A total of 388
settlement mounds, called sites or mounds here, and 1408 hollow ways have been
collected using the above approach. From these, 312 sites were associated with
hollow ways; these sites and associated hollow ways were used in the analysis.
The data used for scaling analysis are provided in the supplementary data file.

Site Area and Hollow Way Scaling Method

After data collection was completed, a scaling model to investigate the relationship
between mound areas and hollow way widths was applied. Power law relationships in
scaling of systems have long been conducted in research, where many factors could be
multiplicative and be incorporated as increased population size (Coffey 1979). This
includes allometric growth found in biological and urban or other forms of settlement
systems, where parts of a system grow in a relationship to the larger system (Nordbeck
1971; Wiessner 1974). For our work, we hypothesize that across the Near East, there is
a systematic relationship between the width of the hollow ways and the population of
the LC and Bronze Age settlements. There are various possible explanations once this
relationship is demonstrated, specifically whether the width of these peculiar ancient

Fig. 5 Hollow ways surrounding Tell Brak seen on the CORONA image taken on 11 December 1967 (n.
DS1102-1025F007). The insets show the measurements taken at the beginning (c), at the middle (b), and at the
end (a) of one hollow way

952 Altaweel and Palmisano



tracks changed proportionally or less proportionally in relation to population or eco-
nomic activity. The basic equation used to measure urban scaling is given as:

Y Nð Þ ¼ Y 0Nβ ð1Þ
Here, Y is hollow way widths, which is expressed as having a scale relationship to N,
the size of the system or mounded area in this case. The β represents the scaling
exponent and Y0 is the normalized constant. For all sites, the best-fit βand Y0 could,
therefore, be found. However, (1) can be reconfigured to adjust to statistical variations
in site-specific measurements where it is log-transformed to:

lnY i ¼ lnY 0 þ βlnNi þ ξi ð2Þ
In this case, i is each indexed mounded site and ξi represents specific log deviations
among sites to produce Y estimates (Lobo et al. 2013). These deviations can be
statistically measured to assess patterns of variation within overall measurements made
and the type of distributions evident in adjusting to empirical measurements.

Results

Scaling Model Fit Results

A key issue is the quality of hollow way and site preservation as well as the sample
number. Preservation skews sampling, as sites with more hollow ways or those with
less might not reflect what the layout of hollow ways were relative to mounds in any
one period. The sample number should be comprehensive to enable a confident
estimate for values that are representative, while also removing samples that may bias
results. Sites varied from 1 to 32 hollow ways, with Tell Brak (site 168) having the
most. The average number of hollow ways for sites is 4.66. Therefore, to find the best-
fit constants (Y0) and β coefficients for sites collected and to reflect variation in data
affecting results, different minimum site areas in analysis, ranging from 0 to 20, and
number of hollow ways, ranging from 1 to 12, were used. Least squares fitting was
done to find the best-fit coefficient results that produced the least error for estimated
hollow way widths relative to empirical observations. Figure 6 indicates the fit results
for minimum site areas, the minimum number of hollow ways, and β tested. Table 2
gives further details on some of the better-fit results, including the minimum values for
number of hollow ways and site area used in the tests. The confidence intervals (CI
95%) are also provided for Y0 and β. Two error values are given, which are the mean
absolute error (MAE) and root mean square error (RMSE), between estimated and
empirical hollow way widths.

