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Abstract: Remotely piloted aerial systems (RPAS) have been recognized as an effective low-cost tool
to acquire photogrammetric data of low accessible areas reducing collection and processing time.
Data processing techniques like structure from motion (SfM) and multiview stereo (MVS) techniques,
can nowadays provide detailed 3D models with an accuracy comparable to the one generated by
other conventional approaches. Accuracy of RPAS-based measures is strongly dependent on the type
of adopted sensors. Nevertheless, up to now, no investigation was done about relationships between
camera calibration parameters and final accuracy of measures. In this work, authors tried to fill this
gap by exploring those dependencies with the aim of proposing a prediction function able to quantify
the potential final error in respect of camera parameters. Predictive functions were estimated by
combining multivariate and linear statistical techniques. Four photogrammetric RPAS acquisitions
were considered, supported by ground surveys, to calibrate the predictive model while a further
acquisition was used to test and validate it. Results are preliminary, but promising. The calibrated
predictive functions relating camera internal orientation (I.O.) parameters with final accuracy of
measures (root mean squared error) showed high reliability and accuracy.

Keywords: camera calibration; 3D model accuracy; metric reconstruction; principal components
analysis (PCA); predictive analysis

1. Introduction

Descriptions of the earth’s morphology and environmental processes involve the adoption of a
large amount of data from a wide range of branches of knowledge, such as geology [1], hydrology [2]
and geomorphology [3]. All of them require a digital surface model (DSM) as the basis to describe
surface morphometry. DSM resolution and accuracy strongly affect landforms mapping: in fact,
geomorphic elements, located at the same position, can be differently interpreted depending on DSM
resolution [4]. Consequently, DSM resolution must be consistent with the size of the investigated
element to optimize results [5]. Along the years, several approaches were proposed to improve 3D
models accuracy and detail level of survey. Among these, terrestrial laser scanner (TLS) was widely
considered as the gold standard to meet such requirements [6], even if its application determines high
costs of both technological equipment and acquisition/processing data time. Researchers looked for a
valid low-cost alternative to overcome these operational limits. Rieke-Zapp et al. [7] demonstrated
that photogrammetry is a convincing tool to generate 3D models having comparable accuracy and
resolution in respect of those from TLS.
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RPAS (remotely piloted aerial systems) represent the most significant innovation affecting the
photogrammetric field: they allow flights over low accessible areas, are timely flexible and permit
detailed acquisitions at low minimizing cloud cover related issues [8]. Moreover, they deeply penetrated
the market stimulating the development of new sensors and determining a significant reduction
of related costs [9]. Recent technological advances have permitted weight and size reduction of
sensors making them suitable for small flying platforms [9]. Data processing techniques have also
improved: in particular, structure from motion (SfM) and computer vision (CV) approaches enormously
empowered the photogrammetric workflow in terms of accuracy, spatial resolution and easiness.
Consequently, the integration of RPAS, SfM and CV nowadays allows to generate highly detailed
textured models comparable to those generated through more traditional methods.

For these reasons, RPAS have been widely proposed to face various environmental issues [10–14].
Many scholars have focused on factors influencing the final accuracy of RPAS measurements.
Flight height and sensor technical features (pixel size, focal length, sensor size, etc.) together with
sensor interior orientation modeling can strongly affect final results [15,16]. A validated methodology
for maximizing reliability of the final products was designed by [17,18], taking into account several
aspects like: (a) influence of flight plan geometry [11,19]; (b) impact of ground control points (GCPs)
georeferencing and distribution [20–22]; (c) optimization of parameterization during the bundle
adjustment phase [23,24].

In this context, a key element is the estimation of camera calibration coefficients. In fact, RPAS are
commonly equipped with low-cost, nonmetric cameras whose internal orientation (I.O.) is natively
unknown and must be, somehow, estimated [25]. Focal length (f), principal point offset (xp, yp),
radial (K1, K2, K3, K4) and decentering (P1, P2, P3, P4) coefficients of lens distortion functions are
the main I.O. parameters. Their knowledge is essential to generating accurate measurements, but,
while using SfM, they show a strong geometric instability depending on the low photogrammetric
quality of the camera [26]. Differently, for CV-based applications focal length is the only parameter
considered in the camera calibration procedure [27]. Moreover, as demonstrated in [28], the I.O.
parameter estimation from a low-cost, nonmetric camera are extremely complex and, sometimes,
impossible. To face this issue, numerous algorithms have been implemented in the most widespread
photogrammetric software, e.g., Agisoft PhotoScan Professional (Agisoft LLC—St. Petersburg,
Russia) [29], Pix4D [30], APERO [31], Graphos [32], VisualSFM [33] and MicMac [34]. Nevertheless,
results do not seem to be stable and vary according to the processed set of images, even if referred to
the same area [35]. Much research has explored the impact of camera calibration parameters on the
final results, but without trying to model the existing relationship [36].

This study is intended to fill this gap by exploring the relationship among I.O. parameter estimates
and modeling predictive functions. These goals were achieved with reference to several sets of data
collected in different times on the same area: the shoreline of Torre a Mare (Bari, Southern Italy),
well known for the beauty of its landscape. Finally, a new approach, based on combination of uni- and
multivariate statistics, suitable for predicting error components affecting final 3D models is proposed.

2. Materials and Methods

2.1. Study Area

A shoreline stretch of about 400 m located in Torre a Mare (Apulian region), a district 12 km
away from Bari, was selected as pilot site. The area presents a rugged coastline, characterized by
an irregular elevation ranging between 1 and 5 m—with a large number of small sandy bays and
coves (Figure 1) [20]. Over the years, reefs collapsed, and their shapes were modeled by anthropic
and natural phenomena, including soil erosion by sea tides, determining a typical stepped profile.
Slopes are pointed, while overlying surfaces, dated back to the Upper Pleistocene age, are more shaped
and smoothed. Geologists confirmed the wide morphogenetic variability of coastline structure in this
area [20].
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Figure 1. Study area. Colored orthophoto was generated during this work from one of the available 

datasets. In red, ground control points (GCPs) locations. They were surveyed by network real time 

kinematic (NRTK) Global Navigation Satellite System (GNSS) and georeferenced in the 

RDN2008/UTM Zone 33N (NE) reference frame (EPSG: 6708). In the background (grayscale) an 

orthophoto dated 2016 is shown as provided by the WMS Service of SIT Puglia. 

Subhorizontal surfaces, close to the reef, are mainly composed of calcarenitic lithotypes showing 

a peculiar resistance to mechanical erosion processes. At the global scale, stratified layers and 

fracturing systems, subparallel to the coastline (ONO ESE), determine favorable conditions for land 

instability due to hydric erosion, accelerating natural withdrawal of coast fractions (Figure 2). 

Moreover, local lack of vegetation increases imperviousness and, consequently, facilitate erosion 

dynamics [32]. The area is extremely complex from the archaeological perspective, as well. It hosts 

archeological evidence of a Neolithic community that was pulled out by excavation campaigns 

carried out in the past; currently, the area is in an evident state of abandon ([37,38]). 

 

 

Figure 2. Details of the coast stretch. (a) Example of a collapsed area mainly due to an undermined 

foot of the rock complex; (b) subhorizontal rocky surface characterized by visible fractures. 

  

Figure 1. Study area. Colored orthophoto was generated during this work from one of the available
datasets. In red, ground control points (GCPs) locations. They were surveyed by network real time
kinematic (NRTK) Global Navigation Satellite System (GNSS) and georeferenced in the RDN2008/UTM
Zone 33N (NE) reference frame (EPSG: 6708). In the background (grayscale) an orthophoto dated 2016
is shown as provided by the WMS Service of SIT Puglia.

