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ABSTRACT

We propose a simple model of an idealized online cultural market in which N items, endowed with
a hidden quality metric, are recommended to users by a ranking algorithm possibly biased by the
current items’ popularity. Our goal is to better understand the underlying mechanisms of the well-
known fact that popularity bias can prevent higher-quality items from becoming more popular than
lower-quality items, producing an undesirable misalignment between quality and popularity rankings.
We do so under the assumption that users, having limited time/attention, are able to discriminate
the best-quality only within a random subset of the items. We discover the existence of a harmful
regime in which improper use of popularity can seriously compromise the emergence of quality, and
a benign regime in which wise use of popularity, coupled with a small discrimination effort on behalf
of users, guarantees the perfect alignment of quality and popularity ranking. Our findings clarify
the effects of algorithmic popularity bias on quality outcomes, and may inform the design of more
principled mechanisms for techno-social cultural markets.

Keywords online cultural markets, ranking algorithms, popularity bias, retrieval diversity

1 Introduction

It is a common experience to receive recommendations from an expert system. It happens when we buy a book or
music from Amazon, when we scroll the lists that Google returns in response to our queries, when we are shown
potential friends on a social media site such as Twitter or Facebook, or when we search a generic news article on a
news aggregation service. Indeed, the availability of cultural and informational products, and the number of people
we could potential connect to via social media is so vast that without recommender systems [1] we would have little
chances to find what we like or need. Such systems, broadly speaking, try to infer how pleased a user would be with
a particular item, given her history of items consumption and taking into consideration the choices made from other,
possibly similar, users, and return a list of personalized top-N items [2]. While there is a strong incentive to create
systems that produce personalized recommendations and therefore pay special attention to choices made by users
similar to the target of the recommendation, the popularity of an item (measured e.g. as the number of copies sold,
views, downloads, likes) is a signal that is often leveraged to produce recommendations. In [3], for example, authors
compare several recommendations strategies from different perspectives, including accuracy, catalog coverage and their
bias to recommend popular items, and show that recent algorithmic techniques end up recommending mostly top sellers.

The notion that popularity is an indicator of quality is predicated on the notion of wisdom of the crowds [4], the fact
that an assessment by many independent - even non expert - individuals could be more precise/valuable/correct than
that of few experts. Another justification for using popularity as proxy for quality is that quality is a concept that is hard
to define and measure, as it is intimately tied to highly subjective notions such as beauty, novelty, and virality.

∗Citation: R. Gaeta, M. Garetto, G. Ruffo, and A. Flammini. 2022. Reconciling the Quality vs Popularity Dichotomy in
Online Cultural Markets. ACM Trans. Inf. Syst. April 2022. DOI:https://doi.org/10.1145/3530790
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Reconciling the Quality vs Popularity Dichotomy

There is, however, ample empirical evidence showing that social influence (resulting for example by popularity-based
ranking algorithms) can bias the success of different items in ways that do not reflect their intrinsic quality [5]. Intuitively,
popularity bias can reinforce initial random fluctuations and crystallize a ranking in popularity that is misaligned with
that based on quality, severely undermining the wisdom of crowd and producing giant distortions in the relative success
of products.

The notion that popularity begets popularity is ubiquitous. It is generally known as Matthew effect, a term introduced
by R. K. Merton [6] to describe the disparity of recognition attributed to known and relatively unknown scholars for
producing work of comparable quality. The issue of the possible distortions introduced by popularity has been studied
even more directly by Salganick and collaborators. In their music lab experiment [7] they divided participants in
non-communicating groups, and asked them to select songs from a menu common across groups. When exposed
to other members choices, groups produced very different popularity rankings due to the “market" enhancing the
idiosyncratic initial choices of few via the popularity driven dynamics. This supports the evidence that success is very
hard to predict and engineer [8].

The problem becomes harsher when popularity bias compounds with the limited attention that users have to make
quality discriminations. Evaluating products comes with a cognitive cost for the consumer that, in turn, influences the
amount of attention he/she puts in this effort. Previous research has shown that the interplay between popularity bias
that could be introduced by recommender systems and consumer attention strongly impacts the quality of items sale
ranking. Although traditional evaluation metrics of novel collaborative filtering recommender systems [9] take into
account such interplay, the problem is still considered hard to be solved. Qiu et. al. [10] studied a system of social
recommendation where agents’ choices depend both on items quality and popularity among neighbors. They found i) a
very non-linear relationship between popularity and quality of items, ii) a poor alignment between the quality and the
popularity ranking, and iii) an inverse relationship between said alignment and diversity of the market. Ciampaglia
et al. [11] studied a market where a combination of choice by quality and popularity is performed and showed the
existence of a regime where top-quality items are pushed at the top of the sale ranking.

The purpose of this paper is to better understand, from an analytical perspective, the interplay between popularity and
quality as determinants of users choices in an idealized online cultural market, and the conditions that realize a desirable
alignment between items ranking in popularity and quality.

