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Abstract 

 
The Mahalanobis distance D is the multivariate generalization of Cohen’s d, and can be 

used as a standardized effect size for multivariate differences between groups. An important 
issue in the interpretation of D is heterogeneity, that is, the extent to which contributions to the 
overall effect size are concentrated in a small subset of variables rather than evenly distributed 
across the whole set. Here I present two heterogeneity coefficients for D based on the Gini 
coefficient, a well-known index of inequality among values of a distribution. I discuss the 
properties and limitations of the two coefficients and illustrate their use by reanalyzing some 
published findings from studies of gender differences. 

 
Keywords: effect size; group differences; heterogeneity; Mahalanobis distance; 

multivariate. 
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Introduction 
 

In the behavioral sciences, the effect size of choice for differences between groups—for 
example males versus females, patients versus controls, or participants in experimental versus 
control conditions—is the standardized mean difference or Cohen’s d (Cohen, 1988). While d is 
adequate for univariate differences, it cannot be used to properly quantify overall group 
differences in multidimensional domains such as personality, aggression, mate preferences, and 
so on. When investigating group differences in one of those domains, the standard practice of 
considering univariate d’s one at a time can be severely misleading, for two reasons. First, 
relatively small differences in many individual variables may easily add up to a large overall 
difference. Second, univariate effect sizes inevitably fail to take into account the pattern of 
correlation between the variables that make up the domain of interest. The need for standard, 
easily interpretable multivariate indices has become more acute with the ongoing shift from 
significance testing to effect size estimation that defines the so-called “new statistics” in 
psychology (Cumming, 2014). 

 
The Mahalanobis Distance 
 

In a series of papers, I have proposed the Mahalanobis distance D as the natural effect size 
for multivariate group differences (Del Giudice, 2009, 2011, 2013). Mahalanobis’ D is the 
multivariate generalization of Cohen’s d, and has the same substantive interpretation in terms of 
distribution overlap (see Bradley, 2006; Huberty, 2005; Reiser, 2001). Specifically, D is the 
(unsigned) standardized difference between the two groups along the discriminant axis; for 
example, D = 1.00 means that the group centroids are one standard deviation apart along the 
discriminant axis. If the variables are all orthogonal, D reduces to the Euclidean distance; if there 
is only one variable in the set, D reduces to Cohen’s d. As with Cohen’s d, Mahalanobis’ D can 
be translated into approximate measures of statistical overlap by assuming multivariate normality 
(see Del Giudice, 2009). Confidence intervals on D are easy to obtain with bootstrapping (see 
Kelley, 2005); exact analytical methods are also available, although they are not always 
applicable (Reiser, 2001; Zou, 2007). While sample estimates of D are biased upward, the bias 
can be minimized by increasing sample size; initial simulations suggest that a ratio of about 100 
cases per variable should be sufficient in most standard applications (Del Giudice, 2013).  

 
The Mahalanobis distance was introduced eighty years ago (Mahalanobis, 1936) and is a 

standard tool in multivariate analysis. Surprisingly, though, it has not been used as an effect size 
in psychological research until very recently. Thanks to a widely disseminated study (Del 
Giudice, Booth, & Irwing, 2012), more researchers have started to employ D as a multivariate 
effect size to supplement and extend the standard univariate approach, particularly in relation to 
gender differences (e.g., Conroy-Beam, Buss, Pham, & Shackelford, 2015; Del Giudice, Lippa, 
Puts, Bailey, Bailey, & Schmitt, 2015; Morris, 2016; Vianello, Schnabel, Sriram, & Nosek, 
2013).  