What the figure and table show are sites with more hollow ways included in analyses
produced the best estimated hollow way width error results, that is the least error, with
sites with 11 or more hollow ways having β = 0.23–0.36. Many of the larger mounds,
averaging 11.7 ha, have 11 or more hollow ways, where relatively few sites reach such
area and have many hollow ways (Table 2: k). While some combinations show
relatively good fit, those often have relatively fewer samples, as many sites do not
meet the criteria (i.e., having a high number of hollow ways and greater area). Applying
different minimum thresholds not only allows us to see how this affects key measures,
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in particular β, but it demonstrates how different models could be applied in light of
uneven preservation of hollow ways and mound areas or simply variation in samples
for different sites areas and hollow ways. Furthermore, it allows us to see if multiple β
patterns are evident in the data. The best results in Table 2 that had at least 100 sites
included in the analysis is when all site areas are included, that is area > 0, and there are

Table 2 Different β and Y0 results using different minimum mound area and minimum number of hollow
ways in the analysis. Results reflect alternative sample results (see Fig. 6 for how well results fit empirical
data); this table presents some of the better fits to empirical data and demonstrates how different scenarios
compare

Minimum
site area
(ha)

Minimum
hollow
ways

β β (95% CI) Y0 Y0 (95% CI) MAE
(m)

RMSE
(m)

Letter No. of
sites

0 1 0.16 0.124–0.192 18.3 18.26–18.33 5.48 7.11 a 312

0 2 0.18 0.145–0.216 17.9 17.86–19.93 5.18 6.81 b 254

0 3 0.18 0.140–0.216 17.7 17.66–17.73 4.91 6.38 c 202

1 11 0.23 0.168–0.286 18.1 17.16–19.34 3.63 4.66 d 26

2 9 0.29 0.224–0.361 14.8 14.18–16.19 4.49 6.48 e 41

3 2 0.34 0.299–0.385 12.9 12.83–13.89 5.09 6.6 f 155

3 10 0.29 0.211–0.367 15.1 14.27–16.58 4.61 6.87 g 30

3 12 0.25 0.190–0.308 17.1 17.04–17.15 3.24 4.36 h 21

5 1 0.33 0.276–0.383 13.1 12.89–14.25 5.79 7.3 i 104

10 3 0.38 0.297–0.460 11.6 10.90–12.76 5.78 7.23 j 28

11 11 0.36 0.279–0.430 12.2 11.25–13.19 3.18 4.34 k 8

15 2 0.72 0.576–0.854 3.7 3.23–4.27 7.26 8.8 l 9

Fig. 6 Results showing MAE for hollow way width model and empirical estimates, where site area, Y0
(constant), and β are tested
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at least 3 hollow ways (Table 2: c), where the MAE width error measured 4.91 m. This
allowed 202 sites from the total to be analyzed, yielding β = 0.18, well within sublinear
scaling. The βmeasure allows us to see if different patterns exist for different subsets of
data for given mound area and hollow way widths.

Another result of this analysis is the evident variability in the relationship between
measured widths of hollow ways and mound areas. The range of ξi are measured and
can be used to show adjustments needed in the model in order to get the best individual
fit for each site to determine hollow way widths (Yi). This also allows us to know the
type of distribution for ξi that can be used to provide a range of hollow way width
estimates from site area, which is useful in creating a model that can estimate possible
hollow way widths in cases where these features are missing. Figure 7 indicates
distributions for ξi, where the letters in the graph corresponds to the letters in Table 2.
The kernel density measures allow us to see that graphs a–c and f resemble normal, that
is log-normal, distributions for ξi, while graph i appears somewhat similar to a normal
distribution. An applied Cullen and Frey (1999) test on these graphs’ distributions
shows they are similar to normal distributions; these graphs have ranges of − 0.44 to −
0.27 skewness and 2.95–3.09 for kurtosis. This indicates that the normal distribution
standard deviations could be used to capture a high probability for the range of hollow
way width estimates within the models associated with those graphs. In fact, such
results are similar to findings in Ortman et al. (2015), which measured mean house area
and settlement population.

