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ON THE GLOBALIZATION OF GEOMETRIC PARTIAL
(CO)MODULES IN THE CATEGORIES OF TOPOLOGICAL SPACES

AND ALGEBRAS

PAOLO SARACCO AND JOOST VERCRUYSSE

Abstract. We study the globalization of partial actions on sets and topological spaces
and of partial coactions on algebras by applying the general theory of globalization for
geometric partial comodules, as previously developed by the authors. We show that this
approach does not only allow to recover all known results in these settings, but it allows
to treat new cases of interest, too.

1. Introduction

Since the very beginning of the theory of partial group actions [6], one of the main
questions has been to understand if any given partial action can be obtained as a restriction
of a classical (global) group action [1, 3, 9, 11, 13].

The geometric partial (co)modules from [10] provide a general categorical framework to
study all sorts of partial actions in a unified way, subsuming partial actions of groups as
well as partial (co)representations of Hopf algebras (see [15] for a detailed treatment of the
globalization question in these cases). Moreover, geometric partial comodules also allow to
treat cases that cannot be described by the Hopf-algebraic partial (co)actions from [4], such
as genuine partial actions of algebraic groups on irreducible varieties. In a previous paper
[14], we defined and studied globalizations for geometric partial comodules. In the present
paper we apply the general results from [14] to discuss in more detail the globalization
results for partial actions of topological monoids on topological spaces and partial comodule
algebras. We show that our approach (Theorem 3.3) not only allows to recover and unify
the globalization results for topological partial actions from [1] and [13] (Corollary 3.7),
but it also allows to treat globalizations in new cases (Example 3.8). Next, we consider the
partial comodule algebras (also called partial coactions) over bialgebras from [4] and show
that these are globalizable (Theorem 4.3). Finally we explain how our globalization for
partial comodule algebras differs from the enveloping coaction from [3] (Proposition 4.4).
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PS is a Chargé de Recherches of the Fonds de la Recherche Scientifique - FNRS and a member of the

National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM). JV
thanks the FNRS (National Research Fund of the French speaking community in Belgium) for support via
the MIS project ‘Antipode’ (Grant F.4502.18) and the FWB (Fédération Walonie-Bruxelles) for support
through the ARC project “from algebra to combinatorics, and back”. The authors express their gratitude
to the anonymous referees for the careful reading of this paper and the useful suggestions.

This version of the article has been accepted for publication after peer review, but is not the Version of
Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: doi.org/10.1007/s00233-022-10269-3. Use of this Accepted Version is subject to the
publisher’s Accepted Manuscript terms of use.

https://doi.org/10.1007/s00233-022-10269-3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


2 PAOLO SARACCO AND JOOST VERCRUYSSE

We denote identity on an object X by IdX or simply by X itself.

2. The motivating example: Partial actions of monoids on sets

2.1. Categorical formulation of partial actions. A partial action of a monoid on a set
is, intuitively, a “partially defined” action, satisfying unitality and associativity conditions
whenever these make sense. Let us make this more explicit. Fix a monoid M with
composition law ∆ : M ×M → M and neutral element u : {∗} → M, ∗ 7→ e. A partial
action datum over M is a quadruple (X,X •M,πX , ρX) consisting of two sets, X and X •M ,
and of a span

X ×M X

X •M
ii

πX

ii
ρX

77
(1)

in Set, where πX is an injective map. The set X • M can be thought of as those
“compatible pairs” for which the action is well-defined. For every m ∈ M , put Xm :=
{x ∈ X | (x,m) ∈ X •M} and αm : Xm → X, x 7→ ρX(x,m). The set Xm is the do-
main for the action by the element m. For the sake of simplicity, we will often write
x ·m := αm(x) = ρX(x,m). We can now consider the following pullbacks:

X ×M

(X •M)×M

ρX×M
;;

X •M
cc
πX

cc

(X •M) •M
��?
?

ρX•M

;;

ccπX•M

cc
and

X ×M

(X •M)×M

(X×∆)◦(πX×M)
;;

X •M
cc
πX

cc

X • (M •M)
��?
?

ccπX,∆

cc

X•∆

;; (2)

Explicitly, these pullbacks can be described as the following sets:
(X •M) •M = {(x,m, n) ∈ X •M ×M | (x ·m,n) ∈ X •M}

= {(x,m, n) ∈ X ×M ×M | x ∈ Xm and x ·m ∈ Xn} ,
X • (M •M) = {(x,m, n) ∈ X •M ×M | (x,mn) ∈ X •M}

= {(x,m, n) ∈ X ×M ×M | x ∈ Xm and x ∈ Xmn} .
The quadruple (X,X •M,πX , ρX) is called a partial action of M on X if the following two
axioms are satisfied.
(PA1) Unitality: Xe = X and αe = IdX . Equivalently, there exists a morphism X • u :

X → X •M which makes the following diagram commutative

X ×M X •MOO
X•u

ooπXoo ρX // X

X.
X×u

hh

IdX

66
(3)

(PA2) Partial associativity: α−1
m (Xn) = Xmn ∩Xm and αn ◦ αm = αmn on α−1

m (Xn) for all
m,n ∈M . Equivalently, there is an isomorphism (equality, in fact)

θ : (X •M) •M → X • (M •M)
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such that the following diagram commutes

X oo
ρX

OO
ρX

X •M oo ρX•M (X •M) •M
θ

tt
��
πX•M
��

X •M X • (M •M)
X•∆

oo //
πX,∆

// (X •M)×M.

(4)

Remark 2.1. One can easily verify that the definition of a partial action of a monoid as
given above is equivalent to those considered for example in [13, Definition 2.3] and in [9,
Definition 2.4]. Moreover, it was shown in [10, Section 1] that, for M a group, one recovers
the definition of partial group actions as given in [7, Definition 1.2].