 
To illustrate the usefulness of multivariate effect sizes one may consider the case of gender 

differences in personality. Reviews and meta-analyses on this topic have traditionally considered 
one personality trait at a time, and have employed the average of the univariate effects as an 
overall index of size. This has led to the widely shared idea that gender differences in personality 
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are small and inconsistent, with a large overlap between the male and female distributions (see 
Hyde, 2005, 2014). However, the standard approach may have missed the forest for the trees. 
Individual personality profiles reflect the combination of multiple dimensions, and the same trait 
value may manifest in different ways depending on the level of other traits (think of a neurotic 
and agreeable person vs. a neurotic but disagreeable one; see Larsen & Buss, 2013). What 
defines the average profiles of men and women may not be a specific trait, but a particular 
combination of narrow tendencies across multiple traits. This is precisely what happens in the 
domain of facial morphology: while gender differences in individual anatomical features (e.g., 
nose length, eyebrow thickness) are generally small to moderate, their combination results in a 
large overall difference, with an overlap of less than 10% between the multivariate distributions 
in males and females (and D ≈ 3). This separation enables observers to identify the gender of 
faces with very high accuracy (see Del Giudice, 2013). Consistent with this view, my colleagues 
and I found a multivariate effect size of D = 2.71 for gender differences in personality (Del 
Giudice et al., 2012; more details below). This corresponds to an overlap of only 10% between 
the male and female distributions (assuming multivariate normality). In other words, the overall 
personality profiles of males and females are in fact quite distinct, despite the considerable 
amount of variation within each gender. In this case, a multivariate perspective revealed a 
previously undescribed empirical pattern and challenged the existing consensus on an important 
psychological phenomenon. 
 
The Issue of Heterogeneity 

 
While D can provide valuable information on patterns of group differences, its 

interpretation is more complex than that of d, and raises additional issues that do not arise in the 
standard univariate framework. One of these issues is heterogeneity in the determination of D. 
Finding a large multivariate difference between two groups does not tell whether the overall 
effect size reflects (a) the joint contribution of many variables, or (b) the overwhelming 
contribution of one or a few variables. For example, the multivariate effect size in Del Giudice 
and colleagues (2012) was D = 2.71 in a set of 15 personality traits. However, removing just one 
trait (Sensitivity) from the set reduced the difference to D = 1.71, indicating a disproportionate 
contribution of gender differences in Sensitivity to the overall effect. As another case in point, 
consider the cross-cultural analysis of mate preferences by Conroy-Beam and colleagues (2015). 
These authors used D to quantify gender differences in preferences for traits such as good looks, 
health, and sociability in romantic partners. They found that the overall size of the differences 
between men and women becomes smaller in countries with higher levels of gender equality. 
Still, their analysis does not reveal whether the reduction in D observed in gender-egalitarian 
countries reflects smaller differences across the board or—as some data in the study suggest—a 
disproportionate influence of a few specific traits (e.g., ambition) in the more unequal societies. 
The first scenario implies a more or less constant amount of heterogeneity across countries; the 
second scenario implies a decrease in heterogeneity as one moves toward more gender-
egalitarian countries. While the size of univariate differences can point researchers toward 
potentially influential variables, the net contribution of a given variable also depends on its 
correlations with the other variables in the set, and cannot be judged adequately by simply 
relying on univariate indices.  
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In this paper I tackle this problem by proposing two simple heterogeneity coefficients for 
D. Both coefficients are based on the Gini coefficient, a well-known index of inequality among 
values of a distribution. The heterogeneity coefficient H quantifies inequality in the contribution 
of individual variables to the overall effect size, and ranges from 0 (maximal homogeneity) to 1 
(maximal heterogeneity). Specifically, a value of H = 1 indicates that the multivariate effect is 
fully determined by the positive contribution of just one variable. The complementary coefficient 
EPV (for equivalent proportion of variables) expresses H in a more concrete form, as the 
proportion of equally contributing variables that would produce the same amount of 
heterogeneity if the remaining variables in the set made no contribution. These indices of 
heterogeneity can aid researchers in the interpretation of D, and provide finer-grained 
information on the nature of multivariate group differences. After deriving formulas for H and 
EPV, I illustrate their use by reanalyzing some published findings from studies of gender 
differences in psychology and neuroscience. 