For simplicity, we will not consider personalized recommendations, i.e., recommendation lists tailored to the specific
user, or enhanced, say, by collaborative filtering techniques. There are, indeed, scenarios in which such personalization
is not really needed, for example because the user has already issued a query for a specific category of objects matching
her/his interests. For example, consider a user searching for books on the "Python programming language" on an
e-commerce platform: the platform might have a few tens of books in its catalog about the Python language, and must
decide a way to present them to the user, in a list more or less biased by popularity, knowing that the average user will
inspect only a subset of the items, in the case of a long list. This scenario is different from the case of users who just log
in the platform without having specific ideas about what to buy/watch, thus receiving personalized recommendations
based on her/his navigation history, or history of similar users.

Moreover, for the sake of generality and of analytical tractability our approach assumes a generic and idealized online
cultural market, and it is not meant to propose any specific technique to be incorporated into a real recommendation
system. Nevertheless, we suggest potential applications of our findings. In particular, our results can help define the
regimes in which a more or less aggressive dependence on popularity in the recommendation algorithm can have the
undesired effect to promote items that are not those that qualify as top quality according to the average user perception.2

Our contributions can be summarized as follows.

• We propose a simple model of an idealized online cultural market, in which N items have a hidden, intrinsic
quality metric. Users pay attention to just a random subset of the items, but are able to select the best-quality
item within this subset. Items are recommended to users by a ranking algorithm possibly biased by the current
items’ popularity.

• We analyze the asymptotic system behavior as the number of user interactions grows large, with the goal of
understanding whether the ranking associated to quality eventually emerges, aligning quality with popularity.

• We discover that the system can have multiple equilibria depending on the ranking algorithm (parameterized by
a power-law exponent α ≥ 0) and the quality discrimination power of the users (parameterized by the number
K of inspected items). Notably, different equilibria produce misalignments which affect first top-quality items,
before involving also lower-quality ones.

2In Example 4.1, at the end of Section 4, we provide a numerical example of application of our findings in a concrete scenario.
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Reconciling the Quality vs Popularity Dichotomy

• We characterize the minimum user discrimination power Kmin that guarantees that the desired alignment
between quality and popularity is always achieved, in the long run.

• We extend the model to multiple user classes, to account for the fact that different users can perceive a different
quality in the same item, and we conduct a preliminary investigation within this context.

Our main findings can be summarized as follows.

• In the special case in which items inspected by users are selected uniformly at random (α = 0), a minimum
discriminating power Kmin = 2 allows alignment of quality and popularity, at the expense of a low average
quality of items selected by users.

• In the case of ranking algorithms biased by popularity (α > 0), there is a harmful regime of mild popularity
bias (0 < α ≤ 1) in which quality struggles to emerge, requiring a disproportionately large K to guarantee the
desired alignment.

• With stronger popularity bias (α > 1), Kmin is bounded and typically small. Increasing α, Kmin approaches
again the value of 2, at the expense of increasing unfairness among items (the top-quality item monopolizes
the market).

• An increasing fraction of naïve users, who deterministically select the most popular item, makes things
worse and worse, up to the point that alignment cannot be restored by the other users, no matter their quality
discrimination power.

The paper is organized as follows: Section 2 describes our model of online cultural markets and our main assumptions.
In Section 3 we analyze the case where items inspected by users are selected uniformly at random, whereas Section
4 deals with ranking algorithms biased by popularity. Section 5 deals with the problem of parameter optimization to
achieve a desired level of fairness among the items. In Section 6 we extend the model to the case of multiple user
classes. We discuss related work in Section 7. At last in Section 8 we discuss our contributions and findings, point out
the limitations of our approach, and outline directions of future research.

2 System model and main assumptions

We consider a fixed set N of N = |N | items that the recommender system/search-engine/e-commerce platform/social
network can offer to users issuing a certain query/interested in a given object category/exploring a given topic. We
assume that each item i, i = 1, 2, . . . , N , has an intrinsic quality qi ∈ R, which is unknown to the system (and to the
users). The notion of quality — although the term is frequently (informally) used — is subtle and hard to define. For
the purpose of our analysis, quality is simply an (unobserved) measure that underlies a ranking. The ranking is the one
upon which users would converge upon they had the chance to chose items independently, i.e. in absence of social
influence in general and of algorithmic popularity bias in particular. We assume that both the recommender system
and the users are eventually interested in promoting/discovering items having higher values of this hidden metric. The
absolute values of qi are not important, provided that they produce the same ranking. Hence, without loss of generality,
we assume that items are indexed in increasing order of their quality, i.e., q1 < q2 < . . . < qN . Here item N has the
highest-quality and item 1 the lowest. The item ranking is assumed to be fixed over the time period on which we study
popularity dynamics.

Items also have an integer-valued ‘popularity weight’ wi ∈ N+, which represents, e.g., the number of times they have
been purchased/selected by the users, the number of views/likes/comments received, etc. For each item, this number
increases over time, when the item ‘wins’ the competition with the other items.