The above definitions of a partial action datum and of a partial action can obviously
be extended to the setting of monoids in arbitrary monoidal categories with pullbacks.
Indeed, if (M,∆, u) is a monoid (or algebra) in the monoidal category (C,⊗, I), then we
can define partial module data (X,X •M,πX , ρX) and geometric partial modules by simply
replacing the cartesian product by the monoidal product in diagrams (1), (2), (3) and (4)
above. This is the viewpoint of [10], where the dual notions of partial comodule datum and
geometric partial comodule over a comonoid (coalgebra) in an arbitrary monoidal category
with pushouts C were defined.

If (X,X • M,πX , ρX) and (Y, Y • M,πY , ρY ) are geometric partial modules, then a
morphism of geometric partial modules is a pair (f, f •M) of morphisms in C with f : X → Y
and f •M : X •M → Y •M such that the following diagram commutes

X
f ��

oo ρX
X •M
f•M ��

// πX // X ⊗M
f⊗M��

Y oo ρY
Y •M //

πY

// Y ⊗M.
(5)

Observe that f •M , when it exists, is uniquely determined by f as πY is a monomorphism.
We will often denote a geometric partial module (X,X •M,πX , ρX) simply by X and a
morphism as above by f . Moreover, we will denote by gPModM the category of geometric
partial modules over M and their morphisms and we will often omit to specify the adjective
“geometric” when not strictly needed.

Note also that any usual (global) M -module (X, δX) is a geometric partial module with
πX := IdX⊗M and ρX := δX . In fact, ModM is a full subcategory of gPModM and we denote
by I : ModM → gPModM the associated embedding functor.

2.2. The general globalization result. Let (M,∆, u) be a monoid in a monoidal category
C with pullbacks. Recall from (the dual of) [10, Example 2.5] that, for any (right) M -module
(Y, δ) and any monomorphism p : X → Y in C, the pullback

Y

X ⊗M
(p⊗M)◦δ 44

X
jj

pjj

X •M
��?
?

jj
πX

jj
ρX

44 (6)
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inherits a structure of geometric partial module and p becomes a morphism of partial
modules. We refer to this as the induced partial module structure from Y to X.

Naively speaking, the globalization of a partial module X is a universal M -module
“containing” X and such that the partial action is induced by the global one. The following
definition is the straightforward dualization of [14, Definition 3.1].

Definition 2.2. Given a partial module (X,X •M,πX , ρX), a globalization for X is a
global module (Y, δY ) with a morphism p : X → Y in C such that
(GL1) the following diagram commutes

X ⊗M p⊗M // Y ⊗M δY // Y

X •M
πX

OO

ρX

// X,

p

OO
(7)

that is, p : X → I(Y ) is a morphism of partial modules;
(GL2) diagram (7) is a pullback square in C, that is to say, the partial module structure on

X is induced by the global module structure on Y ;
(GL3) the global module Y is universal, in the sense that the following map is bijective

ModM(Y, Z)→ gPModM(X, I(Z)), η 7→ η ◦ p.

We say that X is globalizable if a globalization for X exists and we denote by gPModglM the
full subcategory of gPModM of the globalizable partial modules.

It can be shown (see [14, Lemma 3.2]) that if (Y, p) is a globalization of a partial module
X, then p : X → Y is a monomorphism. Moreover, it follows from axiom (GL3) that a
globalization of a partial module is unique (up to isomorphism) whenever it exists.

The following theorem is the main results of [14], Theorem 3.5, rephrased in its dual
form for the convenience of the reader.

Theorem 2.3. Let M be a monoid in the monoidal category C with pullbacks. Then a
geometric partial M-module X = (X,X •M,πX , ρX) is globalizable if and only if
(a) the following coequalizer exists in ModM :

(X •M ⊗M,X •M ⊗∆)
ρX⊗M //

(X⊗∆)◦(πX⊗M)
// (X ⊗M,X ⊗∆) κ // (YX , δ); (8)

(b) the following diagram is a pullback diagram in C:

YX

X ⊗M
κ 44

X

κ◦(X⊗u)jj

X •M.
jj

πX

jj
ρX

44 (9)

Moreover, if these conditions hold, then the morphism εX := κ ◦ (X ⊗ u) : X → YX is a
monomorphism in C, κ = δ ◦ (εX ⊗M) and (YX , εX) is the globalization of X.
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Remark 2.4. Let (Y, δ) be a global M -module. In view of [14, Lemma 3.3], it can be
easily checked that (Y, δ) fits into the coequalizer diagram (9) if and only if there exists
a morphism p : X → Y in C satisfying (GL1) and (GL3). This suggests that one may
call “pre-globalization” a global module (Y, δ) together with a morphism p : X → Y in C
satisfying (GL1) and (GL3) (equivalently, (a) of Theorem 2.3) and treat (GL2) (equivalently,
(b) of Theorem 2.3) separately, as an additional condition. Since here we are interested in
globalizations in the strict sense (that is, also inducing the given partial module structure),
we focus on global modules satisfying all the conditions (GL1)-(GL3), in order to stick to
the point, and we leave the pre-globalization notion for a future investigation.