 
Heterogeneity Coefficients for D 

 
The H Coefficient 
 

For a set of n variables measured in two groups A and B, the Mahalanobis distance D is 
given by 

 
𝐷 = [(𝐦𝑨 −𝐦𝑩)#𝐒$𝟏(𝐦𝑨 −𝐦𝑩)]

𝟏
𝟐 (1) 

 
where mA and mB are column vectors of the means of the n variables in groups A and B, 

and S is the common variance-covariance matrix. Equivalently, 
 

𝐷 = (𝐝#𝐑$&𝐝)
𝟏
𝟐 (2) 

 
where d is a column vector of standardized differences (Cohen’s d) and R is the common 

correlation matrix. From Eq. 2, the squared Mahalanobis distance D2 can be written as the sum 
 
𝐷' = 𝐝#𝐙𝐝 = ∑ ∑ 𝑧()𝑑(𝑑)*

(+&
*
)+& = ∑ 𝐶)*

)+& , (3) 
 
where 𝐙 = 𝐑$& and  
 
𝐶) = ∑ 𝑧()𝑑(𝑑)*

(+& . (4) 
 
When 𝑑) = 0, 𝐶) = 0. When 𝑑) ≠ 0 (that is, for nonzero univariate differences), 𝐶) can be 

rewritten as: 
 
𝐶) = 3∑ 𝑧()

,#
,$

*
(+& 4 𝑑)'. (5) 

 
In other words, the squared Mahalanobis distance can be decomposed into a weighted sum 

of squared univariate differences. The weight 3∑ 𝑧()
,#
,$

*
(+& 4 in Eq. 5 captures the effect of the 
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correlations between the variable of interest and the other variables. If all variables are 
orthogonal, Z is an identity matrix and 𝐶) = 𝑑)'; the Mahalanobis distance then reduces to the 
Euclidean distance so that  

 
𝐷' = ∑ 𝑑)'*

)+& . (6) 
 
Conveniently, 𝐶) can be interpreted as the net contribution of each variable to the 

multivariate effect size. If the effect size 𝑑) is zero, the variable makes no contribution. 
Otherwise, the variable’s contribution corresponds to the squared effect size (𝑑)') weighted by a 
term that is a function of its correlations with the other variables and may be positive, zero, or 
negative. 

 
A heterogeneity coefficient for D should be minimized when all the variables make the 

same contribution (𝐶& = 𝐶' = ⋯ = 𝐶*), and maximized when one variable fully accounts for the 
size of the multivariate effect. The Gini coefficient G offers a straightforward way to quantify 
inequality in the contributions of the n variables. When the values used to compute G are non-
negative, the coefficient has a lower bound of 0 (maximum equality) and approaches 1 
(maximum inequality) as the number of values becomes very large; for n values, the upper bound 
on G is (𝑛 − 1)/𝑛. However, the coefficient in the standard form can become larger than 1 if the 
distribution contains negative values, which is problematic since 𝐶) values can be negative (see 
Raffinetti, Siletti, & Vernizzi, 2015). While G can be normalized to accommodate negative 
values (Berrebi & Silber, 1985; Chen, Tsaur, & Rhai, 1982; Raffinetti et al., 2015), the 
normalized coefficient has an undesirable property: its upper bound is no longer (𝑛 − 1)/𝑛 but 
depends on the exact distribution of positive and negative values. As a consequence, normalized 
Gini coefficients are hard to interpret and compare across studies. 

 
For the purpose of deriving a heterogeneity coefficient for D, an effective solution is to 

focus on the positive contributions to the effect size, by treating the sum of the negative 
contributions (if any) as the “baseline” to which the remaining variables add to obtain the total 
effect size. The new quantity of interest is not D2 but rather the sum of the positive contributions 
to D2, which is larger than D2 if some 𝐶) values are negative. This is obtained by setting negative 
𝐶) values to zero. This way, variables with negative 𝐶) values still count toward increasing 
heterogeneity, but the problems with the normalized Gini coefficient can be avoided. The 
recoded 𝐶) values are indicated as 𝐶)∗, so that 

 
𝐶)∗ = 𝑚𝑎𝑥(0, 𝐶)). (7) 
 