Subhorizontal surfaces, close to the reef, are mainly composed of calcarenitic lithotypes showing a
peculiar resistance to mechanical erosion processes. At the global scale, stratified layers and fracturing
systems, subparallel to the coastline (ONO ESE), determine favorable conditions for land instability
due to hydric erosion, accelerating natural withdrawal of coast fractions (Figure 2). Moreover, local lack
of vegetation increases imperviousness and, consequently, facilitate erosion dynamics [32]. The area is
extremely complex from the archaeological perspective, as well. It hosts archeological evidence of a
Neolithic community that was pulled out by excavation campaigns carried out in the past; currently,
the area is in an evident state of abandon ([37,38]).
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Figure 2. Details of the coast stretch. (a) Example of a collapsed area mainly due to an undermined
foot of the rock complex; (b) subhorizontal rocky surface characterized by visible fractures.
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2.2. Field Data Campaigns and Operative Workflow

An extensive flight campaign was planned between 2018 and 2019. Flight area was selected
far away from urban sites, to compliant Italian national regulations about RPAS operations [39,40].
Five flights were programmed and performed in December 2018, January 2019, February 2019,
March 2019 and October 2019, respectively (Table 1). Surveys were interrupted between April and
September 2019 to respect operational restrictions related to touristic season [39].

Table 1. Photogrammetric datasets acquired during the five remotely piloted aerial systems (RPAS)
campaigns and related ground sample distance (GSD) values.

Acquisition Date #N Images GSD (M/Pix)

December 12, 2018 77 0.041
January 8, 2019 77 0.047

February 19, 2019 77 0.048
March 16, 2019 77 0.041

October 16, 2019 77 0.042

Flight were operated by a commercial quadcopter DJI Inspire 1, mounting a consumer DJI
Zenmuse X3 camera (focal length 3.61 mm, pixel size 1.56 µm, effective pixels 12.4 M) equipped with
a 3−axis gimbal (to compensate accidental movements of the drone). The DJI Ground Station Pro
app, proposed by the Chinese company DJI (Dà−Jiāng Innovations) [41] was also used to automatize
the flight plan. It ensured that all the flights were achieved along the same path and under the same
conditions, e.g., cruising speed (4.0 m/s) and altitude (100 m AGL, above ground level) (Figure 3).
Missions were planned to obtain an average Ground Sampling Distance (GSD) of 0.043 m/pix, a forward
and side overlaps of 85% and 75%, respectively, as suggested by [42,43]. A total of 77 images per
flight were acquired. Camera was set nadiral and the stop&go mode was applied to reduce collection
of blurry images due to forward motion [42]. RPAS position was recorded by a low cost GNSS/INS
positioning receiver and saved into a metadata file.
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Figure 3. Flight mission details: covered area (blue), RPAS flight path (yellow). “S” and “H” indicate
the “starting point” of the mission and the “home station point”, respectively.

To operate all along the tests with the same ground control points, a GNSS survey campaign was
operated to position permanent natural elements having adequate size and color with respect to RPAS
image features. Thirty homogeneously distributed points were consequently, surveyed by Leica Viva
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CS10/GS10 GNSS receiver and successively used as ground control points (GCP) or check points (CPs).
Survey was operated in a network real time kinematic (NRTK) mode based on Leica SmartNet Italpos
network and determined a final 3D accuracy of 0.02 m. Reference system was RDN2008/UTM zone
33N (NE) (EPSG: 6708).

Image datasets were separately processed according to the workflow of Figure 4. Image blocks of
December, January, February and October, were used to calibrate the predictive model (see forward
on), while the March dataset was used for validation.
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2.3. Photogrammetric Products Generation

This study relies on the workflow proposed by [11,44–46]. The work flowchart is shown in
Figure 5; steps are detailed in the next sections. Agisoft PhotoScan (v.1.4.1, Agisoft LLC −St. Petersburg,
Russia) software, currently known as Metashape, was used during the work to photogrammetrically
process the data.
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FEB—February; MAR—March; OCT—October.

2.3.1. First Step: Setting-Up Workspace and Dataset

This first step was aimed at properly setting workspace and removing blurry images, possibly
compromising final outcomes. Five chunks (image blocks) of the same scenario were created and,
for each of them, the same processing parameters were set to guarantee results comparability (Table 2).
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Table 2. Agisoft PhotoScan software parameters used during processing of photogrammetric datasets.

Agisoft PhotoScan Parameter Value

Coordinate system RDN2008/UTM Zone 33N (NE) (EPSG: 6708)
Initial principal point position (Xp, Yp) (0, 0)

Camera positioning accuracy 3 m
Camera accuracy, attitude 10 deg

3D marker accuracy (object space) 0.02 m
Marker accuracy (image space) 0.5 pixel

GPS/INS offset vector value
∆x = 0.005± 0.002 m
∆y = 0.100± 0.01 m
∆z = 0.250± 0.01 m

Camera positioning accuracy was set equal to 3 m to make it consistent with the average 3D
positioning accuracy value of the RPAS GNSS receiver (approximately 2.54 m). This value is known
to depend on GNSS epoch recording frequency (Hz) and, consequently, on RPAS speed [46]. Image
attitude accuracy was set equal to the software default value (10 degrees) since no information
was available about attitude measurements from RPAS-integrated IMU (inertial measurement unit).
This value was considered precautionary. Agisoft PhotoScan allows weights parameters during bundle
block adjustment (BBA): tie points estimation are generally three times less relevant than GCPs accuracy
during the reconstruction phase [17]. Thus, a value equal to 3 was set in its parameterization. All of
these parameters are crucial being directly involved in collinearity equations [47–49] and, consequently,
they heavily affect final accuracy of solution. Software default values were instead accepted as weights
for attitude parameters (yaw, tilt, roll).

A quality assessment was performed to detect and remove “bad” images. This step is mandatory to
improve final accuracy. A large number of issues conditioning image quality depends on the acquisition
mode. For instance, the adoption of RPAS to image a complex scenario, like the study area, involves
several problems due to the interaction between environmental conditions and equipment; in particular,
heat and magnetic sources can impact on inertial measurement unit (IMU) and GNSS [8]. The “estimate
image quality” procedure available within Agisoft PhotoScan was used to assess image characteristics,
providing information about sharpness and detecting blurring and distortion. This procedure returns a
score ranging between 0 and 1: the higher the value, the better the quality [50,51]. Moreover, to balance
colors of final products, all images were homogenized in terms of brightness and contrast. Radiometric
adjustments are known to do not condition the efficiency of SIFT algorithm during tie point detection.

A scale-invariant feature transform (SIFT) approach was used to minimize projection errors [52,53]
and facilitate extraction of homologous points independently from brightness conditions, that, in the
datasets, were strongly influenced by the presence of sea.

2.3.2. Second Step: Image Block Orientation

The II step was aimed at automatically collecting tie points (sparse points cloud) and solving
image orientation [54,55]. It was separately run for each chunk using the ‘High’ accuracy mode and
setting a threshold = 0 for the “limits of key points and tie points” parameter. This choice was preferred
to avoid uncontrolled filtering of measured points.

Block Bundle Adjustment (BBA) was performed including I.O. parameters within the model
unknowns to be estimated using the camera optimization panel available in Agisoft PhotoScan.
BBA outputs correspond to the estimates of tie-points coordinates in the object space, I.O. and external
orientation (E.O.) parameters, GNSS lever arm offset. Moreover, BBA scales the entire photogrammetric
block proportionally with respect to GCPs. Camera I.O. parameters estimates from all the chunks were
recorded and organized into a table to be successively analyzed.
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2.3.3. Third Step: Filtering and Georeferencing

Sparse point clouds (tie-point positions in the object space) were generated and systematic errors,
mainly caused by nonlinear distortions of lens [54], estimated; measured points were manually filtered
to optimize results and minimize image block distortions. Three criteria implemented in the “gradual
selection” tool were considered: (a) photogrammetric restitution uncertainty; (b) projection accuracy;
(c) reprojection error.

(a) is intended to remove points with low base–height ratios [49], i.e., all those points located at
the edges of images, generally characterized by a higher degree of restitution uncertainty, that majorly
depends on a too small overlapping among pictures. Although this option does not affect final accuracy,
it is useful for thinning clouds [56]. Conversely, (b) is aimed at detecting and cleaning out less reliable
tie points [49]. A threshold value equal to 3 was used to exclude tie points with an uncertainty 3 times
higher than the minimum one; (c) was intended to remove all points with a large residual value in
order to decrease drastically restitution errors improving orientation parameters estimates [49]. It is
worth to remind that, residuals directly impact on representativeness of the root mean square error
(RMSE, [40]) of GCPs and CPs, possibly making it not suitable to define the actual final accuracy of
measurements [51].