2.3. Recovering the globalization of partial actions of groups and monoids. Let
us return to the situation where the monoid M (in Set) acts partially on the set X. Then
the following coequalizer (in Set)

X •M ×M
ρX×M //

(X×∆)◦(πX×M)
// X ×M κ // YX (10)

is given by YX = (X ×M)/R, where R ⊆ (X ×M)× (X ×M) is the equivalence relation
generated by r =

{(
(x · m,n), (x,mn)

)
| m,n ∈ M,x ∈ Xm

}
. Since the endofunctor

− ×M : Set → Set is a left adjoint, it preserves coequalizers and hence YX inherits in a
natural way a global action from X ×M . Explicitly, if [x,m] denotes the class of (x,m)
in YX , then the global action of M on YX is given by [x,m] / n := [x,mn]. Applying our
globalization Theorem 2.3, we find that YX will be the globalization of X if (9) is a pullback
diagram. This was essentially proven in [13, Proposition 2.6]. Hence we can conclude the
following result, which then shows that the globalization for monoids as described in [13,
Section 2] is a special instance of the globalization for geometric partial modules discussed
in the previous section.

Corollary 2.5. For C = Set, we have gPModglM = gPModM for every monoid M .

Let us remark that if the monoid M is a group, then the globalization YX coincides with
the globalization for partial group actions as given in [1, Theorem 1.1] or [11, Section 3.1],
as already discussed in [14, Proposition 3.4].

3. Partial actions of topological monoids

Consider the category Top of topological spaces. It is a monoidal, complete and cocomplete
category (see e.g. [12, Chapter V, Section 9]). Limits and colimits can be computed by
endowing the corresponding limits and colimits in Set with a suitable topology. A monoid
in Top is a topological monoid ((M, τM),∆, u), i.e. a topological space endowed with a
monoid structure whose composition is a continuous map. The notion of geometric partial
module inflected in Top gives a span

(X ×M, τX × τM) (X, τX)

(X •M, τX•M)
iiπX

ii
ρX

55



6 PAOLO SARACCO AND JOOST VERCRUYSSE

in Top, where πX is an injective continuous map and (PA1) and (PA2) hold.
As we know from the general globalization Theorem 2.3, the globalization of a geometric

partial module in Top will exist if the coequalizer (10) exists in ModM and the diagram
(9) is a pullback in Top. The first condition is always satisfied, since ModM is (complete
and) cocomplete for any topological monoid M . This follows directly from (for example)
[2, Corollary 1.7], since Top is co-well-powered (which means that each object has a set
of quotient objects) and since the functor − ×M : Top → Top preserves epimorphisms
(that is, surjective continuous maps). Concretely, the underlying set of a coequalizer of
two parallel arrows f, g : X → Y in ModM is computed as the coequalizer (Q, q) in SetM
(the category of M -modules in Set), whose construction we recalled in the previous section.
The coequalizer in Top would then endow Q with the quotient topology with respect to
the surjective map q : Y → Q. However, to obtain the coequalizer in ModM , one endows
Q with the finest subtopology of this quotient topology for which the action Q×M → Q
becomes continuous. In general, this topology is strictly coarser than the quotient topology
and hence the forgetful functor ModM → Top will not preserve coequalizers (see however
Lemma 3.4 below for equivalent conditions for this to be the case).

From these observations, we can then conclude that for a geometric partial module in
Top to be globalizable, the only condition is that (9) is a pullback in Top. The following
example shows that, in contrast to what we saw in the previous section for Set, not every
geometric partial module over a topological monoid is globalizable.

Example 3.1. Let (M,∆, u) be a topological monoid and X a set with at least two
elements, which we endow with the indiscrete topology. Consider the trivial global action
δX : X ×M → X, given by δX(x,m) = x for all x ∈ X and m ∈ M . Now we define the
topological space X •M as the set X ×M endowed with the product topology of the
discrete topology τdX on X and the given topology on M . In other words, the topology on
X •M is generated by open sets of the form {x} × U where x ∈ X and U ∈ τM . Then
(X,X •M, IdX×M , δX) is clearly a partial M -module datum in Top. Since the action is
global, both (X •M) •M and X • (M •M) have X ×M ×M as underlying set. On
(X •M)×M we have the product topology arising from the discrete topology on X and
the given topology on M and since

δX •M =
(
X ×M ×M, τdX × τM × τM

)
δX×M−−−−→

(
X ×M, τdX × τM

)
and

X •∆ =
(
X ×M ×M, τdX × τM × τM

)
X×∆−−−→

(
X ×M, τdX × τM

)
are already continuous, we find that (X •M) •M = X • (M •M) have the same topology
as (X •M)×M and hence X is a geometric partial M -module.

The underlying set of the coequalizer (10) in Top is X (because the original action was
global) endowed with the quotient topology along X ×M δX−→ X, which is the original
indiscrete topology on X. Moreover, if we endow this coequalizer YX with the initial
global action of X, one easily observes that YX is also coequalizer (8) in the category of
(global) topological M -modules ModM . Then (X,X •M, IdX×M , δX) is globalizable (with
globalization the global M -module (YX , δX)) if and only if (9) is a pullback in Top. By
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specializing (9) in our present setting, we obtain the following diagram
YX

X ×M
δX 44

X

IdX
jj

X •MIdX×M

jj
δX

44

In order for this diagram to be a pullback in Top, X •M should have the coarsest topology
for which IdX×M and δX are continuous, which means that the opens should be of the form
X ×U , with U ⊂M open. This clearly differs from the topology we have chosen on X •M .
Therefore, the diagram above is not a pullback and hence the geometric partial module
(X,X •M, IdX×M , δX) is not globalizable.

As a consequence, we can state the following result.

Proposition 3.2. In the category Top, a general globalization theorem for geometric partial
modules does not exist. More precisely, gPModglM ( gPModM for any topological monoid M .

Proof. It follows directly from Example 3.1. �

Although we know that not all geometric partial modules in Top are globalizable, Theorem
2.3 provides for us a way to describe globalizable partial modules.