It thus becomes possible to apply the standard formula for the Gini coefficient:  
 
𝐺 = .'/*%0 ∑ )2$$3(*5&)/*%7 ∑ 2$&

$'(
&
$'(

2
 (8) 

 
where 𝑥&…𝑥* are n ordered values (𝑥& < 𝑥'… < 𝑥*) and 𝑥 is their average (see Raffinetti 

et al., 2015). A correction can be applied by multiplying the expression in Eq. 8 by 𝑛/(𝑛 − 1), 
thus ensuring that G always has an upper bound of 1 even when n is small (Deltas, 2003). 
Replacing 𝑥 with 𝐶∗ in Eq. 8 and applying the correction yields the heterogeneity coefficient H: 
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𝐻 = ('/*) ∑ )8$

∗$[(*5&)/*]∑ 8$
∗&

$'(
&
$'(

(*$&)8̅∗
 (9) 

 
where n is the number of variables, 𝐶&∗…𝐶*∗ are the ordered values of 𝐶)∗ (with 𝐶&∗ <

𝐶'∗… < 𝐶*∗) and 𝐶̅∗ is their average. The heterogeneity coefficient in Eq. 9 ranges from H = 0 
when all the variables in the set contribute equally, to H = 1 when the size of the multivariate 
effect entirely depends on the (positive) contribution of one variable. 
 
The EPV Coefficient 

 
The EPV coefficient is the proportion of equally contributing variables that would produce 

the same amount of heterogeneity, if the remaining variables in the set made no contribution. 
EPV equals one minus the uncorrected Gini coefficient (Eq. 8), which corresponds to: 

 
𝐸𝑃𝑉 = 1 − *$&

*
𝐻. (10) 

 
For example, H = .67 with n = 10 variables corresponds to EPV = .40; this means that the 

same level of heterogeneity would obtain in a hypothetical scenario where 40% of the variables 
contributed equally to D and the remaining 60% made no contribution.  

 
The formula for EPV follows directly from the definition of the Gini coefficient as the ratio 

of (a) the area between the line of equality and the Lorenz curve and (b) the total area below the 
equality line (see e.g., Chen et al., 1982). If a proportion p of the variables contribute equally 
while the remaining ones make no contribution, the area below the Lorenz curve is a proportion 
p of the total area below the equality line, and the uncorrected Gini coefficient becomes 1 − 𝑝 by 
definition. The EPV coefficient approaches 1 − 𝐻 as n becomes larger, but the two values may 
diverge considerably when the number of variables is small.  

 
While EPV may provide a more intuitive summary of heterogeneity than H, its main 

limitation is that it can never be smaller than 1/𝑛 (when H = 1). For this reason, one should be 
cautious when comparing EPV values calculated on markedly different numbers of variables. 
When there are at least 5 variables in the set, EPV ≤ .20 may be used as a reasonable criterion to 
flag high levels of heterogeneity (corresponding to a scenario in which 20% or less of the 
variables explain 100% of the effect size). 

 
Empirical Illustrations  

 
In the personality study cited above, my colleagues and I found a multivariate effect size of 

D = 2.71 on a set of 15 personality traits (mean differences and correlations where estimated via 
multigroup latent variable modeling). However, one particular variable (Sensitivity) showed a 
large univariate difference (d = 2.29), suggesting a disproportionate contribution to the overall 
effect (see Del Giudice et al., 2012). Indeed, the heterogeneity coefficients for this effect size are 
H = .95 and EPV = .11, indicating a very high level of heterogeneity. Removing the Sensitivity 
variable from the analysis reduced the effect size to D = 1.71; the corresponding heterogeneity 
coefficients are H = .80 and EPV = .25. The new value of EPV is noticeably larger than before, 
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and lies above the proposed .20 cutoff for high heterogeneity. It should be stressed that these 
results do not imply that the original effect size D = 2.71 is somehow “invalid” or should be 
discarded in favor of D = 1.71. This kind of decision depends on the specific theoretical and 
practical goals of a given study; depending on context, a high level of heterogeneity may well be 
expected and/or desirable. What these results clearly show is that patterns of sex differences are 
not evenly distributed across personality traits; instead, they tend to be concentrated in a 
relatively small subset of traits. Also, the .20 cutoff is merely a rule of thumb to aid 
interpretation, and should not be reified or employed blindly to categorize EPV values into 
“small” and “large” regardless of context. 