For a–c and f, standard deviations for ξi are 0.31, 0.288, 0.273, and 0.271 respec-
tively. For i, it is 0.278. Roughly 68% of measurements could be within 1 standard
deviation; 95% of measurements fall within 2 standard deviations. A model could
apply standard deviations to estimate likely minimum and maximum widths of hollow
ways for different sites, including for sites where these features are missing. In other

Fig. 7 Graph showing distributions for β, where the values from Table 2 are used
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words, it can be used as an indication of what hollow way measurements could be if
they were preserved for sites where these features are not evident. As an example,
taking (2) from above and adding ± 0.273 for one standard deviation in place of ξi, in
this case using Table 2: c’s values, results in:

lnY i ¼ lnY 0 þ βlnNi � 0:273 ð3Þ

for sites. A site such as Tell Jamous (site 10; 4.23 ha in area) would then result in the
expectation that hollow way widths should be approximately between 17.46–30.14 m,
for 1 standard deviation, or between 13.29–39.61 m for 2 standard deviations. In fact,
that site averaged 21.66 m for hollow way widths, where it had 4 hollow ways.
Similarly, this can be applied to other sites and standard deviations for ξi in Table 2:
a–c, f, and i.

Figure 8 shows linear regressions using the natural log of hollow way widths and
site areas. This shows that graphs k and l (see letters in Table 2) have the best linear fits,
at r2 = 0.73 and r2 = 0.68 respectively. While the sample number of sites is low (8 and 9
respectively), larger sites and those with many hollow ways (e.g., h, k, and l) generally

Fig. 8 Linear regression for site area and hollow way widths
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appear to show better fit between hollow way widths and site area. On the other hand,
smaller sites and those that have fewer hollow ways show greater disparity among the
results and weaker fit. This could suggest two general, underlying patterns, where one
is relevant for smaller sites and those that have generally fewer hollow ways and the
other is for larger (i.e., ≥ 3) sites which often have more (≥ 11) hollow ways. For sites
between 0 and 2 ha, β ranged from 0.16–0.29. In fact, if we rerun sites so that only
small sites (≤ 2) are included, thus excluding large sites, and having a minimum of one
or two hollow ways, then β is even lower at 0.11 and 0.2 respectively. However, a lot of
disparity is evident, where r2 remains below 0.2. For cases where more hollow ways
(≥ 11) and/or greater area for sites (≥ 3) are analyzed, β increases in range, where it is
0.23–0.72 in Table 2’s examples.

Similarity Test with Regions Outside the KT

While overall there are far fewer mounded sites and hollow ways preserved
outside of the KT and northern Mesopotamia in general, obtaining site area and
hollow way widths from other sites allows us to test to see if comparable patterns
are evident outside of the KT. Therefore, a total of 15 sites and associated hollow
ways have been collected and are included in the associated supplementary files
with this article. The periods covered the LC and Bronze Age for these sites and
they were from western Syria, the Levant, southern Mesopotamia, and southeastern
Anatolia. The variation in regions allows us to see if hollow way width and site
area relationships are spatially comparable among these regions. Table 3 summa-
rizes some of the results using the different parameters, similar to the KT; Fig. 9
indicates regression values showing goodness-of-fit using a linear least squares
regression similar to before. As there are relatively few sites analyzed, the results
can only be preliminary. Nevertheless, the β results, that have the greatest number
of sites analyzed in this example, do show β range between 0.18–0.23, similar to
the KT sites that also included the largest number of sample sites (Table 2: a–d).
This could suggest some common range in β is evident among spatially diverse
regions. As with the KT, Fig. 9 indicates some wide disparity between site area
and hollow way widths, where fit improves by increasing site area analyzed and
number of hollow ways.

Table 3 Different β and Y0 results using different minimum site area and hollow way widths for 15 sites from
areas outside the KT

Minimum site
area (ha)