Let n be the number of competition rounds performed so far within the system among the N items, and wi[n] the
weight accumulated by item i after the n-th competition. For simplicity, we will assume that weight wi just counts the
number of competitions won by item i, i.e., it is increased by one each time item i wins. At time step n, a user receives
a randomized list of recommended items drawn from the available set of N objects. The randomization introduced by
the system is biased by the current popularity weights wi[n] of the objects (see next). Due to limited time/attention, the
user inspects only K objects, and selects the one with the best-quality among the K. By so doing, we account for the
fact that users do not have enough time/skills to discover the best-quality item among all alternatives, but they are at
least able to do so on a restricted set. In the following we will refer to the subset of K items inspected by the user as
pre-selection. If the user arriving at time n selects objects j, popularity of j increases by one3: wj [n] = wj [n− 1] + 1.

3We assume for simplicity that competitions occur sequentially one after the other. In real systems many competitions can take
place concurrently as several users interact at the same time with the online platform, but we neglect such micro-scale effects.
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Popularity weights start from arbitrary initial values wi[0] > 0. For example, we can assume that at the beginning all
items are equally popular with weight 1, wi[0] = 1, i = 1 . . . N . Most of the results in this paper do not depend on the
set of initial weights, and we will point out explicitly when they do.

We denote by bi[n] the probability that item i wins the n-th competition. Such probability depends crucially both on the
way in which the system presents available items to the user (all of them or just a subset of them), for example through
a vertical scrollable list, and on the user behavior, especially her/his patience to explore the alternatives and her/his
ability to identify higher-quality items, as expressed by discrimination parameter K. Probabilities bi[n] allow us to
define the concept of average quality index of the online cultural market after n-th competition as q[n] =

∑N
i=1 i bi[n].

Our main interest is to investigate what happens, in the long run (as n → ∞), to popularity weights wi[n] and to
average quality index q[n] as we vary the quality-discrimination parameter K. In particular, will asymptotic weights
wi[n] be ordered according to the intrinsic quality of items? which is the minimum quality-discrimination power (i.e.,
the minimum K) requested to the users so that the best-quality item will eventually emerge? How does the average
quality index depend on the quality-discrimination power?

To answer these questions, we need to specify also the other fundamental ingredient of the model, that is the law by
which the restricted, random set of K items is chosen from set N , which must reflect both the way items are internally
promoted by the system and visually presented to the user, and the additional randomness introduced by the user
interaction with the online platform.

Similarly to previous work, we adopt the following popularity-biased ranking model. The ranking model was introduced
in the context of an abstract model of network growth [12] and used in a context similar to the present one in
[11]. It aims at describing how items are selected by a ranked list, and it assumes that the entity performing the
selection appreciates the differences in ranking, although not necessarily the quantity that underlies the ranking. Let
ri[n] ∈ {1 . . . N} be the rank of item i at the beginning of round n, in terms of popularity weight (i.e., ri[n] is the
number of items - including i - in set N whose weight is at least as large as wi[n]). Considering ranks, instead of
absolute values {wi[n]}i, is a standard technique to avoid disproportionate bias towards items which have accumulated
too much weight w.r.t. to others (for example because they have stayed in the system for much longer time). Then,
we assume that K items are successively drawn from set N (or the set of remaining items after previous extractions)
with probability proportional to ri[n]−α, where α ≥ 0 is an exponent reflecting the bias of the system/user towards
popularity. The extreme values are α = 0, corresponding to a system in which the K items inspected by the user
are chosen uniformly at random, irrespective of their popularity, and α → ∞, corresponding to a system in which
users deterministically focus their attention only on the current top-K items in terms of popularity. The ranking model
naturally assumes a monotonically decreasing probability to select an item as function of its popularity rank. While
the power-law form of such dependency is somewhat arbitrary, it is general enough to allow (via the parameter α) to
gauge how biased towards the most popular items is the preselection mechanism operated by the putative recommender
system.

A simple, concrete example of mechanism described by the above model could be the following. The system, in
response to the user query, generates a random permutation of the N items, according to the above power law of the
rank, and presents them to the user in a scrollable list; the user, because of its limited budget of attention, explores only
the first K of the list, and after careful inspection is able to select the one with the best quality. Note that our model is
not limited to this simple mechanism. More in general, we can describe, through a single parameter α, the generic
bias towards popularity of the restricted, random set of items explored by the user as a result of its interaction with the
platform (i.e., the items inspected by the user might not necessarily be the first K of the list proposed by the system).

Since the systems we aim to describe are highly heterogeneous in terms of user behavior, we will consider several
extensions to the base setting. In particular:

• we consider a case in which the parameter K is not the same for all users to model user diversity in terms
of attention/discrimination power. This is achieved by introducing a probability distribution {pk}k over the
quality-discrimination parameter K, which becomes an i.i.d. random variable across different users.