 
In another large-scale study, Morris (2016) analyzed the size of gender differences in 

occupational preferences, measured on six standard dimensions (realistic, investigative, artistic, 
social, enterprising, and conventional). In the total sample, the multivariate effect was D = 1.70 
(corrected for attenuation). The heterogeneity coefficients for this effect are H = .87 and EPV = 
.27; these values indicate that gender differences in occupational preferences are concentrated in 
a relatively small subset of dimensions (M. Morris, personal communication: October 10, 2016). 

 
Aggression is another important domain in which males and females show systematic 

differences. In Del Giudice (2009) I reanalyzed Archer’s (2009) meta-analytic findings on 
physical, verbal, and indirect aggression. Correcting for attenuation, the multivariate effect size 
computed on the three domains of aggression could be estimated at about D = 0.89−1.01, 
depending on assumptions about correlation patterns. The corresponding heterogeneity 
coefficients are H = .33−.63 and EPV = .58−.78. The amount of heterogeneity observed in this 
case corresponds to a scenario in which about 70% of the variables contribute equally to D. 
These values indicate lower heterogeneity than in the case of personality or occupational 
preferences. However, one should keep in mind that, with n = 3, EPV can never be smaller than 
.33; thus, it would be misleading to directly compare the EPV of gender differences in 15 
personality traits to that of gender differences in 3 domains of aggression. (Also, note that the 
proposed .20 cutoff is meaningless with fewer than 5 variables.) The corresponding H 
coefficients are more comparable, as they have the same range regardless of the number of 
variables considered (i.e., H = 1.00 always means that one variable explains the totality of the 
effect size). 

 
Finally, my colleagues and I (Del Giudice et al., 2015) reanalyzed the data on gender 

differences in brain anatomy presented by Joel and collaborators (2015). The six datasets we 
reanalyzed contained information of three types of anatomical features—volume, cortical 
thickness, and fractional anisotropy (a measure of white matter integrity). From each dataset, 
Joel and collaborators (2015) had selected 7−12 variables, each measuring a feature (e.g., 
volume) of a specific brain region. Across datasets, multivariate effect sizes computed using the 
same variables ranged from D = 0.69 to D = 1.47. The corresponding heterogeneity coefficients 
range from H = .44 and EPV = .58 (in the cortical thickness dataset labeled NKI, SBA) to H = 
.70 and EPV = .36 (in the fractional anisotropy dataset; for details see Joel et al., 2015). The 
unweighted averages across the six datasets are .56 for H and .50 for EPV. While none of the 
datasets shows high levels of heterogeneity according to the .20 cutoff, the fairly broad range of 
H values suggests the possibility that some aspects of gender differences in brain anatomy may 
be more strongly localized (i.e., concentrated in a few specific regions) than others. These 



  
 

Heterogeneity Coefficients for Mahalanobis’ D 9 

findings illustrate how heterogeneity coefficients may have substantive implications for 
empirical research. 

 
Conclusion 

 
As multivariate effect sizes such as D become more widely used in research on group 

differences, they will necessitate new statistical tools to aid in their interpretation, diagnose 
potential problems, and so on. Here I presented two simple coefficients that quantify 
heterogeneity in the contribution of individual variables to the overall effect size. The H 
coefficient always ranges between 0 and 1, regardless of the number of variables considered. The 
EPV coefficient expresses heterogeneity in more intuitive terms, but its range inevitably depends 
on the number of variables in the set, which may complicate interpretation and limit the ability to 
make comparisons between studies.  