Minimum
hollow ways

β Y0 MAE (m) RMSE (m) Letter No. of sites

0 1 0.23 11.9 3.23 4.54 a 15

0 2 0.18 13.3 3.62 4.78 b 12

0 3 0.21 12 2.66 3.27 c 11

1 1 0.21 12.3 3.35 4.60 d 14

1 2 0.18 13.3 3.62 4.78 e 12

3 1 0.2 12.5 2.81 3.52 f 7

Urban and Transport Scaling: Northern Mesopotamia in the Late... 957



Discussion

What this work demonstrates is that some scaling effects between site area and hollow
way widths are evident. This has implications for settlement and land use/landscape
archaeology, as similar studies of the past, so far, have not looked at how wider regions
around settlements may scale in relation to settlements. However, our results are
exploratory, in that they provide an initial assessment of how settlement area, a proxy
for population, and hollow way widths, or road widths, scale. We cannot conclude that
the relationship is strong in all cases, where there is considerable variability in results,
but the clearest result we can conclude is site area and hollow way widths generally
show a sublinear scaling relationship. This suggests that ancient transport remains in
the KT that connected sites and field systems, and likely extending to other regions,
reflect properties of efficiency relative to population growth that allow them to grow at
β < 1.0 levels (Bettencourt et al. 2007; Levinson 2012; Bettencourt 2013). Put simply,
road network widths do not increase proportionally to population because if given
urban centers grow, the existing roads will drive or accommodate some of the aug-
mented traffic. In part, the comparison is between an extensive system, that is area
reflecting an aggregate measure, and an intensive system, or hollow way widths, that is
a per capita measure (Ortman et al. 2016). A scaling relationship is evident between
these two types of systems, but one that may likely have generally lower β values than
comparing like systems (i.e., intensive to intensive or extensive to extensive). While
one clear scaling pattern between site area and hollow way widths is not entirely
evident in the KT, there could be multiple patterns that reflect greater variability,
particularly for smaller sites and those with fewer hollow ways. For the most general

Fig. 9 Linear regressions for site area and hollow way widths used to compare to the KT
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scenarios that included the largest number of sites, β ranged below 0.2, while sites with
area between 0 and 2 showed β ranging from 0.16–0.29. In fact, β ranged between
0.11–0.2 when only sites between 0 and 2 ha were analyzed. On the other hand, when
only focusing on larger sites or those that had more hollow ways, such as 3.0 ha or
more or having 11 or more hollow ways, we see β ranging between 0.23–0.72.

In particular, for smaller sites and those with fewer hollow ways, there is a lot of
variability, as is evident in Fig. 8, where differences in area and hollow way measures
more greatly affect logarithmic measures such as those seen. In part, measurement
errors or preservation are more sensitive for smaller sites. The β = 0.72 achieved for
Table 2: l is more similar to the ≈ 0.8 achieved by Bettencourt et al. (2007) for urban
infrastructure such as roads (see also Bettencourt 2013, 1439), although previously this
assessment was on road lengths and population. Having lower β, closer to 0.3, such as
Table 2: k and others, could be expected in comparing intensive and extensive systems
such as those compared here. Other scaling analyses also show greater disparities
among measured values at the lower ends that is smaller population areas (e.g.,
Bettencourt et al. 2010; Lobo et al. 2013; Ortman et al. 2015). This could suggest that
such deviations observed here among smaller sites are to be expected. Once larger sites
are investigated, deviations become more minor, which results in better fit results.
Overall, we can state that larger sites’ infrastructure that is hollow ways, were more
intensively used than smaller sites. Sites from regions outside the KT likely demon-
strate similar results to the KT, at least for the lower β values that are similar to Table 2:
a–d. Similarly, greater variation is likely evident for smaller sites which explains also
the lower β value.