• we also consider the case in which a fraction fm of users are too ingenuous/impatient and simply select the
item which is currently the most popular. N (some platforms indeed mark such item with a special flag, such
as “best seller"). We will refer to such users as naïve users. We finally consider the case in which users differ
in term of preferences: quality is highly subjective and can be perceived differently by users. We assign users
to one of a finite number C of classes, according to fixed (generally heterogeneous) probabilities {fc}Cc=1.
Users belonging to the same class equally rank the quality of the N items.

Table 1 summarizes the paper notation.
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symbol description

N number of items
n number of competition rounds
wi[n] popularity weight of item i after round n
w̃i[n] normalized popularity weight of item i after round n
ri[n] popularity rank of item i at beginning of round n
bi[n] winning probability of item i at round n
bi = limn→∞ bi[n] asymptotic winning probability
q[n] average quality index at round n
q = limn→∞ bi[n] asymptotic average quality index
b̃i ∼ (N − i+ 1)−β desired winning probability of item i

q̃ =
∑N
i=1 i b̃i desired average quality index

α pre-selection power-law exponent
β fairness power-law exponent
K quality discrimination power of users
pk distribution of K (if used)
fm fraction of naïve users
C number of user classes
fc probability the a user belongs to class c

Table 1: Notation

2.1 Toy example

For clarity, we present a numerical example of a competition round in a system operating under the base setting
described above, see Figure 1. Suppose that a user searches for books about some topic “X" on an e-commerce site, and
that 5 books match the query. Books 1,2,3,4,5, ordered according to increasing intrinsic quality, have title “S", “R",
“T", “Z", “Q", respectively, and their current popularity rank is 5,2,1,3,4, respectively, computed for example on the
current number of purchased copies, which provides weights wi[n] at the beginning of the n-th competition (see right
table on Figure 1). Suppose the user has time to inspect the reviews of the first 3 books of the list shown to her/him
(left view in Figure 1), discovering the one with the best quality among titles “R", “Z", “T", which happens to be “Z".
This particular (sub)list, in the case of a rank-based power-law pre-selection with exponent α = 1, is generated by the
recommender system with probability:

1
2

1 + 1
2 + 1

3 + 1
4 + 1

5

·
1
3

1 + 1
3 + 1

4 + 1
5

· 1

1 + 1
4 + 1

5

≈ 0.028.

The formula above is the product of the three terms that correspond to the probabilities to select R first, Z second and T
third. Each of this probabilities is proportional to the inverse of the current rank of the item (α = 1 in the example).
This accounts for the numerators of the three terms. The denominators are the needed normalization to reflect the fact
that once an item has been selected, it cannot be selected again. So, for example, once R (rank=2) has been selected,
only 4 items are still available, those of rank 1,3,4,5, which explains the denominator of the second term.

Note that, in the case fm = 0, the user will end up buying book “Z", which has the highest quality among the 3
inspected books. Otherwise, with probability fm the user is a naïve one, who would instead decide to buy the best-seller
“T".

3 Uniform pre-selection

As a warm-up, we start considering the simple case α = 0, where any combination of K > 1 (distinct) objects has the
same probability to be pre-selected. In this case, the winning probability bi of item i does not depend on n and reads:

bi =

0 i < K
( i−1
K−1)
(NK)

i ≥ K (1)
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Reconciling the Quality vs Popularity Dichotomy

Figure 1: Illustration of competition among N = 5 items, with K = 3 items viewed (and inspected) by a certain user:
instance of user view (left) and item features (right table). The stylized hand indicates the click over item Z which will
be selected by a non-naïve user, being the highest-quality item among the inspected 3 items.

since it is equal to the fraction of combinations in which item i is present, and the other K − 1 elements of the
pre-selection are chosen from the set of i− 1 lower-quality items.

The above winning probabilities, for i ≥ K, are positive and strictly increasing with index i. Moreover, they do not
depend on current weights wi[n]. Therefore, w[n] = (w1[n], w2[n], . . . , wN [n]) ∼ w[0] + Multi(b1, b2, . . . , bN ;n),
i.e. w[n] follows a multinomial probability distribution with parameters (b1, b2, . . . , bN ;n), shifted by initial weights
w[0]. Let En be the event that, after n competitions, weights associated to items with positive winning probability are
correctly ordered according to the quality of items, i.e.,

En = {wK [n] < wK+1[n] < . . . < wN [n]}.

Exploiting classic concentration results we can prove the following:

Proposition 3.1 (Asymptotic weights with increasing winning probabilities). When non-null winning probabilities
{bi}i are strictly increasing with index i, as the number of competitions n grows to infinity, the associated weights are
almost surely correctly ordered, i.e.,

P[ lim
n→∞

En] = 1.

Proof. See Appendix A.

The above result suggests that a minimum discrimination effort on behalf of the users (i.e., K = 2) is sufficient, in
the case α = 0, to eliminate the effects of popularity bias and guarantee, in the long run, that high-quality items will
eventually emerge as popular, with item popularity perfectly aligned with item quality. Note that in the case of K = 1,
instead, quality never comes into play in determining selections, hence any permutation of the items is equally likely to
provide the final ranking of the items in terms of popularity.