The three above-mentioned criteria permitted to remove the most of inaccurate points from clouds,
thus improving consistency between model and reality. Threshold values adopted for each criterion
were defined accordingly to previous works [42,43]. After filtering, about 20% of originally measured
points were removed. To further improve geometric modeling of the area, 30 GCPs were used [5],
ensuring a marker reprojection error less than 0.5 pixels. Once the alignment step was accomplished,
a “progressive” cross-validation analysis was achieved to test actual accuracy of final measurements,
as explained in Section 2.3.4.

2.3.4. Fourth Step: Progressive Cross-Validation

With respect to the 30 surveyed points, a cross-validation was run in a progressive mode, i.e.,
progressively migrating 1 point a time from the training (GCPs) to the validation (CPs) set. The choice
of those points to be progressively moved from GCPs to CPs was accomplished in a balanced way;
peripheral and central points were alternatively migrated taking care of maintaining a proper spatial
distribution of remaining GCPs ([22,57]). Thirty one chunks of CPs were finally obtained varying
from 0 (all surveyed points were used as GCPs) to 30 points (all surveyed points were used as CPs
and the image orientation completely relied on a direct georeferencing approach) [50,58]. We refer
to the 0 CPs situation as complete indirect georeferencing (CIG) and to the 30 CPs situation as direct
georeferencing (DG) [21,50]. To make the procedure repeatable, points were imported in the same
order for all analyzed subdatasets. Table 3 summarizes the order that was followed while migrating a
point from GCP to CP.
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Table 3. List of markers chosen and added as control points (CPs) in each implementation.

#GCP Label #GCP Label

29 GCPs 3R0024 14 GCPS 3R0019
28 GCPs 3R0026 13 GCPS 3R0031
27 GCPs 3R0030 12 GCPS 3R0017
26 GCPs 3R0018 11 GCPS 3R0027
25 GCPs 3R0004 10 GCPS 3R0025
24 GCPs 3R0013 9 GCPS 3R0022
23 GCPs 3R0010 8 GCPS 3R0014
22 GCPs 3R0005 7 GCPS 3R0007
21 GCPs 3R0020 6 GCPS 3R0023
20 GCPs 3R0021 5 GCPS 3R0015
19 GCPs 3R0029 4 GCPS 3R0003
18 GCPs 3R0011 3 GCPS 3R0012
17 GCPs 3R0001 2 GCPS 3R0016
16 GCPs 3R0008 1 GCP 3R0028
15 GCPs 3R0002 0 GCP 3R0009

Measures accuracy was estimated with reference to RMSE computed for both GCPs and CPs.
RMSE was used to quantify error components (definitions are given forward on), with the hypothesis
that both random and systematic errors were Gaussian distributed [59]. It is worth to remind that
RMSE of GCPs only provide information about the goodness of fitting of calibrated equations, with no
concern about the model capability of generalization.

2.4. Analyses of I.O. Parameters Estimates

Camera calibration by SfM implies that camera I.O. parameters (including lens distortion) are
precisely known to minimize errors possibly affecting restitution step [60]. Such parameters are image
independent and, consequently, they do not depend on position and attitude of the camera [54].
Several approaches have been proposed over the years to get appropriate estimates/measures of these
parameters; camera self-calibration guarantees several benefits when working with low-cost cameras.
It relies on the numeric estimate of I.O. parameters that are included among the unknowns in the
equation system that is solved during BBA. The solution is consistent with the data [61], with the
assumption that I.O. parameters continuously vary in time and, consequently, need to be estimated for
each specific image block.

Many algorithms can be used when facing this problem by SfM. Agisoft PhotoScan makes available
the 10 parameters in Brown’s model [60,62–65] (Equations (1) and (2), [49].

∆x = − x
c ∆ f + xr2K1 + xr4K2 + xr6K3 + xr8K4 +

[(
2x2 + r2

)
P1 + 2P2xy

](
1 + P3r2 + P4r4

)
+ B1x + B2y (1)

∆y = −
y
c

∆ f + yr2K1 + yr4K2 + yr6K3 + xr8K4 +
[
2P1xy +

(
2y2 + r2

)
P2

] (
1 + P3r2 + P4r4

)
(2)

where f is the focal length, ∆x and ∆y represents the image corrections, ∆ f is the correction to the
initial principal distance value, x and y are the coordinates of a general poin, Ki are the radial distortion
coefficients, Pi are the tangential distortion coefficients, Bi are the in-plane correction parameters for
differential scaling between the horizontal and vertical pixel spacing and non-orthogonality (axial
skew) between x and y axes, r is the image radial distance estimated using Equation (3):

r2 = x2 + y2 = (x− xp)
2 + (y− yp)

2 (3)

where xp and yp represents the principal point coordinates.
The full 10-parameter model, Equations (1)–(3), is adopted as the default one when using the

fully automatic camera calibration procedure. Although, practically, it could appear as the best choice,
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from an accuracy point of view, in many cases, it does not represent the optimal solution, because of the
different role and significance of those parameters within the BBA numeric solution [55]. For example,
a high correlation was found between Pi coefficients and principal point coordinates. Consequently,
when removing Pi from the unknowns, xp and yp somehow can absorb associated variation. In other
words, users could not consider Pi in the calibration phase and obtain similar results. With these
premises, a preventive analysis was achieved to figure out eventual correlation existing among I.O.
parameters and trying to minimize it.

2.5. Accuracy Assessment

Accuracy assessment was aimed at: (a) testing the quality of the original dataset; (b) testing the
accuracy of the photogrammetric measurements.

Triggs et al. [54] highlighted that accuracy of photogrammetric products depends on many
factors: quality of the processed images, GSD and camera type. Consequently, all these factors were
considered. The first factor was taken into account (trying to minimize its effects) using the image
quality tool and selecting a scale-invariant feature transform (SIFT) approach while running BBA by
SfM (see Section 2.3.1).

Errors affecting final measures from oriented image blocks were evaluated with reference to the
RMSE. It was computed separately for all the error components and for both GCPs and CPs. RMSEE

for the East coordinate, RMSEN for the North coordinate, RMSEH for the height coordinate, RMSET as
the total 3D error and, finally, RMSEI for the positioning error (total) in the image space.

Agisoft PhotoScan Professional software can automatically and iteratively compute this
parameter [48]. This software feature is important, permitting reiteration of trials that can be
run selectively tuning all the involved parameters, including GCPs collection refinement.

2.6. PCA and Synthetic Index Generation

I.O. estimates and errors computed during BBA were compared to test their reciprocal relationship.
I.O. estimates were preventively preprocessed by a self-developed R routine [66] aimed at extracting
the most significant information by principal component analysis (PCA), based on the variance
maximization principle [67]. PCA, probably the most popular multivariate statistical method,
is intended for dimensionality reduction, obtained by removing redundant information of a multivariate
dataset where variables can be intercorrelated [67]. After detecting the most relevant components,
it converts the original dataset into a new one consisting of independent and orthogonal vectors, called
principal components (PCs, [67]). The first component provides the most of information, describing
the largest part of the input data inertia, absorbing (explaining) the most of data variance; the second
component is orthogonal to the first one and absorbs (explain) the most of the remaining variance [68].
The same principle is used to obtain all the other components that, necessarily, will represent a
decreasing level of information while incrementing their position within the transformation [69].
Consequently, first components compress most of the native information making possible to drastically
reduce dimensionality of data by removing redundant content [62].