Theorem 3.3. Let (M, τM ) be a topological monoid. Then the globalizable geometric partial
modules over M in Top are exactly all those geometric partial modules (X,X •M,πX , ρX)
for which X •M has the coarsest topology making both πX and ρX continuous.

In particular, any geometric partial module for which πX is an embedding (that is, X •M
has the induced topology via πX), is globalizable.

Proof. As we have observed at the beginning of the section, the sole criterion for the
globalization of X to exist is that the set-theoretic pullback (9) is also a pullback in Top.
Clearly, this is the case exactly if the topology on X •M is the coarsest topology making
both πX and ρX continuous.

Finally, if (X,X •M,πX , ρX) is a geometric partial module for which πX is an embedding,
then this means that X •M has simply the induced (or subspace) topology from X ×M
and that ρX is already continuous with respect to this topology. Hence X •M has indeed
the coarsest topology for which both πX and ρX are continuous and we can conclude. �

The following Lemma shows that under some mild conditions on the topological monoid
in Theorem 3.3, the coequalizers (of type (8)) in ModM can be more easily computed in
Top.

Lemma 3.4. If (M, τM) is a topological monoid such that one of the following conditions
holds:
(1) The endofunctor −×M ×M : Top→ Top preserves coequalizers;
(2) M is core-compact;
(3) (M, τM) is a topological group;
then the underlying functor from ModM to Top creates coequalizers.
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Proof. (1). This is an application of the well-known fact that for any monoid M in
a monoidal category C, the colimit of any given diagram in the category ModM exists
whenever the colimit of the same diagram in C exists and the functor −⊗M ⊗M : C → C
preserves it.
(2). This is a particular instance of (1), since in this case −×M is a left adjoint functor
(see, for instance, [5, Theorem 5.3]).
(3). This is a particular instance of (1) too, but specialized to the coequalizers of type (10)
(which is sufficient for Theorem 3.3 to hold). Recall that the endofunctor −× Z preserves
coequalizers (Q, q) of open maps in Top, for every Z in Top: in fact, since the coequalizer
(Q, q) of open maps is open itself, q × Z is open, surjective and continuous and hence it
is a quotient map (that is, the product topology on Q × Z is equivalent to the quotient
topology). Now, G being a group, the maps ∆ : G × G → G, πX and ρX are all open
maps. Since products and coequalizers of open maps are open again and the endofunctor
−×G preserves coequalizers of open maps, −×G always preserves the coequalizer (10) in
Top. �

The next definition subsumes at the same time [1, Definition 1.1] (in case ((M, τM ),∆, u)
is a topological group) and [13, page 125] (in case M is discrete).

Definition 3.5. A topological partial (right) action of a topological monoid (M, τM) on a
topological space (X, τX) is a pair

(
{Xm}m∈M , {αm}m∈M

)
such that

(TP1) the set X •M = {(x,m) ∈ X ×M | x ∈ Xm} is an open subspace of X ×M and
the function ρX : X •M → X, (x,m) 7→ αm(x) is continuous;

(TP2) the pair forms a set-theoretic partial action of M : Xe = X, αe = IdX and for all
m,n ∈M , α−1

m (Xn) = Xmn ∩Xm and αn ◦ αm = αmn on α−1
m (Xn).

A morphism of topological partial actions from (X, τX) with
(
{Xm}m∈M , {αm}m∈M

)
to

(X ′, τX′) with
(
{X ′m}m∈M , {α′m}m∈M

)
is a continuous map f : X → X ′ such that f(Xm) ⊆

X ′m and f ◦ αm = α′m ◦ f .

Note that axiom (TP1) implies that the set Xm = {x ∈ X | (x,m) ∈ X •M} is an open
subspace of X and αm : Xm → X is a continuous map, for all m ∈M . This was included
as an additional axiom in [1, Definition 1.1] and [13, page 125].

Any discrete partial action as in Section 2.1 is an example of a topological partial action
in which every space has the discrete topology. On the other hand, not every geometric
partial module in Top is a topological partial action. Indeed, the Example 3.1 is a geometric
partial module in Top which is not a topological partial action. This can be seen easily
from the following proposition, since in Example 3.1 πX : X •M → X ×M is an injective
continuous map, but not an open embedding, as X •M does not have the induced topology
along πX .

Proposition 3.6. Topological partial actions of a topological monoid (M, τM) are exactly
the geometric partial M-modules in Top for which πX is an open embedding.
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Furthermore, the category TopParActM of topological partial actions of M and their
morphisms is a full subcategory of the category gPModM of geometric partial M -modules in
Top.

Proof. As explained in Section 2.1, axiom (TP2) tells exactly that (X,X •M,πX , ρX) is a
geometric partial module over M in Set. Furthermore, axiom (TP1) tells that πX and ρX
are morphisms in Top and πX is an open embedding. Hence we can conclude on the first
assertion of the theorem if we prove that the bijection θ : (X •M) •M → X • (M •M)
(arising from the fact that (X,X •M,πX , ρX) is a geometric partial module in Set) is a
homeomorphism. The condition Xm ∩Xmn = α−1

m (Xn) implies that the continuous map

X • (M •M) πX,∆−−−→ X •M ×M ρX×M−−−−→ X ×M
factors through (X •M,πX) and since the latter has the induced topology from X ×M ,
the resulting factorization is continuous. Such a factorization is exactly the map needed
to prove that the inclusion X • (M •M) → (X •M) •M is continuous by resorting to
the universal property of (X •M) •M as a pullback in Top. The other way around, the
argument is similar.