The above results can be easily extended to the case of heterogeneous users characterized by a distribution {pk}k of
the discrimination parameter K. Indeed, denoting by bi(k) the dependency of (1) on K, we simply have the weighted
average:

bi =
∑
k≥1

pkbi(k).

Note that sequence {bi}i is still strictly increasing for all distributions {pk}k except the one in which p1 = 1 (i.e., fixed
K = 1), hence Proposition 3.1 still applies except for this degenerate case.

At last, considering for simplicity the case of constant K, we examine the impact of fm, the fraction of naïve users who
always select the most popular item. Denoting by b̂i the winning probability of item i with fm > 0, we have

b̂i = fm · Ii=argmaxj wj + (1− fm)bi

where Ii=argmaxj wj is the indicator function of the event that item i is currently the most popular, while bi is the
winning probability for non-naïve users. In this case the most popular item is not guaranteed to be item N . Indeed an
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item i∗ < N can become the most popular, provided that its winning probability is higher than that of all other items,
and most crucially of that of item N , i.e., provided that:

fm + (1− fm)bi∗ > (1− fm)bN ⇒ fm >
bN − bi∗

1 + bN − bi∗
which means that, if fm is large enough, item i∗ can stably occupy the most popular position. As we increase fm,
starting from 0, we see that N − 1 is the first item that can replace N on top of the list. Since configurations in which
item N is not the most popular are undesirable, we can compute the maximum value of fm such that only item N can
be the most popular. Indeed, since bN − bN−1 = K(K−1)

N(N−1) , we obtain the condition:

fm <
K(K − 1)

N(N − 1) +K(K − 1)
.

We observe that, when K � N , a small fraction of naïve users is enough to (potentially) disrupt the optimal
configuration in which item N is the most popular.

Having analyzed the simple case of uniform pre-selection, in next section we move on to investigate what happens in
the more challenging case of popularity bias in the pre-selection of items, i.e., when current popularity weights wi[n]
are used by the system to build the list of items recommended to the user.

4 Popularity-based pre-selection

When α > 0, more popular items are more likely to be proposed to the user, and if they win the competition (which
depends on their intrinsic quality) they become even more popular. This endows the system with a self-reinforcing
property reminiscent of the rich-get-richer phenomenon. What happens in the long run? Will item popularity reflect the
intrinsic item quality, or can the process lead to (undesirable) configurations in which the most popular item is not the
best?

Our system can be modeled as a special case of Pólya urn [13] with N colors , where wi[n] is the number of balls of
color i after the n-th round. At competition round n, K balls are selected from the urn, and a new ball of the winning
color is added to the urn. In contrast to classic Pólya urn models, the analysis here is complicated by the fact that the
selection of K balls is a complex function of the current rank of the N colors in terms of their ball count. Indeed, recall
that our system, mapped onto a Pólya urn, works as follows: we start with an empty set S of pre-selected balls; at each
of K iterations, a ball of color i is chosen with probability proportional to ri[n]−α, where ri[n] is the rank of color i at
the beginning of the round, and added to set S . If j is the highest-quality color in set S , a ball of color j is added to the
urn at the end of the competition: wj [n] = wj [n− 1] + 1, whereas wi[n] = wi[n− 1] for all i 6= j.

Moreover, we may or may not allow the repetition of colors (items) in the set of K balls. This distinction leads to
two different pre-selection schemes, that we will call with-item-repetition and without-item-repetition. As the name
suggests, with-item-repetition means that the K balls are independently selected with a probability that depends only on
the ranking of the colors at the beginning of the round. Specifically, each of the K selected balls belongs to color i with
probability

pi[n] =
ri[n]−α∑
j rj [n]−α

. (2)

Note that, by so doing, we could obtain more than one ball of a given color in our pre-selection.

In without-item-repetition pre-selection, we enforce that K balls of distinct colors are selected by re-normalizing the
probabilities to choose a ball of a given color among the remaining colors. Let pi,k[n] be the probability to select the
k-th (k = 1, . . . ,K) ball among those of color i, and Ck the set of colors extracted in the first k choices, starting with
C0 = ∅. We have:

pi,k[n] =

{
0 i ∈ Ck−1

ri[n]
−α∑

j:j /∈Ck−1
rj [n]−α

i /∈ Ck−1.
(3)

The without-item-repetition pre-selection scheme more realistically describes a system that offers K distinct alternatives
to the user (see example in Section 2.1). Unfortunately, this scheme is more difficult to analyze than with-item-repetition,
as it requires to consider all dispositions of N elements over K positions. Conversely, with-item-repetition is easy to
analyze, but it’s less realistic, since items can appear multiple times in the pre-selection. After extensive numerical
experiments, we discovered that almost all properties of the system operating under without-item-repetition are the
same as those of the system operating under with-item-repetition. Moreover, as we will see, analytical results for the
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with-item-repetition scheme are very close to those numerically obtained for without-item-repetition, especially when
K � N . For these reasons, in the following we will mainly focus on the with-item-repetition scheme.