The singular value decomposition (SVD) approach [69] was applied to compute principal
components. The number of explanatory PCs was selected by the Kaiser’s criterion [70] that suggest
setting an eigenvalue threshold = 1.0. Selected PCs were weighted and linearly combined in a “synthetic
index” (hereinafter called SI). SI was obtained as the weighted average of all significant components
(Equation (4)). Weights were directly extracted from the PCA procedure:

SI =
∑

wi ∗Dimi∑
wi

(4)

where wi and Dimi are the weights and the principal components, respectively.
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2.7. Predicting Accuracy of Measurements: Model Definition

Pearson’s coefficient (R) was computed between SI and error components affecting final
measurements from oriented blocks. The expectation was that SI could be a predictor of error
components (generically called RMSEj). According to the obtained R values (only high or moderate
correlation was considered) an interpolation function was calibrated to predict the following
errors: RMSEE, RMSEN, RMSEH, RMSET, RMSEI. SI was assumed as independent variable
(x, predictor) of calibrated functions. A 2nd order polynomial (Equation (5)) was found to well
fit all significant relationships. Model parameters (a, b and c) were estimated by ordinary least squares
for each investigated error (y). Goodness of fitting was tested with reference to the coefficient of
determination (R2):

y = ax2 + bx + c (5)

3. Results

3.1. Accuracy of Photogrammetric Measurements

Suitability of available images to generate a reliable photogrammetric product was assessed
through the application of the image quality tool in Agisoft PhotoScan. All images showed a satisfying
value presenting an average image quality index equal to 0.8 (higher than the threshold value set to
0.5); consequently, no image was removed.

Accuracy of photogrammetric measurements were assessed with reference to RMSET for both
GCPs and CPs. They were tested against the number of GCPs used during BBA (Figures 6 and 7).
Highest RMSE values (for both GCPs and CPs) correspond to the solution obtained using 1 or 2 GCPs.
This confirms that, minimally 3 points are needed to properly orient a 3D model in a 3D space to
recover translation, rotation and scaling values [8]. Nevertheless, the SfM/SIFT based approach can
provide reasonable solutions of BBA even when GCPs number is lower than the theoretically minimum
one, i.e., 3, just exploiting position and attitude data from RPAS GNSS/IMU low quality system. In spite
of this interesting consideration characterizing the new digital photogrammetry, what is evident is that
accuracy and processing time increases with GCPs number.
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Figure 6. RMSET (ground control points (GCPs)) vs. GCPs number. Red line: January; yellow line:
March; dark blue line: December; light blue line: October; green line: February.
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Figure 7 shows RMSET (for CPs) as computed while varying the number of GCPs during BBA.
In this case, the CIG method is not reported. As previously, highest RMSE values were obtained when
GCPs number was lower than 3, demonstrating that GNSS and IMU measures from RPAS system,
in spite of their low quality, can drive to a reasonable solution (0.5–1 m) that could be accepted for
many applications. This appeared to be similar for both CGPs and CPs, making those RMSE values
sufficiently representative of the actual accuracy condition when working in DG mode. For the goals
of this work, this fact is secondary and certainly must be overcame focusing the attention on the best
expected solutions. In general, one can say that a good solution for BBA is the one when RMSEGCP

and RMSECP are consistent each other. With respect to Figures 6 and 7 this situation occurs reaching a
number of well distributed GCPs around 14. More GCPs would appear as useless.
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Figure 7. RMSET (check points (CPs)) vs. GCPs number. Red line: January; yellow line: March; dark
blue line: December; light blue line: October; green line: February.

3.2. Testing Relationship between Errors and I.O Parameters

Table 4 reports the main statistics computed for all the estimated I.O. parameters with respect to all
processed dataset. It can be noted that I.O. parameters can be grouped in two clusters: one including
xp, yp, B1, B2, P3 and P4 is characterized by a great variability; another one, including remaining
parameters, shows pretty similar values for all the computed metrics. Since all trials generated similar
estimates of radial and tangential distortion parameters, these can be retained strictly dependent on the
camera with no conditioning by other factors. Moreover, Pi coefficients are known to be less significant
than radial ones (one or two orders of magnitude smaller [59]). Boxplots of Figures 9–13 confirm
this fact.
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Table 4. Statistics of I.O. parameters estimates computed with respect to the 31 repetitions for the 5 processed datasets (December 2018, January 2019, February 2019,
March 2019, October 2019); Stat—statistic; Max—maximum; Min—minimum; SD—standard deviation; f—focal length; xp and yp coordinates of principal point; B1;
B2—skew coefficients; K1, K2, K3, K4 —radial distortion coefficients; P1, P2, P3, P4—decentering distortion coefficients.

Survey Stat. f (pix) xp (pix) yp (pix) B1 B2 K1 K2 K3 K4 P1 P2 P3 P4

Dec.

Max 2366.210 −0.190 6.850 2.720 0.160 −0.1300 0.1400 −0.0300 0.0140 0.0004 −0.0002 −0.0900 0.3100
Min 2221.830 −3.200 3.480 −0.730 −0.960 −0.1400 0.1100 −0.0500 0.0084 −0.0004 −0.0008 −0.4900 0.1900

Mean 2285.310 −2.310 4.880 0.800 −0.440 −0.1400 0.1200 −0.0400 0.0106 0.0003 −0.0005 −0.3700 0.2700
SD 31.570 0.820 0.770 0.990 0.310 0.0000 0.0100 0.0030 0.0012 0.0002 0.0001 0.0800 0.0400

Jan.

Max 2358.480 −1.470 5.820 2.690 1.210 −0.1300 0.1400 −0.0372 0.0143 0.0007 −0.0003 −0.0018 0.3300
Min 2262.760 −4.660 4.350 −0.030 −1.270 −0.1400 0.1200 −0.0486 0.0100 −0.0001 −0.0006 −0.5856 −0.0300

Mean 2319.960 −3.680 5.180 0.930 −0.540 −0.1400 0.1300 −0.0433 0.0122 0.0005 −0.0005 −0.4703 0.2700
SD 18.790 0.930 0.340 0.850 0.530 0.0000 0.0000 0.0023 0.0009 0.0002 0.0001 0.1548 0.0900

Feb.

Max 2366.490 −1.590 4.450 3.250 0.010 −0.1400 0.1400 −0.0400 0.0100 0.0004 −0.0002 0.1900 0.3300
Min 2310.470 −2.830 3.460 0.130 −1.160 −0.1500 0.1200 −0.0500 0.0100 −0.0001 −0.0004 −0.3900 −0.0400

Mean 2339.330 −2.190 3.780 1.150 −0.480 −0.1400 0.1300 −0.0400 0.0100 0.0003 −0.0003 −0.2500 0.2300
SD 11.711 0.300 0.200 0.870 0.280 0.0000 0.0030 0.0010 0.0005 0.0001 0.0001 0.1550 0.0940

Mar.

Max 2320.640 2.730 7.040 2.040 1.300 −0.1300 0.1300 −0.0400 0.0100 0.0002 −0.0001 0.3600 0.5100
Min 2267.750 −1.550 1.960 −2.690 −1.420 −0.1400 0.1200 −0.0400 0.0100 −0.0007 −0.0006 −0.4800 0.0100

Mean 2305.520 −0.070 3.290 0.450 −0.590 −0.1400 0.1300 −0.0400 0.0100 0.0000 −0.0002 0.0300 0.3300
SD 16.800 1.070 1.660 1.380 0.790 0.0000 0.0000 0.0016 0.0006 0.0003 0.0001 0.2300 0.1700

Oct.

Max 2363.460 −0.490 4.760 1.680 0.180 −0.1400 0.1400 −0.0400 0.0150 0.0003 −0.0003 −0.1860 0.2910
Min 2275.080 −2.450 2.940 −1.220 −2.040 −0.1600 0.1200 −0.0500 0.0110 −0.0003 −0.0007 −0.4720 0.1190

Mean 2338.246 −1.650 3.790 0.220 −0.990 −0.1400 0.1340 −0.0470 0.0140 0.0002 −0.0004 −0.3010 0.2260
SD 26.293 0.530 0.520 0.750 0.570 0.0000 0.0060 0.0030 0.0010 0.0002 0.0001 0.0830 0.0630
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A further synthetic analysis can come from the coefficient of variation (CV = standard
deviation/mean × 100.0, %) of I.O. parameters estimates. Results are reported in Figure 8. It can be
noted that focal length f and Ki coefficients are the most stables parameters. Conversely, xp, yp, Bi and
Pi coefficients present a wide variability depending on operational conditions.

 
 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

A further synthetic analysis can come from the coefficient of variation (CV = standard 

deviation/mean x 100.0, %) of I.O. parameters estimates. Results are reported in Figure 8. It can be 

noted that focal length f and Ki coefficients are the most stables parameters. Conversely, xp, yp, Bi and 

Pi coefficients present a wide variability depending on operational conditions. 