Now, any morphism f : X → X ′ of topological partial actions induces a function
f •M : X •M → X ′ •M by (co)restriction of f ×M , which is continuous and makes
(5) to commute. Moreover, if (f, f •M) is a morphism of partial M -modules which were
induced by topological partial actions, then the condition (f ×M) ◦ πX = πX′ ◦ (f •M)
entails that for every x ∈ Xm, we have f(x) ∈ X ′m, and the condition f ◦ ρX = ρX′ ◦ (f •M)
entails that for every x ∈ Xm, we have f(αm(x)) = α′m(f(x)). Therefore, f is a morphism
of topological partial actions. One easily verifies that this construction is functorial. �

By combining Proposition 3.6 with Theorem 3.3, we immediately can conclude that all
topological partial actions over a topological monoid are globalizable.

Corollary 3.7. Let M be a topological monoid. Then every topological partial action over
M is globalizable and the underlying set of the globalization is given by the coequalizer (10).
Hence TopParActM is a full subcategory of gPModglM .

Let us remark that in the framework of topological partial actions of topological groups,
Corollary 3.7 was also proven in [8, Proposition 5.5] and [1, Theorem 1.1]. In the framework
of topological partial actions of a (discrete) monoid on a topological space, an analogue of
this result has been established in [13, Section 3].

In general, however, the inclusion of TopParActM in gPModglM in Corollary 3.7 is not
essentially surjective on objects, in the sense that there exist globalizable partial modules
which do not come from topological partial actions.

Example 3.8. Take M = R acting on Y = R2 by vertical translation Y × M →
Y,
(
(x, y), v

)
7→ (x, y + v) and take X to be the subspace j : R → R2, x 7→ (x, 0),

(everything with Euclidean topology). Then X • M = R × {0}, which is not open in
R× R. However, being the trivial partial module, (X,X •M,πX , ρX) is globalizable with
globalization (X ×M,X ×∆) (see [14, Proposition 3.10]).
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The next proposition further explains this phenomenon and how topological partial
actions can be characterized by the way they embed in their globalization.

Proposition 3.9. Let M be a topological monoid for which the underlying functor from
ModM to Top preserves coequalizers (e.g. M satisfies one of the conditions from Lemma
3.4).

If (Y, δ) is a global M-module in Top and ε : X → Y is an open embedding, then the
induced geometric partial M-module (X,X •M,πX , ρX) in Top obtained by restricting Y
along ε is a topological partial action of M .

Conversely, if X is a topological partial action of M with globalization YX , then the
monomorphism εX : X → YX is an open embedding.

Proof. Let (Y, δ) be a global topological M -module and ε : X → Y be an open embedding.
Then one can endow X with a geometric partial module structure by taking the pullback
(6). Hence we can identify X •M = (ε×M)−1

(
δ−1(ε(X))

)
. Since ε is an open embedding

and δ is continuous, we can conclude that X •M is an open subset of X ×M and ρX
(which is the restriction of δ) is continuous with respect to the subset topology on X •M .
In other words πX : X •M → X ×M is an open embedding and hence X is a topological
partial action by Proposition 3.6.

Suppose now that X is a globalizable topological partial action with globalization (YX , δ).
Then the topology τX•M on X •M has to be the limit topology and hence the coarsest
topology for which πX and ρX are continuous. Moreover, since

(
(YX , τY ), κ

)
is (up to

homeomorphism) the coequalizer in Top of
(
X •M ×M, τX•M × τM

) ρX×M //

(X×∆)◦(πX×M)
//
(
X ×M, τX × τM

)
,

we have that τY is the quotient topology with respect to κ, that is U ∈ τY if and only
if κ−1(U) ∈ τX × τM , for every U ⊆ YX . In particular, εX(X) ∈ τY if and only if
X •M = κ−1

(
εX(X)

)
∈ τX × τM . Therefore, as X •M is open in X ×M (see Proposition

3.6), also εX(X) is open in YX (and conversely).
We are left to check that εX is an open map. Since X •M is the pullback of (9) in

Top, for every V ∈ τX we have that (x,m) ∈ κ−1
(
εX(V )

)
if and only if there is y ∈ V

such that κ(x,m) = εX(y), if and only if (x,m) ∈ X • M and ρX(x,m) = y, if and
only if (x,m) ∈ πX

(
ρ−1
X (V )

)
. Thus, κ−1

(
εX(V )

)
= πX

(
ρ−1
X (V )

)
∈ τX × τM and so

εX(V ) ∈ τY . �

Corollary 3.10. Let M be a topological monoid as in Proposition 3.9. Then, topological
partial actions over M are exactly those globalizable geometric partial modules that embed
in their globalization as open subspaces.

Let G be a topological group, X a topological partial action and YX the globalization of X,
which we know exists from the above and which is constructed as a suitable quotientG×X/ ∼
(since it is the coequalizer (10)). Abadie observed in [1] that, for G a Hausdorff topological
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group and X a Hausdorff topological partial action, this quotient is not necessarily Hausdorff
in general. Consequently, this quotient is not (isomorphic to) the coequalizer YX from (10)
in the category Haus. However, since Haus is still complete and cocomplete (see e.g. [12,
Proposition V.9.2]), one can still consider the coequalizer (YX , κ) of

X •G×G
ρX×G //

(X×∆)◦(πX×G)
// X ×G (11)

in Haus, which is the “largest Hausdorff quotient” of the coequalizer (Y ′, κ′) of the same
pair of arrows, but computed in Top. Namely, YX := Y ′/ ≈ where y ≈ y′ if and only if for
every f : Y ′ → Q with Q in Haus we have f(y) = f(y′) (i.e., they cannot be distinguished
by maps to Hausdorff spaces). As a matter of notation, denote by [x,m] the equivalence
class of (x,m) in YX , by [x,m]′ its class in Y ′ and by q : Y ′ → YX the canonical projection.
We have q ◦ κ′ = κ.