As Casana (2013, 27) has recently pointed out in his recent cross-regional study,
hollow ways reflect agro-pastoral economies involving the movement of massive
flocks of sheep/goats, management of cultivated and grazing lands of local households,
and seasonal migrations to grazing lands outside agricultural catchments of settlements.
The area studied (Fig. 1) encompasses sites adjacent and within the so-called zone of
uncertainty, which is the drier agro-pastoral zone with mean annual rainfall between
200 and 300 mm today. This area has been seen as riskier for cereal cultivation and
more suitable for sheep/goat husbandry, where hollow ways reflect movement of sheep/
goats to pastures (cf. Wilkinson et al. 2014, 53–55, Fig. 3a). The percentage of sheep/
goats in the zooarchaeological assemblages of LC and Bronze Age ranged between 40
and 70% in sites located in the Tigris-Euphrates and in the KT, and between 60 and
90% in the Syrian Upper Euphrates and in the Balikh valley (for a summary cf.
Wossink 2009, 104–106, Fig. 6.2). In the Middle Khabur valley, the percentage of
caprines raises from 30 to 90% in the latter half of the third millennium and in the early
second millennium BCE (Zeder 1998). The increase of caprines in the Fertile Crescent
reveal a specialized economy of sheep/goats already evident in the LC (Algaze 2008,
77–92) and that reached a full development by the middle third millennium BCE,
perhaps because of commodification of textiles and wool production in Near Eastern
polities (McCorriston 1997; Stein 2004; Wossink 2009, 107–110; Porter 2012).

In this context, we can postulate a relationship between hollow ways and the
magnitude of the pastoral economy of the corresponding settlements, where increased
settled area, or population, does not match an equivalent growth in economic activity.
This corroborates the view of Wilkinson about the sublinear relationship between
population and productivity levels of agricultural lands (1994, 495–496). In addition,
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the higher β values for larger sites with more hollow ways radiating out from them may
mean that those sites experienced similar urban scaling regularities of contemporary
cities. In this perspective, the elaborate network of LC-Bronze Age roads should be
seen as the result of interactions between settlements, where individual farmers, labor
supply, and flocks of caprines moved across the landscape and were drawn to cities
from the surrounding villages or from exogenous sources (cf. Lawrence and Wilkinson
2015, 339–40; Palmisano and Altaweel 2015, 227–228). However, larger settlements
appear to have attracted more substantial feedback that is intensive growth, and demand
for pastoral animals than their smaller counterparts. In particular, the widths of hollow
ways could be a proxy of the magnitude of goods and people flowing from and into
urban centers. Bronze Age textual evidence from Ebla and Tell Beydar reveal, at least
in part, an institutionalized and centralized pastoral economy where massive flocks of
caprines (estimates for Ebla range from 670,000 to 2 million; cf. Pettinato 1991, 82;
Milano 1995) were directly managed by the palace (see Sallaberger 1996, 2004). This
could explain the positive correlation between the widths of hollow ways and the area
of larger settled mounds (see Fig. 9), where economies of scale of primary and
secondary agro-pastoral products could be managed mostly by large urban centers.
The width of hollow ways could demonstrate the flow of food surpluses that large
urban centers, exceeding the carrying capacity of their agricultural catchments, had to
import from surrounding villages of the hinterland (Wilkinson et al. 2007; Ur 2009,
194–195).

Furthermore, the hollow ways in the KT can be seen as highways that favored long-
distance contacts and distribution of prestigious and exotic goods (e.g., obsidian, ivory,
lapis lazuli) in the LC and Bronze Age towards prominent urban centers such as Tell
Brak, Tell Hamoukar, and Tell Mozan (cf. Khalidi et al. 2009; Stein 2012; Massa and
Palmisano 2018). Perhaps then, unsurprisingly, small sites with an area equal or lower
than 2 ha have a low β value (0.1–0.2), where this reflects the minor role of small sites
in drawing population from other settlements and in attracting goods and products from
exogenous sources. In the KT, the great variability of values for smaller sites (r2 = ~ .2;
see Fig. 8:a–c, i) could be due to the fact that some of those small sites surround large
urban centers, such as Tell Brak and Tell Halawa, which are associated with wider
hollow ways. As formerly proposed by several scholars (Wilkinson 1993, 1994;
Deckers and Riehl 2008; Ur 2009; Casana 2013), hollow ways’ widths can be seen
as flow of staple goods that surplus producers, such as small rural settlements, provided
to the large urban centers that may have exceeded their carrying capacities. Some sites
could have exploited the steppe landscape by focusing on animal production or mixed
grain agriculture with pastoralism, which could affect the shape and evident area of
sites (Castel and Peltenburg 2007). It is possible that corrals or other animal pens made
up some of the space for certain sites, affecting area. Specialized pastoral sites may
demonstrate wider hollow ways, whereas less specialized sites could be narrower, all of
which could reflect the evident disparity we see in results. Finally, preservation and
taphonomic factors in the archaeological record could, of course, affect evident varia-
tion, perhaps with smaller sites particularly affected.