 

Figure 8. Coefficients of variation (CV, %) computed for all I.O. parameters for all the processed 

datasets. 

According to the boxplots of Figures 9–13 a similar trend can be recognized affecting all I.O. 

parameters. Specifically, the October dataset (Figure 13) appears to not contain any outlier for the 

most of parameters (f, K1−K2−K3−K4−P3−P4). Oppositely, in the other datasets no outlier was found for 

B1, P1, P2 in the December dataset (Figure 9); yp and xp did not present outliers in the January and 

February datasets (Figures 10 and 11); f, P4 and K2 had no outliers in the March dataset (Figure 12). 

Figure 8. Coefficients of variation (CV, %) computed for all I.O. parameters for all the processed datasets.

According to the boxplots of Figures 9–13 a similar trend can be recognized affecting all I.O.
parameters. Specifically, the October dataset (Figure 13) appears to not contain any outlier for the
most of parameters (f, K1–K2–K3–K4–P3–P4). Oppositely, in the other datasets no outlier was found for
B1, P1, P2 in the December dataset (Figure 9); yp and xp did not present outliers in the January and
February datasets (Figures 10 and 11); f, P4 and K2 had no outliers in the March dataset (Figure 12).
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Figure 9. Boxplot of I.O. parameters from the December dataset. f—focal length; xp and yp coordinates
of the principal point offset; B1, B2—skew parameters; K1, K2, K3, K4—radial distortions; P1, P2, P3,
P4—components of the decentering distortions.
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Figure 10. Boxplot of I.O. parameters from the January dataset. f—focal length; xp and yp coordinates
of the principal point offset; B1, B2—skew parameters; K1, K2, K3, K4—radial distortions; P1, P2, P3,
P4—components of the decentering distortions.
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Figure 11. Boxplot of I.O. parameters from the February dataset. f—focal length; xp and yp coordinates
of the principal point offset; B1, B2—skew parameters; K1, K2, K3, K4—radial distortions; P1, P2, P3,
P4—components of the decentering distortions.
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Figure 12. Boxplot of I.O. parameters from the March dataset. f—focal length; xp and yp coordinates
of the principal point offset; B1, B2—skew parameters; K1, K2, K3, K4—radial distortions; P1, P2, P3,
P4—components of the decentering distortions.
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Figure 13. Boxplot of I.O. parameters from the October dataset. f—focal length; xp and yp coordinates
of the principal point offset; B1, B2—skew parameters; K1, K2, K3, K4—radial distortions; P1, P2, P3,
P4—components of the decentering distortions.
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The relationships among I.O. parameters were explored by computing the correlation matrices
for all the datasets. Results are reported in Tables 5–9. The correlation matrix contains positive and
negative values in the range [−1, +1]. Positive values mean that a direct relationship between variables
is present; negative values an inverse linkage. The higher the values, the stronger the correlation.
All the datasets showed pretty similar values, that can be synthesized as it follows: focal length was
highly correlated with radial aberrations coefficients; xp was moderately correlated with yp and, in the
most of cases, with Pi coefficients; yp was poorly/moderately correlated with all the other parameters
(March dataset excluded); skew parameters (B1,B2) were poorly/moderately correlated with the other
parameters (March dataset excluded); Ki coefficients showed to be internally correlated each other and,
externally, with the focal length; a moderate correlation was found between yp and P2. January and
February dataset showed low correlation between Ki with yp and P2. In spite of all specific situations,
these results suggested that I.O. parameters contain redundant information. Consequently, a PCA
was operated showing that the most of the decorrelated information could be explained by few PCs,
whose identification was operated by Kaiser’s criterion.

Table 5. Correlation matrix of camera I.O. parameters as estimated from the December 2018 dataset
(f—focal length; xp and yp coordinates of the principal point offset; B1, B2—skew parameters; K1, K2,
K3, K4—radial distortions; P1, P2, P3, P4—components of the decentering distortions).

f (pix) xp (pix) yp (pix) B1 B2 K1 K2 K3 K4 P1 P2 P3 P4

f (pix) 1.00 −0.15 −0.56 0.10 0.03 −1.00 1.00 −1.00 0.99 0.27 0.51 0.37 0.44
xp (pix) −0.15 1.00 0.51 −0.26 −0.04 0.12 −0.12 0.08 −0.07 −0.96 −0.58 0.43 −0.73
yp (pix) −0.56 0.51 1.00 −0.49 0.29 0.54 −0.55 0.53 −0.53 −0.69 −0.91 −0.48 −0.43

B1 0.10 −0.26 −0.49 1.00 −0.59 −0.06 0.12 −0.08 0.10 0.35 0.20 0.44 −0.17
B2 0.03 −0.04 0.29 −0.59 1.00 −0.04 0.02 −0.04 0.03 −0.12 −0.02 −0.37 0.12
K1 −1.00 0.12 0.54 −0.06 −0.04 1.00 −1.00 1.00 −1.00 −0.23 −0.51 −0.38 −0.42
K2 1.00 −0.12 −0.55 0.12 0.02 −1.00 1.00 −1.00 1.00 0.24 0.50 0.40 0.41
K3 −1.00 0.08 0.53 −0.08 −0.04 1.00 −1.00 1.00 −1.00 −0.20 −0.49 −0.42 −0.38
K4 0.99 −0.07 −0.53 0.10 0.03 −1.00 1.00 −1.00 1.00 0.19 0.48 0.43 0.37
P1 0.27 −0.96 −0.69 0.35 −0.12 −0.23 0.24 −0.20 0.19 1.00 0.68 −0.26 0.78
P2 0.51 −0.58 −0.91 0.20 −0.02 −0.51 0.50 −0.49 0.48 0.68 1.00 0.31 0.49
P3 0.37 0.43 −0.48 0.44 −0.37 −0.38 0.40 −0.42 0.43 −0.26 0.31 1.00 −0.46
P4 0.44 −0.73 −0.43 −0.17 0.12 −0.42 0.41 −0.38 0.37 0.78 0.49 −0.46 1.00

Table 6. Correlation matrix of camera I.O. parameters as estimated from the January 2019 dataset
(f—focal length; xp and yp coordinates of the principal point offset; B1, B2—skew parameters; K1, K2,
K3, K4—radial distortions; P1, P2, P3, P4—components of the decentering distortions).

f (pix) xp (pix) yp (pix) B1 B2 K1 K2 K3 K4 P1 P2 P3 P4

f (pix) 1 0.51 −0.30 −0.27 0.59 −1.00 1.00 −0.99 0.98 −0.52 −0.17 0.55 −0.52
xp (pix) 0.51 1 −0.46 −0.02 0.72 −0.52 0.57 −0.63 0.65 −0.98 −0.36 0.95 −0.92
yp (pix) −0.30 −0.46 1 0.43 −0.25 0.32 −0.30 0.32 −0.32 0.35 −0.37 −0.55 0.44

B1 −0.27 −0.02 0.43 1 −0.39 0.27 −0.25 0.29 −0.29 0.08 0.04 −0.24 0.18
B2 0.59 0.72 −0.25 −0.39 1 −0.60 0.64 −0.70 0.72 −0.81 −0.21 0.83 −0.87
K1 −1.00 −0.52 0.32 0.27 −0.60 1 −1.00 0.99 −0.98 0.54 0.15 −0.57 0.54
K2 1.00 0.57 −0.30 −0.25 0.64 −1.00 1 −0.99 0.99 −0.58 −0.19 0.60 −0.58
K3 −0.99 −0.63 0.32 0.29 −0.70 0.99 −0.99 1 −1.00 0.65 0.23 −0.67 0.65
K4 0.98 0.65 −0.32 −0.29 0.72 −0.98 0.99 −1.00 1 −0.67 −0.25 0.69 −0.67
P1 −0.52 −0.98 0.35 0.08 −0.81 0.54 −0.58 0.65 −0.67 1 0.43 −0.95 0.95
P2 −0.17 −0.36 −0.37 0.04 −0.21 0.15 −0.19 0.23 −0.25 0.43 1 −0.24 0.22
P3 0.55 0.95 −0.55 −0.24 0.83 −0.57 0.60 −0.67 0.69 −0.95 −0.24 1 −0.98
P4 −0.52 −0.92 0.44 0.18 −0.87 0.54 −0.58 0.65 −0.67 0.95 0.22 −0.98 1
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Table 7. Correlation matrix of camera I.O. parameters as estimated from the February 2019 dataset
(f—focal length; xp and yp coordinates of the principal point offset; B1, B2—skew parameters; K1, K2,
K3, K4—radial distortions; P1, P2, P3, P4—components of the decentering distortions).