We start with a general result valid for a generic pre-selection scheme based on the popularity rank of the items. Let w̃i
be the asymptotic fraction of balls of color i in the urn as the number of competitions tends to infinite:

w̃i = lim
n→∞

wi[n]∑
j wj [n]

= lim
n→∞

wi[n]

n+ n0

where n0 is the initial number of balls in the system.

Let B : [0, 1]N → [0, 1]N be the function that, given a vector w̃ of normalized weights, provides the corresponding
vector b of winning probabilities. We will restrict ourselves to functions B(.) that depends on w̃ only through the rank
of the items.

Assumption 4.1 (rank-based winning probabilities). Function B : [0, 1]N → [0, 1]N is an injective function of the
rank of weights w̃.

Definition 4.1 (system stable point). A system stable point is a stochastic vector e ∈ [0, 1]N (a vector with non-negative
entries that add up to one), which is a fixed point of function B(.), i.e., B(e) = e, and, in addition, ei 6= ej for i 6= j.

Proposition 4.1 (asymptotic system behavior). Under Assumption 4.1, as n→∞, normalized weights w̃[n] converge
to a system stable point.

Proof. See Appendix B.

Note that the system can have multiple stable points. Each stable point is associated to a particular permutation of the
N items. For this reason, we will also say that a permutation is stable if it is associated to a system stable point.

We will call desirable equilibrium the stable point associated to the natural permutation 1, 2, . . . , N in which item
popularity is perfectly aligned with item quality. We will call instead spurious equilibrium a stable point associated to a
permutation different from the natural one.

The number and identity of stable points clearly depends on function B(.). In the with-item-repetition scheme, we have
a simple expression for winning probabilities {bi}i. Indeed, denoting by si =

∑
j≤i pi the cumulants of item selection

probabilities (2) (we have dropped the dependency on n for simplicity), we can write, for i > 1:

bi = sKi − sKi−1 (4)

(for i = 1, we have the special case b1 = pK1 ).

Equation (4) can be understood as follows: for item i to be the highest-quality item selected among K independent
choices with repetition we need that no higher-quality object has been selected for K times (term sKi ); this event
includes however also the event that color i has never been selected among the K choices (equivalently, objects of index
up to i − 1 have been chosen K times), hence the probability sKi−1 of this event has to be subtracted from previous
event.

In the without-item-repetition scheme, instead, the evaluation of {bi}i requires, unfortunately, to enumerate all possible
ordered sequences σi of K objects, containing item i and other K − 1 lower-index items (without repetition):

bi =
∑
σi

∏
k=1,...,K
j=(σi)k

pj,k (5)

where pj,k are given by (3). In this case the computation of {bi}i is feasible only for small values of N , K.

To find out all of the stable points of a system, we have followed different approaches. For small systems (say N < 20)
one can simply test all N ! permutations, and check whether each of them is stable (according to Definition 4.1). To
better illustrate the system dynamics, one can build, for a given choice of N,K,α the permutation graph, containing
N ! nodes, one for each permutation, and add a direct edge from node i to node j if function B(.) maps permutation
i into permutation j. Figure 2 shows the permutation graph for the system N = 4, K = 2, α = 1, in the case
with-item-repetition. In this case we have 4! = 24 nodes, and 3 fixed points of function B(.), associated to permutations
{1, 2, 3, 4}, {1, 2, 4, 3} and {1, 4, 3, 2}. However, only {1, 2, 3, 4} and {1, 2, 4, 3} are stable points, because with
{1, 4, 3, 2} we have b2 = b3. Detailed simulations of the corresponding Pólya urn confirm that the actual system can
only converge to the above two stable points.
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Reconciling the Quality vs Popularity Dichotomy

The permutation graph can also be used to define the attractiveness of a given fixed point of function B(.), i.e., of
a permutation f such that B(f) = f . The attractiveness a(f) of fixed point f is defined as the size of the (weakly)
connected component containing f , divided by the number N ! of all permutations. Note that

∑
f :B(f)=f a(f) = 1. For

example, in the scenario of Figure 2 we have a({1, 2, 3, 4}) = 1
2 , a({1, 2, 4, 3}) = 1

3 , and a({1, 4, 3, 2}) = 1
6 .
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Figure 2: Permutation graph for the system N = 4, K = 2, α = 1, with-item-repetition.

For large systems, we cannot examine all possible permutations. To overcome this problem, one approach is to perform
a randomized search of stable points by starting from an arbitrary stochastic vector w̃, i.e., some random positive values
{w̃i}i summing up to 1, and iteratively apply function B(.) until we hit a fixed point. This procedure is described in
details in Algorithm 1. In the permutation graph, this means to start from a random node, and follow the direct path up
to the node with the self-loop. One problem of this approach is that we need to perform a number of searches large
enough to fall at least once in each connected component of the permutation graph, and therefore we are not guaranteed
to discover all of the stable points.