Despite the variations evident in results, overall errors (MAE; RMSE) from some
models (Table 2: a–c, f, i) indicate that one can estimate average widths of hollow
ways, albeit with some caveats given the variations we see. Even though r2 fit measures
were low in some tests, the fact that distributions in places did conform to normal
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distributions makes the range of possible hollow way widths something that can be
estimated where it is missing. This has relevant implications, above all if we accept that
the hollow ways were the results of agro-pastoral activities and the main axes on which
the flow of people, animal herds, and people transited as a result of the interaction
between large urban centers and their surrounding rural hinterland (villages and
hamlets; cf. Ur 2009; Wilkinson et al. 2010; Casana 2013; Palmisano and Altaweel
2015, 227–228). Given the fact that variations appear to show a normal distribution,
such as that using β = 0.18 with Y0 = 17.7 (Table 2: c), this allows us to estimate
possible widths for average hollow ways for sites, within 1–2 standard deviations for
instance, including sites missing these features. In fact, Table 2: c’s model could be the
best in terms of error measures given, while also focusing on sites where these features
are relatively well preserved (i.e., with 3 or more hollow ways). In this case, β has a
standard deviation of 0.273. Nevertheless, it is also evident there might be other
possible patterns, where β is likely to be greater but sublinear, particularly for larger
sites and/or those with more hollow ways.

Conclusion

Although our work is exploratory and clearly the relationship between settlement area
and hollow way widths is not always easily evident, the benefit of this work is it
demonstrates scaling models can be used to evaluate relationships between sites and
hollow way widths. This has important implications for understanding how land use
and landscapes around settlements relate to settlements in the past. The models given
can be used to give a range of estimates for hollow way widths for sites where these
features are missing. The results also imply transport efficiency between sites, as sites
scaled to larger areas in the LC to Bronze Age.

The results achieved by this work could certainly improve by acquiring more exact
dating for sites and measures for area extent. The use of site mounds for area is not
ideal, as this neither represents true site area in a given period nor the full extent of sites
if all periods are considered. An improvement of this research could involve probabi-
listic models to address the temporal uncertainty in the archaeological dataset (see
Crema et al. 2010; Crema 2012). Improvements in dating and measurement of full site
extent or even hollow ways width could benefit results achieved such that the accuracy
for the range of β for estimating hollow way widths, and even site area if hollow way
widths are initially known, is possible. One thing we did not do is differentiate between
hollow ways that connect to sites and hollow ways that only extend to fields in the
analysis, as little difference was noticed between the two types. However, for some
regions, there could be different patterns in scaling between interurban and field-
connecting hollow ways that we did not easily differentiate.

As a way to expand this study, scaling relationships that estimate the number of
animals herded out from a site could also be potentially developed using the results
presented hear by looking at density of animal concentrations in herds (e.g., through
ethnographic data as a baseline measure). This could look at density of animals that
form across tracks and such numbers could then be scaled to settlement areas. In effect,
we would expect some power law relationship between herd sizes and hollow way
widths that also relates to settlement area. Such analyses could further investigate the
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extent that hollow ways reflect agro-pastoral economies in settlements. Other studies
could investigate intra-urban roads compared with site area in a similar fashion as this
paper, in particular for single period sites where road features are more likely to be
evident and correlated with urban area. This could provide another potential for
extrapolating scaling values that allow one to estimate road feature qualities where
they are not evident, while also providing potential theoretical insight.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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