f (pix) xp (pix) yp (pix) B1 B2 K1 K2 K3 K4 P1 P2 P3 P4

f (pix) 1 0.008 0.18 0.16 −0.16 −0.88 0.99 −0.93 0.97 0.14 −0.15 −0.12 0.19
xp (pix) 0.01 1 −0.51 0.18 −0.34 −0.35 0.12 −0.27 0.20 −0.77 0.26 0.74 −0.56
yp (pix) 0.18 −0.51 1 0.48 0.08 −0.09 0.18 −0.14 0.18 0.18 −0.40 −0.33 0.19

B1 0.16 0.18 0.48 1 −0.32 −0.14 0.20 −0.16 0.19 −0.04 0.16 −0.17 0.22
B2 −0.16 −0.34 0.08 −0.32 1 0.15 −0.18 0.18 −0.20 0.05 −0.01 −0.01 −0.03
K1 −0.88 −0.35 −0.09 −0.14 0.15 1 −0.93 0.99 −0.95 0.27 0.09 −0.27 0.17
K2 0.99 0.12 0.18 0.20 −0.18 −0.93 1 −0.97 0.99 0.01 −0.14 −0.01 0.08
K3 −0.93 −0.27 −0.14 −0.16 0.18 0.99 −0.97 1 −0.99 0.19 0.14 −0.18 0.10
K4 0.97 0.20 0.18 0.19 −0.20 −0.95 0.99 −0.99 1 −0.09 −0.16 0.08 −0.01
P1 0.14 −0.77 0.18 −0.04 0.05 0.27 0.01 0.19 −0.09 1 0.11 −0.94 0.90
P2 −0.15 0.26 −0.40 0.16 −0.01 0.09 −0.14 0.14 −0.16 0.11 1 −0.27 0.43
P3 −0.12 0.74 −0.33 −0.17 −0.01 −0.27 −0.01 −0.18 0.08 −0.94 −0.27 1 −0.97
P4 0.19 −0.56 0.19 0.22 −0.03 0.17 0.08 0.10 −0.01 0.90 0.43 −0.97 1

Table 8. Correlation matrix of camera I.O. parameters as estimated from the March 2019 dataset
(f—focal length; xp and yp coordinates of the principal point offset; B1, B2—skew parameters; K1, K2,
K3, K4—radial distortions; P1, P2, P3, P4—components of the decentering distortions).

f (pix) xp (pix) yp (pix) B1 B2 K1 K2 K3 K4 P1 P2 P3 P4

f (pix) 1.00 0.04 −0.70 0.13 −0.40 −0.95 1.00 −0.94 0.96 0.53 0.77 0.66 0.78
xp (pix) 0.04 1.00 0.49 −0.94 0.76 −0.31 0.10 −0.32 0.28 −0.73 −0.30 −0.38 0.06
yp (pix) −0.70 0.49 1.00 −0.66 0.85 0.46 −0.64 0.43 −0.47 −0.94 −0.93 −0.93 −0.81

B1 0.13 −0.94 −0.66 1.00 −0.90 0.16 0.06 0.18 −0.13 0.85 0.50 0.58 0.12
B2 −0.40 0.76 0.85 −0.90 1.00 0.14 −0.34 0.10 −0.14 −0.91 −0.70 −0.78 −0.45
K1 −0.95 −0.31 0.46 0.16 0.14 1.00 −0.97 1.00 −0.99 −0.25 −0.60 −0.45 −0.69
K2 1.00 0.10 −0.64 0.06 −0.34 −0.97 1.00 −0.97 0.98 0.46 0.73 0.61 0.75
K3 −0.94 −0.32 0.43 0.18 0.10 1.00 −0.97 1.00 −1.00 −0.22 −0.57 −0.42 −0.65
K4 0.96 0.28 −0.47 −0.13 −0.14 −0.99 0.98 −1.00 1.00 0.27 0.60 0.46 0.67
P1 0.53 −0.73 −0.94 0.85 −0.91 −0.25 0.46 −0.22 0.27 1.00 0.85 0.84 0.61
P2 0.77 −0.30 −0.93 0.50 −0.70 −0.60 0.73 −0.57 0.60 0.85 1.00 0.85 0.81
P3 0.66 −0.38 −0.93 0.58 −0.78 −0.45 0.61 −0.42 0.46 0.84 0.85 1.00 0.78
P4 0.78 0.06 −0.81 0.12 −0.45 −0.69 0.75 −0.65 0.67 0.61 0.81 0.78 1.00

Table 9. Correlation matrix of camera I.O. parameters as estimated from the October 2019 dataset
(f—focal length; xp and yp coordinates of the principal point offset; B1, B2—skew parameters; K1, K2,
K3, K4—radial distortions; P1, P2, P3, P4—components of the decentering distortions).

f (pix) xp (pix) yp (pix) B1 B2 K1 K2 K3 K4 P1 P2 P3 P4

f (pix) 1.00 −0.63 −0.50 −0.26 −0.26 −1.00 1.00 −1.00 1.00 0.70 0.51 −0.54 0.83
xp (pix) −0.63 1.00 0.28 −0.28 0.30 0.58 −0.63 0.60 −0.62 −0.91 −0.66 0.73 −0.65
yp (pix) −0.50 0.28 1.00 0.01 0.13 0.46 −0.49 0.47 −0.48 −0.63 −0.77 −0.28 −0.43

B1 −0.26 −0.28 0.01 1.00 −0.64 0.31 −0.26 0.28 −0.27 0.27 0.42 0.12 −0.41
B2 −0.26 0.30 0.13 −0.64 1.00 0.23 −0.27 0.25 −0.26 −0.35 −0.38 0.10 0.04
K1 −1.00 0.58 0.46 0.31 0.23 1.00 −1.00 1.00 −1.00 −0.65 −0.46 0.53 −0.81
K2 1.00 −0.63 −0.49 −0.26 −0.27 −1.00 1.00 −1.00 1.00 0.70 0.50 −0.54 0.82
K3 −1.00 0.60 0.47 0.28 0.25 1.00 −1.00 1.00 −1.00 −0.67 −0.48 0.54 −0.82
K4 1.00 −0.62 −0.48 −0.27 −0.26 −1.00 1.00 −1.00 1.00 0.69 0.49 −0.55 0.82
P1 0.70 −0.91 −0.63 0.27 −0.35 −0.65 0.70 −0.67 0.69 1.00 0.83 −0.47 0.71
P2 0.51 −0.66 −0.77 0.42 −0.38 −0.46 0.50 −0.48 0.49 0.83 1.00 −0.04 0.32
P3 −0.54 0.73 −0.28 0.12 0.10 0.53 −0.54 0.54 −0.55 −0.47 −0.04 1.00 −0.65
P4 0.83 −0.65 −0.43 −0.41 0.04 −0.81 0.82 −0.82 0.82 0.71 0.32 −0.65 1.00

The errors affecting final measures from oriented image blocks were evaluated with reference to
the above mentioned RMSEj. Analysis was separately performed for both GCPs and CPs and for all the
datasets (Table 10). It showed similar values for all the datasets. RMSEI defines the reprojection error
computed as the mean distance (in the image space) between the position expected for a tie point that
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participated to solve block orientation and the one resulting by reprojection of the correspondent 3D
object point after image resection. To minimize alignment issues, the maximum values of error should
be <1, according to [44]. This condition was respected for all the blocks: the maximum detected value
was 0.31 and 0.36 for GCPs an CPs (Table 11), respectively. Conversely, RMSEN, RMSEH, RMSET define
the distance (in the object space) between the expected position of a GCP (or CP) and the one determined
by photogrammetric measurement in the object space. The smaller this value, the higher the final
accuracy. These parameters are known to be strongly influenced by user’s experience in recognizing the
proper markers (shape, color, stability, etc.) within image and operate the correspondent collimation.
The highest RMSET values were detected in the December (0.98 m) and March (1.01 m) datasets.