 
While all the empirical examples I discussed in this paper concern gender differences, the 

potential applications of D are much broader, and by no means limited to correlational studies. 
As a hypothetical experimental scenario, consider a study investigating the effects of various 
treatments on multiple dimensions of psychotic symptoms (for example positive symptoms such 
as hallucinations, negative symptoms such as anhedonia, and disorganization symptoms such as 
psychomotor agitation). Different treatments may produce different patterns of change—some 
may lead to larger symptom reductions limited to a specific dimension, while others may result 
in smaller but more homogeneous improvements. Moreover, a treatment associated with 
relatively small improvements in each dimension may still produce the largest overall benefit 
when all the variables are considered simultaneously. These multivariate patterns would be easy 
to summarize and compare using D in combination with heterogeneity indices such as H. 

 
To facilitate those who wish to use these coefficients in their research, an R script can be 

downloaded at http://marcodg.net/publications or obtained directly from the author. The 
functions included in the script compute Mahalanobis’ D from raw data or summary statistics 
and return confidence intervals, overlap coefficients, heterogeneity coefficients, and other useful 
indices. 

 
 

 
 

- See Addendum Below - 
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Addendum (Multivariate Behavioral Research, 53, 571-573 [2018]). 
 
 

Multivariate effect sizes such as Mahalanobis’ D raise the issue of heterogeneity in the 
contributions of individual variables to the overall effect. In Del Giudice (2017) I proposed a 
strategy to quantify heterogeneity: first, partition D2 into a set of non-negative values that reflect 
the contributions of individual variables; second, apply the small-sample Gini formula to those 
values to obtain a heterogeneity coefficient ranging between 0 and 1. The critical step in this 
strategy is finding a suitable partition of D2. In Del Giudice (2017) I used a simple approach to 
partition the multivariate D2 into a weighted sum of the squared univariate effects (𝑑)'). The 
resulting 𝐶) values have two desirable properties. First, 𝐶) = 0 if removing variable 𝑋) from the 
set leaves D unchanged. For two variables 𝑋&, 𝑋' with correlation r and effect sizes 𝑑&, 𝑑' (the 
case I will use for illustration here): 

 
𝐶& =

&
&$<%

31 − 𝑟 ,%
,(
4 𝑑&' (1) 

 
And 
 
𝐶' =

&
&$<%

31 − 𝑟 ,(
,%
4 𝑑''. (2) 

 
It follows that 𝐶& = 0 when 𝑑& = 𝑟𝑑', which is appropriate since in this case 𝐷' =

(𝐶& + 𝐶') = 𝑑''. Conversely, 𝐶' = 0 when 𝑑' = 𝑟𝑑&, and 𝐷' = 𝑑&'. Second, when two highly 
correlated variables 𝑋) and 𝑋( are both in the set, their joint contribution is split between 𝐶) and 
𝐶(, and is not partialed out as it would happen with methods for quantifying the contribution of 
individual variables that proceed by removing one variable at a time (e.g., Rencher, 1993). 

 
In the original paper, I suggested that 𝐶) values can be interpreted as “net contributions” to 

D2. This is incorrect: 𝐶) values can be negative, even though D2 never decreases when more 
variables are added to the set. The fact that 𝐶) values can be negative also makes them unsuitable 
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for calculating the standard Gini coefficient. In Del Giudice (2017), I proposed an ad-hoc 
solution to this problem, namely, setting negative 𝐶) values to zero and using the resulting 𝐶)∗ 
values to calculate two Gini-based heterogeneity coefficients, H and EPV. However, this 
approach is not ideal, because a negative 𝐶) value still reflects a positive contribution of 𝑋) to D 
(that is, D decreases if 𝑋) is removed from the set). To illustrate, in the two-variable case with 
𝑟 > 0, negative values 𝐶) < 0 occur whenever 0 < 𝑑) < 𝑟𝑑(; it is easy to show that under the 
same conditions 𝐷' =	 L𝐶) + 𝐶(M > 𝑑(', which implies that 𝑋) makes a positive contribution to D. 
Negative 𝐶) values are more likely to occur when 𝑑) is small relative to 𝑑( and the two variables 
are strongly correlated. In sum, setting negative 𝐶) values to zero is an overly conservative 
approach—it tends to underestimate the contribution of some variables to D, and hence 
overestimate the amount of heterogeneity. The resulting distortion tends to become larger as 
collinearity among the variables increases.  