The following result tells that the globalization for Hausdorff partial actions exists exactly
when the coequalizer of (11) can be computed as in Top. This should be compared to [1,
Proposition 1.2] and [8, Proposition 5.6].

Theorem 3.11. Consider a geometric partial module (X,X •G, πX , ρX) in Haus where G
is a group. Then X is globalizable (as object in Haus) with globalization YX if and only if
YX = Y ′, that is, if and only if the coequalizer of (11) in Top is a Hausdorff space.

Proof. The reverse implication holds in light of Corollary 3.7, whence let us focus on the
direct one. Assume then that YX is the globalization of X with global action β and pick
two distinct points [x, g]′, [y, h]′ in Y ′ (where Y ′ as above denotes the coequalizer of the
pair (11) in Top). Consider [x, gh−1]′ and [y, e]′. In view of (GL2), if [x, gh−1] = [y, e], then
(x, gh−1) ∈ X •G and so [x, g]′ = [y, h]′, a contradiction. Thus, [x, gh−1] 6= [y, e] and hence
there exists Q Hausdorff and f : Y ′ → Q such that f([x, gh−1]′) 6= f([y, e]′). By taking
the preimages of two separating open sets, we find two open subsets U, V of Y ′ separating
[x, gh−1]′ from [y, e]′. Since βh = β(−, h) is a homeomorphism, βh(U) and βh(V ) are open
subsets separating [x, g]′ from [y, h]′ in Y ′. �

4. Partial comodule algebras

Let k be a commutative ring. Recall that the category Algk of (unital, associative)
k-algebras is monoidal, the monoidal product being the tensor product of two k-algebras
with component-wise multiplication. In this section, we study geometric partial modules
(see Section 2.1) in the monoidal category Algop

k or, stated otherwise, geometric partial
comodules in Algk (by using the dual terminology from [10]), which we will call geometric
partial comodule algebras.

Firstly, recall that a coalgebra in Algk is just a k-bialgebra (H,µ, u,∆, ε) and a global
comodule over H in Algk is exactly an H-comodule algebra in the classical sense. A
geometric partial comodule algebra is a quadruple (A,A •H, πA, ρA), where A and A •H
are algebras, πA : A⊗H → A •H is an algebra epimorphism (not necessarily surjective)
and ρA : A→ A •H is an algebra morphism, satisfying the counitality and coassociativity
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conditions dual to axioms (PA1) and (PA2). Specializing Theorem 2.3 to this setting, we
find the following result.

Corollary 4.1. Let H be a k-bialgebra which is flat as left k-module and consider a
geometric partial H-comodule algebra (A,A •H, πA, ρA). Set

Y :=
{∑

i

ai ⊗ hi ∈ A⊗H
∣∣∣∣ ∑

i

ρA(ai)⊗ hi =
∑
i

πA(ai ⊗ hi(1))⊗ hi(2)

}
.

Then the globalization of A exists provided that the following diagram
YA⊗ε

uu

� v

))
A

ρA
))

A⊗H
πA
uu

A •H

(12)

is a pushout in Algk. In this case, the globalization is given precisely by Y .
Moreover, in case A ⊗ ε : Y → A is surjective, then the above condition is satisfied

provided that πA is surjective as well and ker(πA) can be generated (as an A⊗H-ideal) by
elements of Y .

Proof. We know from Theorem 2.3 that the globalization of A, if it exists, should be given
by the equalizer

Y
κ // A⊗H

ρA⊗H //

(πA⊗H)◦(A⊗∆)
// A •H ⊗H (13)

computed in AlgHk (the H-comodules in Algk). Since H is flat as a left k-module, this
equalizer can be computed in Algk, and hence in Modk (or even Set). Therefore, it is given
by the set Y in the statement. The second condition of Theorem 2.3 states exactly that
diagram (12) is a pushout square in Algk.

For the last statement, recall that the pushout of a span R
f←− S

g−→ T in Algk where g
is a surjective map is given by

(
R/〈f(ker(g))〉, pR, f̃

)
where 〈f(ker(g))〉 is the two-sided

ideal in R generated by f(ker(g)), pR is the canonical projection and f̃ is the unique map
such that f̃ ◦ g = pR ◦ f . By applying this, we see that the diagram in the statement is
indeed a pushout if and only if πA is surjective and ker(πA) is the ideal generated by all∑
i ai ⊗ hi ∈ Y such that ∑i aiε(hi) = 0. �

Let us remark that, in general, πA is not necessarily surjective and geometric partial
comodule algebras are not always globalizable (see [14, Example 3.6] for an explicit example).
We will now describe a particular class of geometric partial comodule algebras for which
the globalization always exists.

Definition 4.2 ([4]). A (right) algebraic(1) partial comodule algebra over a bialgebra H is
an algebra A with a k-linear map δA : A→ A⊗H, a 7→ a[0] ⊗ a[1], such that

(1)The prefix ‘algebraic’ is not standard in literature, but we use it here to distinguish these objects from
geometric partial comodule algebras as introduced above.
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(i) δA(ab) = δA(a)δA(b), i.e. (ab)[0] ⊗ (ab)[1] = a[0]b[0] ⊗ a[1]b[1];
(ii) (A⊗ ε)δA(a) = a;

(iii) (δA ⊗H) δA(a) = (δA(1A)⊗H) · (A⊗∆) δA(a), i.e.
a[0][0] ⊗ a[0][1] ⊗ a[1] = 1A[0]a[0] ⊗ 1A[1]a[1](1) ⊗ a[1](2).