Algorithm 1 Randomized computation of equilibria
Require: N ∈ N+, K ∈ {1, . . . , N}, α ∈ R+

1: Choose random positive values {w̃i}Ni=1 :
∑N
i=1 w̃i = 1 . Initialization of wi’s

2: fixedpoint⇐ false
3: while (fixedpoint = false) do
4: ri ⇐ index of i in sorted w̃ , ri ∈ {0, . . . , N − 1}
5: pi ⇐ (N − ri)−α,∀i . popularity of i
6: normalize pi’s such that

∑N
i=1 pi = 1

7: compute bi = P[object i wins],∀i . using either (4) or (5)
8: if b = w̃ then
9: fixedpoint⇐ true

10: else
11: w̃ ⇐ b
12: end if
13: end while
14: if bi 6= bj ,∀i 6= j then
15: b is a stable point
16: end if

As we will see, in most cases the only stable permutations are those that, starting from the natural permutation, change
the order of the top M items, with M � N . Therefore, in practice one can find all stable points by sequentially
exploring all permutations generated in lexicographic order, and stopping the search when no more stable points are
found comprising swaps of the top M + 1 items. The random search performed by Algorithm 1 is then to be considered
a last resort, when exact approaches become unfeasible (N or M too large). We emphasize that the above computational
issue pertains only the analytical prediction of system stable points, while the actual algorithm implemented by the
recommendation system, which produces just randomized lists biased by popularity (see toy example in Section 2.1),
can be applied to arbitrarily large N without scalability problems, but being oblivious of where it is going to converge.
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Figure 3: Number of stable points for without-item-repetition, α = 1.

As another interesting example, consider the without-item-repetition scheme with α = 1. Figure 3 shows, on a
logarithmic vertical scale, the number of stable points as function of N , for K = 1, 2, 3, 4. Note that for K = 1 all N !
permutations are feasible. As we increase K, the number of stable points is brought down drastically, though it still
increases exponentially for large N .

For example, in the case of N = 10 and K = 2, there are 4 stable points, corresponding to permutations:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {1, 2, 3, 4, 5, 6, 7, 8, 10, 9}, {1, 2, 3, 4, 5, 6, 7, 9, 8, 10}, {1, 2, 3, 4, 5, 6, 7, 10, 9, 8}.

Notice that, in addition to the (desired) natural permutation, other three spurious permutations can emerge in which
some of the highest-quality items are permuted (the top two or top three items).

Interestingly, for given N , if we take K large enough we obtain a single stable point. We will see that, when the
stable point is unique, it corresponds to the natural permutation, i.e., the desired equilibrium. For example, K = 3 is
enough to obtain as stable point only the natural permutation for all values of N up to 19. As another case, K = 4 is
required to achieve only the desired equilibrium with N = 50 items. In the next subsection we will precisely address
the problem of determining when a given system (N,K,α) can only achieve the desired equilibrium, while no spurious
permutations can emerge from the competition among items.

4.1 Computation of Kmin

We define Kmin as the minimum value of K that admits the natural permutation 1, . . . , N − 1, N as the only stable
permutation. By virtue of the following lemma, to compute Kmin it is sufficient, in most cases, to determine whether
the alternate permutation 1, . . . , N,N − 1, in which the two highest-quality objects are permuted, is stable, .
Lemma 4.1 (critical permutation). Under popularity-biased pre-selection, the minimum value Kmin is determined by
the stability of the critical permutation 1, . . . , N,N − 1.

Proof. See Appendix C.

We first consider the case with-item-repetition, for which Kmin can be characterized exactly. Suppose that the current
permutation, induced by increasing weights, is the critical permutation 1, . . . , N,N − 1. Then we have pN = 2−α/G,
pN−1 = 1/G, where G =

∑N
i=1 i

−α is the normalization constant of the power-law popularity bias. We also introduce
the cumulants sN = 1, sN−1 = 1− pN , sN−2 = 1− pN − pN−1, with which we can write the winning probabilities
of the top two objects as:

bN = sKN − sKN−1
bN−1 = sKN−1 − sKN−2.

The critical permutation is not stable when bN−1 < bN , i.e., when

2sKN−1 < sKN + sKN−2. (6)

10



Reconciling the Quality vs Popularity Dichotomy

Substituting the cumulants, the above inequality becomes:

2(1−G−12−α)K ≤ 1 + (1−G−1 −G−12−α)K (7)

which provides, as function of G and α, the condition that K must satisfy so that the critical permutation is not stable.
Therefore, by Lemma 4.1 we have:

Kmin , min
K

{
K : 2(1−G−12−α)K ≤ 1 + (1−G−1 −G−12−α)K

}
. (8)

The following proposition provides a summary of interesting properties of Kmin as function of parameters N , α. In
particular, since the catalog size can in same cases be very large, it is interesting to see what happens when N →∞,
though the item set is to be considered finite in any feasible scenario.