 
A better solution to the problem of negative 𝐶) values is to use the ordered absolute values 

|𝐶&| … |𝐶*| (where |𝐶&| < |𝐶'| … < |𝐶*|, and |𝐶|is their average) to calculate heterogeneity. To 
avoid confusion, the resulting coefficients can be labeled as H2 and EPV2: 

 
𝐻' =

('/*) ∑ )|8$|$[(*5&)/*] ∑ |8$|
&
$'(

&
$'(

(*$&)|8|
 (3) 

 
and 
 
𝐸𝑃𝑉' = 1 − *$&

*
𝐻'. (4) 

 
 
 

 

 
 

Figure 1. Behavior of heterogeneity coefficients H and H2 in the case of two positively correlated variables. (In the 
example shown, 𝑑* = 1.0 and 𝑟 = .5; the qualitative pattern does not depend on the choice of values.) The dotted 
line shows the original H coefficient. The solid line shows the revised H2 coefficient discussed here. For both 
coefficients, heterogeneity is minimal when 𝑑+ = ±𝑑* (in this example, 𝑑+ = ±1) and maximal when 𝑑+ = 0, when 
𝑑+ = 𝑟𝑑* (in this example, 𝑑+ = 0.5), and when 𝑑+ = 𝑑*/𝑟 (in this example, 𝑑+ = 2). 
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Figure 1 illustrates the behavior of H and H2 in the two-variable case (with 𝑟, 𝑑& > 0). For 

both 0 < 𝑑' < 𝑟𝑑& and 𝑑' > 𝑑&/𝑟 (equivalent to 0 < 𝑑& < 𝑟𝑑'), coefficient H remains equal to 
1 (maximum heterogeneity, wrongly indicating that only one variable contributes to D), whereas 
H2 correctly decreases to reflect the nonzero contributions of 𝑑' and 𝑑&, respectively. 
 

To illustrate the difference between H and H2 with some real-world examples, consider the 
empirical datasets analyzed in Del Giudice (2017). For the aggression dataset from Del Giudice 
(2009), using H or H2 makes no difference because there are no negative 𝐶) values. For the 
personality dataset from Del Giudice, Booth, & Irwing (2012), H = .95 (EPV = .11) while H2 = 
.90 (EPV2 = .16). After removing the “sensitivity” factor from the analysis, H = .80 (EPV = .25) 
while H2 = .76 (EPV2 = .30). For the brain anatomy data discussed in Del Giudice et al. (2016), 
H ranges from .44 to .70 (EPV from .36 to .58); the corresponding values of H2 range from .32 to 
.58 (EPV2 from .47 to .71). In these examples, H2 does not dramatically change the picture, but it 
does suggest a somewhat more homogeneous contribution than indicated by H. 

 
While coefficient H2 improves on the original H, both have limitations owing to their 

reliance on the C partition. In particular, 𝐶) = 0 whenever 𝑑) = 0; however, a variable 𝑋) may 
contribute to increase D even if 𝑑) = 0, provided that it has nonzero correlations with the other 
variables. In the two-variable case, it is easy to show that if 𝑑) = 0 and 𝑟 ≠ 0, then  𝐷' > 𝑑('. 
Future research may show a way to partition D2 so as to avoid this problem while maintaining 
the desirable properties of C. The currently available alternatives are not well suited for the 
task—for example, the partitioning method recently proposed by Garthwaite & Koch (2016) 
avoids the problem of negative values, but fails to identify cases in which one of the variables 
makes no contribution to D (in the two-variable case, when 𝑑' = 𝑟𝑑& or 𝑑' = 𝑑&/𝑟). At present, 
H2 offers a practical means to quantify heterogeneity and should prove useful in a variety of 
applications. 
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