(2) (14)

It has been shown in [10, Example 4.9] that any partial comodule algebra over H in the
sense of Definition 4.2 is a geometric partial comodule in the category Algk. Briefly, set
e′ := 1A ⊗ 1H − 1A[0] ⊗ 1A[1], which is an idempotent. Consider the canonical projection

πA : A⊗H → A⊗H
〈e′〉

. (15)

Setting A • H := A ⊗ H/〈e′〉 and ρA := πA ◦ δA provides a geometric partial comodule
structure on A in the category of k-algebras.

Theorem 4.3. Let H be a left flat k-bialgebra and (A, δA) an algebraic partial H-comodule
algebra. Then the associated geometric partial H-comodule algebra (A,A • H, πA, ρA) is
globalizable.

Proof. Let Y be as in Corollary 4.1. In light of (14) and the definition (15) of πA, the
k-linear map δA satisfies

(ρA ⊗H) ◦ δA = (πA ⊗H) ◦ (A⊗∆) ◦ δA.
As a consequence, there exists a unique k-linear morphism ϑ : A→ Y such that κ ◦ ϑ = δA
(that is, δA takes values in Y ) and hence, since IdA = (A⊗ ε) ◦ δA in view of (ii), A⊗ ε is
still surjective when restricted to Y . Moreover, as explained above the proposition, ker(πA)
is generated as an ideal in A⊗H by the element e′ = 1A ⊗ 1H − 1A[0] ⊗ 1A[1]. By denoting
1A = 1, we find that

(δ ⊗H − A⊗∆)(e′)

= 1[0] ⊗ 1[1] ⊗ 1H − 1⊗ 1H ⊗ 1H − 1[0][0] ⊗ 1[0][1] ⊗ 1[1] + 1[0] ⊗ 1[1](1) ⊗ 1[1](2)

(14)= −e′ ⊗ 1H − 1[0]1[0] ⊗ 1[1]1[1](1) ⊗ 1[1](2) + 1[0] ⊗ 1[1](1) ⊗ 1[1](2)

= (e′ ⊗ 1H)(1[0] ⊗ 1[1](1) ⊗ 1[1](2) − 1⊗ 1H ⊗ 1H) ∈ ker(πA)⊗H
Therefore, e′ ∈ Y and hence A is globalizable by Corollary 4.1. �

From now on (following [3]), let us assume that k is a field. The injective map ϑ : A→ Y
from the proof of Theorem 4.3 is clearly multiplicative (as it is induced by the multiplicative
map δA). One could consider the smallest subcomodule algebra of Y containing ϑ(A). This
leads to the notion of enveloping coaction in the sense of [3]. More precisely, an enveloping
coaction for an algebraic partial H-comodule algebra A is a (global) comodule algebra
(B, δB : b 7→ b[0] ⊗ b[1]) with an injective multiplicative map θ : A→ B such that

(2)In [4], 1A[0] ⊗ 1A[1] appears on the right: a[0][0] ⊗ a[0][1] ⊗ a[1] = a[0]1A[0] ⊗ a[1](1)1A[1] ⊗ a[1](2). Here we
resort to the convention used in [3], for the sake of consistency with what follows. This change of side is
harmless.



14 PAOLO SARACCO AND JOOST VERCRUYSSE

(a) θ(A) is a unital right ideal of B generated by e := θ(1A),
(b) B is generated by θ(A) as an H-comodule algebra and
(c) (θ ⊗H) ◦ δA = (θ(1A)⊗H) · (δB ◦ θ) or, equivalently, for all a ∈ A

θ(a[0])⊗ a[1] = eθ(a)[0] ⊗ θ(a)[1]. (16)
In [3, Theorem 4], it was proven that the enveloping coaction of any algebraic partial
comodule algebra exists. More precisely, B can be constructed as the H-subcomodule
algebra of A⊗H (which is a right H-comodule via A⊗∆) generated by all elements of the
form a[0] ⊗ a[1](1)f(a[1](2)), with a ∈ A and f ∈ H∗. The morphism θ : A→ B is then given
by δA and e = 1A[0]⊗1A[1]. One may check that θ corestricts to an isomorphism θ : A→ eB.
Hence we can consider the projection of algebras p : B → A, b 7→ θ−1(eb). In the realization
of B as above, we find that p(∑i ai ⊗ hi) = 1A[0]aiε(1A[1]hi) for any ∑i ai ⊗ hi ∈ B.
Proposition 4.4. Given a partial H-comodule algebra A over a field k, the enveloping
coaction B of A in the sense of [3] is a subcomodule algebra of the globalization YA of A.
Namely, there is a unique comodule algebra monomorphism j : B → YA such that one of
the following (equivalent) conditions hold:
(I) εA ◦ j = p;

(II) κ ◦ j = (p⊗H) ◦ δB.
In particular, B is co-generated by A in the sense of [14, Definition 2.10] (i.e. (p⊗H) ◦ δB
is a monomorphism).
Proof. In view of the foregoing discussion, we can identify A with eB, θ with the inclusion
map and p with left multiplication by e. Under this identification, we find(

(δA ⊗H) ◦ (p⊗H) ◦ δB
)
(a) = (ea[0])[0] ⊗ (ea[0])[1] ⊗ a[1] (16)= a[0][0] ⊗ a[0][1] ⊗ a[1]

(14)= 1A[0]a[0] ⊗ 1A[1]a[1](1) ⊗ a[1](2) and(
(A⊗∆) ◦ (p⊗H) ◦ δB

)
(a) = ea[0] ⊗ a[1]