The correlation matrices were computed to analyze possible relationships among error components
for both GCPs and CPs (Figures 10 and 11). Results showed a high direct correlation among all the
variables, reprojection error excluded (RMSEI).
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Table 10. Statistics about error components computed with reference to GCPs and CPs RMSEj for all tested datasets (Dec.—December; Jan.—January; Feb.—February;
Mar.—March; Oct.—October; E—East coordinate; N—North coordinate; H—height coordinate; T—3D error; I—positioning error in the image space; Max;
Min—minimum; SD—standard deviation).

Survey Statistics GCPs CPs

RMSEE
(m)

RMSEN
(m)

RMSEH
(m)

RMSET
(m)

RMSEI
(pix)

RMSEE
(m)

RMSEN
(m)

RMSEH
(m)

RMSET
(m)

RMSEI
(pix)

Dec.

Max 0.20 0.09 0.96 0.98 0.27 0.21 0.09 0.93 0.96 0.27
Min 0.00 0.00 0.00 0.00 0.18 0.01 0.02 0.00 0.03 0.19

Mean 0.04 0.02 0.09 0.11 0.25 0.07 0.04 0.14 0.17 0.25
SD 0.04 0.02 0.23 0.23 0.03 0.05 0.02 0.27 0.27 0.03

Jan.

Max 0.11 0.090 0.45 0.47 0.27 0.130 0.109 0.421 0.453 0.311
Min 0.002 0.0012 0.00018 0.0023 0.20 0.011 0.020 0.010 0.026 0.220

Mean 0.035 0.025 0.044 0.068 0.24 0.052 0.043 0.070 0.104 0.237
SD 0.019 0.016 0.10 0.10 0.016 0.035 0.026 0.119 0.121 0.019

Feb.

Max 0.20 0.22 0.31 0.42 0.31 0.21 0.21 0.37 0.47 0.22
Min 0.0017 0.0011 0.0006 0.0022 0.21 0.02 0.03 0.02 0.04 0.17

Mean 0.033 0.045 0.044 0.072 0.23 0.06 0.07 0.10 0.14 0.21
SD 0.033 0.035 0.051 0.069 0.023 0.054 0.051 0.103 0.124 0.010

Mar.

Max 0.461 0.259 0.863 1.012 0.273 0.451 0.221 0.778 0.926 0.360
Min 0.0005 0.001 0.000 0.001 0.110 0.028 0.027 0.018 0.044 0.243

Mean 0.057 0.030 0.048 0.085 0.236 0.094 0.056 0.117 0.166 0.266
SD 0.083 0.044 0.154 0.178 0.032 0.122 0.057 0.225 0.259 0.023

Oct.

Max 0.306 0.129 0.467 0.573 0.234 0.304 0.114 0.426 0.536 0.278
Min 0.001 0.001 0.001 0.002 0.182 0.005 0.002 0.020 0.023 0.221

Mean 0.055 0.030 0.055 0.085 0.222 0.089 0.034 0.101 0.140 0.235
SD 0.051 0.024 0.080 0.097 0.015 0.081 0.030 0.113 0.141 0.011
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Table 11. Correlation matrix of error components computed from RMSEGCP and RMSECPs for each acquired dataset (Dec.—December; Jan.—January; Feb.—February;
Mar.—March; Oct.—October; E—East coordinate; N—North coordinate; H—height coordinate; T—3D error; I—positioning error).

Survey Error Components GCPs CPs

RMSEE RMSEN RMSEH RMSET RMSEI RMSEE RMSEN RMSEH RMSET RMSEI

Dec.

RMSEE 1 0.813 0.894 0.906 −0.033 1 0.929 0.918 0.932 0.530
RMSEN 0.813 1 0.884 0.894 0.072 0.929 1 0.952 0.957 0.292
RMSEH 0.894 0.884 1 0.999 −0.283 0.918 0.952 1 0.999 0.227
RMSET 0.906 0.894 0.999 1 −0.258 0.932 0.957 0.999 1 0.254
RMSEI −0.033 0.072 −0.283 −0.258 1 0.530 0.292 0.227 0.254 1

Jan.

RMSEE 1 0.88 0.82 0.85 −0.06 1 0.95 0.80 0.87 −0.13
RMSEN 0.88 1 0.96 0.97 −0.27 0.95 1 0.89 0.95 −0.02
RMSEH 0.82 0.96 1 1.00 −0.33 0.80 0.89 1 0.99 0.03
RMSET 0.85 0.97 1.00 1 −0.33 0.87 0.95 0.99 1 −0.002
RMSEI −0.06 −0.27 −0.33 −0.33 1 −0.13 −0.02 0.03 −0.002 1

Feb.

RMSEE 1 0.96 0.96 0.98 −0.08 1 0.97 0.91 0.95 0.31
RMSEN 0.96 1 0.99 1.00 0.07 0.97 1 0.94 0.98 0.27
RMSEH 0.96 0.99 1 1.00 0.12 0.91 0.94 1 0.99 0.27
RMSET 0.98 1.00 1.00 1 0.07 0.95 0.98 0.99 1 0.28
RMSEI −0.08 0.07 0.12 0.07 1 0.31 0.27 0.27 0.28 1

Mar.

RMSEE 1.00 0.94 0.94 0.98 −0.64 1.00 0.97 0.99 0.99 −0.34
RMSEN 0.94 1.00 1.00 0.99 −0.44 0.97 1.00 1.00 0.99 −0.26
RMSEH 0.94 1.00 1.00 0.99 −0.45 0.99 1.00 1.00 1.00 −0.27
RMSET 0.98 0.99 0.99 1.00 −0.53 0.99 0.99 1.00 1.00 −0.29
RMSEI −0.64 −0.44 −0.45 −0.53 1.00 −0.34 −0.26 −0.27 −0.29 1.00

Oct.

RMSEE 1.00 0.89 0.99 0.99 −0.07 1.00 0.98 0.96 0.99 −0.16
RMSEN 0.89 1.00 0.87 0.90 −0.08 0.98 1.00 0.97 0.99 −0.19
RMSEH 0.99 0.87 1.00 1.00 −0.20 0.96 0.97 1.00 0.99 −0.14
RMSET 0.99 0.90 1.00 1.00 −0.16 0.99 0.99 0.99 1.00 −0.15
RMSEI −0.07 −0.08 −0.20 −0.16 1.00 −0.16 −0.19 −0.14 −0.15 1.00
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3.3. Calibrating Predictive Models

Camera I.O. parameters estimates were analyzed by PCA to detect and remove redundant
information. As usual, December, January, February and October blocks were separately processed
to identify those PCs that, for each dataset, could synthesize the most of the original information.
This was done with reference to the correlation plots relating I.O. parameters with PC (Figure 14).
Application of Kaiser’s criterion showed that the strongest three PCs were enough to describe the
most of I.O. parameters variance for the December (Figure 14a), January (Figure 14b) and October
(Figure 14d) datasets. Conversely, five PCs were needed to explain the most of information resident in
I.O parameters estimates from the February dataset (Figure 14c). These results confirmed what base
statistics of Tables 5–9 had already shown: I.O. parameters are highly intracorrelated.
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Figure 14. Correlation plot between I.O. parameters and PC (Dimi). (a) December; (b) January;
(c) February; (d) October. (f—focal length; xp and yp coordinates of the principal point offset; B1,
B2—skew parameters; K1, K2, K3, K4—radial distortions; P1, P2, P3, P4—components of the decentering
distortions).

The most significant PCs, as resulting from the previous analysis, were aggregated by Equation
(4) to compute SI that was used as predictor within the predictive functions of RMSE. SI values are
reported in Table 12. Before calibrating predictive functions possibly relating SI to RMSE the Pearson’s
coefficient was computed between SI and all the available RMSE for both GCPs and CPs (Table 13).
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Table 12. Synthetic index (SI) as computed by Equation (4) for the December, January, February and
October datasets.