(1) ⊗ a
[1]
(2)

(16)= a[0] ⊗ a[1](1) ⊗ a[1](2)

for all a ∈ A. By using the fact that ker(πA) is generated by the element 1A⊗1H−1A[0]⊗1A[1],
we can conclude that κ := (p⊗H) ◦ δB : B → A⊗H satisfies

(ρA ⊗H) ◦ κ ◦ θ = (πA ⊗H) ◦ (δA ⊗H) ◦ κ ◦ θ = (πA ⊗H) ◦ (A⊗∆) ◦ κ ◦ θ.
Since (ρA ⊗H) ◦ κ and (πA ⊗H) ◦ (A⊗∆) ◦ κ are H-comodule algebra maps and since
B is generated by θ(A) as H-comodule algebra, we can conclude that (ρA ⊗ H) ◦ κ =
(πA ⊗H) ◦ (A⊗∆) ◦ κ. Thus, since YA is given by the equalizer (13), we find that there is
a unique morphism of H-comodule algebras j : B → YA such that κ ◦ j = κ. By composing
the last identity with A⊗ ε, we find that εA ◦ j = p.

Finally remark that by the identity (II) and the fact that κ is a monomorphism, j is
injective if and only if κ = (p ⊗H) ⊗ δB is so. Consider the explicit realization of B as
subcomodule algebra of A ⊗H from [3, proof of Theorem 4] as recalled above. For any
element a[0] ⊗ a[1] ∈ θ(A), we find

κ(a[0] ⊗ a[1]) = 1A[0]a[0]ε(1A[1]a[1](1))⊗ a[1](2)
(14)= a[0][0]ε(a[0][1])⊗ a[1] = a[0] ⊗ a[1],
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whence κ = (p⊗H)⊗ δB coincides with the inclusion B ⊂ A⊗H on θ(A) and since both
maps are comodule algebra morphisms and B is generated by θ(A) as comodule algebra,
we find that (p⊗H)⊗ δB coincides with the inclusion on the whole of B. In particular,
(p⊗H)⊗ δB is injective. �

We conclude this paper by providing some examples that show how, in general, the
enveloping coaction differs from the globalization.

Example 4.5 ([3, Example 1]). Let G be a finite group. If N is a normal subgroup of G
and char(k) - |N |, then t = 1

|N |
∑
n∈N n ∈ kN is a central idempotent in H := kG. Notice

also that t is an integral in kN , in the sense that nt = t = tn for all n ∈ N . Let A := tkG
be the (unital) ideal generated by t, let p : H → A, h 7→ th, be the canonical projection
and let ι : A→ H be the inclusion. Consider the partial kG-coaction on A given by

δA(tg) = (t⊗ 1)∆(tg) = tt1g ⊗ t2g = tg ⊗ tg. (17)

In this case, A ∼= k[G/N ] (the group algebra over G/N) with partial coaction given by the
composition A

∆A−−→ A⊗ A A⊗ι−−→ A⊗H and A •H given by
A⊗H

〈t⊗ 1− δA(t)〉
(17)= A⊗H
〈t⊗ 1− t⊗ t〉 = A⊗H

(t⊗ 1− t⊗ t)(A⊗H) = A⊗H
A⊗ (1− t)H ,

which is isomorphic to A⊗ A via the factorization through the quotient of the projection
πA := (A⊗ p) : A⊗H → A⊗ A.

To construct the globalization of A, choose a family {g1, . . . , gr} of representatives of
the right cosets of N in G

(
i.e. G =

r
t
i=1
Ngi

)
and observe that {tg1, . . . , tgr} forms a basis

of A. Since ρA = πA ◦ δA, we have that z = ∑r
i=1

∑
g∈G ci,g(tgi) ⊗ g ∈ A ⊗ H belongs to

YA = Eq(ρA ⊗H, (πA ⊗H) ◦ (A⊗∆)) if and only if
r∑
i=1

∑
g∈G

ci,g (tgi ⊗ tgi ⊗ g − tgi ⊗ g ⊗ g) ∈ ker(πA ⊗H) = A⊗ (1− t)H ⊗H,

if and only if tgi− g ∈ (1− t)H, for all g ∈ G and all i = 1, . . . , r such that ci,g 6= 0. Thanks
to the fact that nt = t = tn for all n ∈ N , one may now check directly that, in fact, z ∈ YA
if and only if ci,g 6= 0 only for g ∈ Ngi, that is, YA = spank {tg ⊗ g | g ∈ G}, which is the
enveloping coaction as shown in [3].

Example 4.6 ([3, Example 2]). Let H4 be Sweedler’s four dimensional Hopf algebra,
H4 = k〈g, x | g2 = 1, x2 = 0, xg = −gx〉, with g group-like and ∆(x) = x ⊗ 1 − g ⊗ x,
ε(x) = 0. For any α ∈ k, the element f = 1

2 (1 + g + αgx) is an idempotent in H4 and,
by identifying H4 with k⊗H4 in the canonical way, the assignment δk : k→ H4, λ 7→ λf,
defines a structure of partial H4-comodule algebra on k. In this case, f = δk(1k) and
k•H4 = k⊗H4/〈1−δ(1)〉 = H4/〈1−f〉. A straightforward check reveals that 〈1−f〉 = ker(ε)
and hence k • H4 ∼= k via ε : H4 → k. Therefore, k has the trivial partial H4-comodule
structure (k, H4, ε, Idk) and so Yk = H4, which strictly contains spank{1, f}, that is the
enveloping coaction according to [3].
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In a similar way, one can check that the globalization of the partial comodule algebra
from [3, Example 3] strictly contains the enveloping coaction.
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