Variable December January February October

SI 1.42 1.85 1.08 1.79

Table 13. Correlation coefficient between RMSEj and SI computed for each dataset (GCPs = ground
control points; CPs = check points; E = East coordinate; N = North coordinate; H = height coordinate;
T = 3D error; I = positioning error in the image space).

GCPs CPs

RMSEE RMSEN RMSEH RMSET RMSEI RMSEE RMSEN RMSEH RMSET RMSEI

Pearson’s R 0.5 −0.8 −0.10 −0.12 −0.11 0.28 −0.80 −0.50 −0.49 0.67

Only situations showing a moderate (0.5 < R < 0.7) or a high Pearson’s coefficient (>0.7) were
modeled in the following step [71]. Consequently, since SI showed a moderate and high correlation
with GCPs RMSEE and RMSEN, respectively these relationships were modeled. Conversely, since CPs
RMSEE showed a low correlation with SI it was excluded from modeling.

A 2nd order polynomial showed to better fit the data. Results concerning GCPs and CPs are
shown in Figures 15 and 16, respectively. Graphs also report the coefficient of determination (R2). For
GCPs, the lowest R2 value was 0.68 (RMSEE), while CPs RMSEN showed the highest R2 (0.99).
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Figure 15. Significant predictive functions of RMSEE, RMSEN calculated on GCPs. R2 is the coefficient
of determination.

Table 14 reports the coefficients of the significant 2nd order polynomial predictive functions for
both CPs and GCPs.

Table 14. Coefficients of the calibrated predictive functions (E—East coordinate; N—North coordinate;
H—height coordinate; T—total (3D) error; I—positioning error in the image space).

RMSEE (M)—
GCPS

RMSEN (M)—
GCPS

RMSEN (M)—
CPS

RMSEH (M)—
CPS

RMSET (PIX)—
CPS

a −0.0070 0.0040 0.0094 −0.0166 −0.0166
b 0.0359 −0.0256 −0.0548 0.0696 0.0696
c 0.0035 0.0651 0.1122 0.0535 0.0881
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3.4. Validating Predictive Models

Reliability and accuracy of the proposed predictive method were tested by applying the calibrated
models to all the available datasets, March included. With respect to March dataset specifically,
PCA analysis was applied to recognize significant PCs able to explain the most of I.O. parameters
variance. Two PCs were found to satisfy the Kaiser’s criterion and, consequently, they were used to
compute March SI (3.060). March SI value was then used to predict RMSEj according to Equation (5)
applied using the coefficients from Table 14. To summarize performances of models, all the RMSEj
estimates were compared, by differencing, with the correspondent values from the BBA solutions
(reference ones). RMSE was then computed for all the tested differences and estimated RMSEj. Results
are reported in Table 15.

Table 15. Differences between RMSEj values as estimated by the calibrated predictive models and the
correspondent ones from BBA for the March dataset.

Errors March Dataset Difference (m)

RMSEE (GCPs) 0.0024
RMSEN (GCPs) 0.0047
RMSEN (CPs) 0.0110
RMSEH (CPs) 0.0039
RMSEI (CPs) 0.0014

4. Discussion

This research was intended to explore dependency of the accuracy of measures from RPAS-based
SfM 3D models from the camera I.O. parameters estimates. Several researchers investigated these
issue, detecting the strong influence of camera parameters on final accuracy of obtainable measures.
Nevertheless, no proposal came for an operative procedure able to predict the potential achievable
accuracy once camera parameters were known. In this work, authors tried to fill this gap by
developing and proposing a simple method that, in their preliminary tests, provided promising
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results. The proposed approach integrates uni- and multivariate statistics to investigate and removing
correlated information resident in I.O. parameters of the camera as estimated during BBA.

The study was based on five photogrammetric surveys by RPAS operated in December 2018
and January, February, March and October of 2019 (Table 1). A ground survey campaign was also
done to position 30 well distributed GCPs. All flight missions were performed by DJI Inspire 1 drone,
equipped with DJI ZenMuse X3 camera. To ensure comparability of datasets all missions were operated
according to the same flight plan (path, speed and height) and BBA was performed setting the same
parameters within Agisoft PhotoScan. The same skilled user was in charge of processing data and
optimizing the photogrammetric solution.

A first step was aimed at testing image blocks quality and removing “bad” images. A second step
was aimed at solving BBA iteratively changing the number of GCPs. A total of 155 chunks (31 chunks
for each mission) were analyzed. It is worth to remind that this step was not aimed at selecting the best
spatial strategy for positioning GCPs; differently, it was devoted to evaluating the achievable accuracy
of final measures and the accuracy dependence on GCPs number. As shown in Figures 6 and 7, highest
RMSET correspond to those solutions were direct georeferencing plays the leading role, being the
number of GCPs lower than the theoretical minimum value (3, [8]). By comparing GCPs and CPs
RMSET trend with the number of GCPs it was found that the optimal minimum number of GCPs
was around 14 (Figures 6 and 7). All the datasets showed the same GCPs and CPs RMSET trend. Just
few dissimilarities were found, probably due to different environmental conditions (e.g., lighting,
weather conditions, vegetation phenology). After this preliminary investigation that ensured about
comparability of processed datasets, a deeper investigation concerned errors components separately
(RMSEj). Some basic statistics (e.g., maximum, minimum, mean and standard deviation) of I.O.
parameters estimates were also computed for each processed dataset (Table 10). All of them showed
similar statistics. Results confirmed what reported in previous works: Agisoft PhotoScan, as well
as other photogrammetric software, in general, cannot estimate stable I.O. parameters while initial
conditions (e.g., GCPs number) change [29,59]. In fact, stats showed a high variability of solutions.
Nevertheless, the order of magnitude remained the same in all dataset (Table 4) and a similar trend,
as shown in the boxplots of Figures 9–13. Moreover, the obtained order of magnitude is coherent with
the one obtained by other researchers [59]; they showed that Pi parameters are smaller by one or two
orders of magnitude than radial ones and that Ki present the most significant deviations.

Correlations among I.O. parameters was then investigated finding a high degree of intracorrelation.
Correlation values proved to be consistent with those reported in literature (Tables 5–9, [59]). Correlated
information was aggregated by PCA [60]; it was found that from two to five PCs are generally enough
to explain the most of variance of I.O. parameters estimates.

With these premises, an index (SI) was defined to summarize the decorrelated information that
the first PCs were able to aggregate. SI was assumed as predictor of RMSEj and correspondent
predictive function calibrated (Figures 15 and 16). Models calibration was obtained with reference to
the December, January, February and October datasets. March dataset was differently used to validate
predictive models.

In spite of the few observations used for calibration, the proposed predictive functions showed
satisfying results when applied to the validation set generating RMSEj estimates very close to the actual
values as computed during BBA by Agisoft PhotoScan. Results are must be assumed as preliminary,
but certainly encouraging.

5. Conclusions

The present study was aimed at exploring the impact of the camera I.O. parameters on the
accuracy of final photogrammetric 3D models. The possibility of calibrating predictive models for
error estimates once given I.O. parameters estimates was the focus point of this research. The proposed
procedure was tested on the study area of Torre a Mare (Apulian Region) through the acquisition of
five photogrammetric datasets operated at different dates along the year.
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After investigating image quality and achieved BBA, resulting camera I.O. parameters were
explored to test their eventual intracorrelation and potential relationships with the accuracy of final
photogrammetric measures. A high correlation among the most of parameters was found and a high
level of information reduction can be achieved by PCA. Tests proved that from two up to five PCs are
enough to explain the most of I.O. parameters variance. PCs selection was operated according to the
Kaiser’s criterion. The strongest PCs—if properly aggregated along SI—showed that they are able to
predict final errors in photogrammetric measures. The SI was, in fact, found to be a good predictor of
errors when included, as independent variable, within a 2nd order polynomial function. Predictive
functions dependent on SI were applied to all datasets included the validation one of March, obtaining
satisfying predicted results as shown in Table 15.

Although the proposed method seems promising and predictive functions estimates satisfying,
further investigations must be done, with the man aim of improving generalization capability of
models and testing their dependencies on other operational conditions like different areas, oblique
acquisitions and GCP spatial distribution.
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