Proposition 4.2 (Properties of Kmin). For any given N ≥ 1, α ≥ 0, there exists an integer value Kmin ≥ 1 such that
for any K ≥ Kmin the only stable permutation is the natural one. For fixed α, Kmin is a non-decreasing function of N .
As a special case, Kmin = 2 for α = 0. When 0 < α ≤ 1, Kmin →∞ as N →∞. For fixed α > 1, Kmin → K∞min
as N increases, where K∞min is a constant which depends on α.

Proof. See Appendix D.

In the following, we will see that properties of Kmin listed in Proposition 4.2 hold also under without-item-repetition.
The following result instead is specific to the case with-item-repetition:

Corollary 4.1. For given N > 1, in the case with-item-repetition, Kmin →∞ as α→∞.

Proof. We can simply upper bound the right-hand side of (7), for any α and K, by 2 − G−1, obtaining the weaker
inequality:

2

(
1− 1

G2α

)K
≤ 1 +

(
1− 1

G
− 1

G2α

)K
≤ 2− 1

G

which is satisfied by

K ≥ log(1− (2G)−1)

log(1− (G2α)−1)
(9)

The assert follows by noticing that the right-hand side of (9) tends to infinity as α→∞.
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Figure 4: Minimum value of K such that the natural permutation is the only stable point, for different values of N ,
with-item-repetition.

Figure 4 shows Kmin as function of α, for different values of N , obtained by solving numerically (8). Results in Figure
4 confirm the properties in Proposition 4.2. In particular, Kmin becomes unbounded, as N increases, for 0 < α ≤ 1. As
predicted by Corollary 4.1, for large α the value Kmin (slowly) increases with α.
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Remark 4.1. WhenK < Kmin, the system is not guaranteed to produce, in the long run, the desired alignment between
quality and popularity, and can end up operating under one of many suboptimal configurations containing severe
misalignments in the top of the list. The frequencies with which we can observe such undesirable operating points
depend crucially on the distribution w[0] of initial weights. Extensive numerical simulations reveal that undesirable
configurations are not at all ‘rare events’, and show up with frequency comparable to that of the natural configuration,
even when we start with all weights initially equal to 1. If we start with random initial weights, e.g., an i.i.d weight for
each item, we increase the likelihood to ‘crystallize’ initial suboptimal configurations, and correspondingly reduce the
probability to achieve the desired alignment.

Remark 4.2. Proposition 4.2 provides some fundamental insights into the behavior of popularity-biased cultural
markets. Specifically, it suggests there exists a harmful regime of mild popularity bias (0 < α ≤ 1) in which desired
alignment of popularity and quality requires large quality discrimination power on behalf of users. Since in this
regime Kmin diverges as N increases, systems with large catalog size are essentially unpredictable in this case, and
can possibly produce severe misalignments among high-quality items. Surprisingly, the special case α = 0 (uniform
pre-selection) behaves as a singularity, requiring the minimum discrimination power Kmin = 2 for any N .

4.1.1 Extensions to heterogeneous discrimination power.
Previous analysis of Kmin can be extended to account for the presence of heterogeneous users with different behavior.
One easy extension is to consider a fraction fm of users deterministically choosing the current most popular item,
while the remaining fraction 1− fm of users employ quality discrimination power K. In this case, under the crucial
permutation we have:

bN = (1− fm)(sKN − sKN−1)

bN−1 = fm + (1− fm)(sKN−1 − sKN−2)

and condition bN−1 < bN becomes:

fm + (1− fm)

[
2

(
1− 1

G2α

)K
− 1−

(
1− 1

G
− 1

G2α

)K]
< 0.

We observe that the left-hand side is positive for K = 1, and becomes negative for sufficiently large K provided that
fm < 1/2 (the term in square brackets tends to -1 as K → ∞). Therefore, Kmin →∞ as fm → 1/2, and no Kmin

exists for fm ≥ 1/2. With fixed fm < 1/2, all properties stated in Proposition 4.2 are still valid, as one can verify
along the same lines of the proof reported in Appendix D. Moreover, Kmin is an increasing function of fm, which can
be proven by applying the implicit function theorem, and noticing that ∂F

∂fm
= 1 at the points in which F (x, fm) = 0

(see Appendix D).

As another extension we can consider the case of users with i.i.d. values of K, distributed according to the discrete law
{pk}k. Asymptotic stability results in Proposition 4.1 still apply upon substituting the vector of winning probabilities b,
which was implicitly depending on fixed parameter K, with its average with respect to K, i.e., EK [b(K)].

Moreover, one can check whether a given distribution of K can only lead to the natural permutation. In particular, the
critical permutation 1, . . . , N,N − 1 is not stable provided that∑

k

pk

[
2

(
1− 1

G2α

)k
− 1−

(
1− 1

G
− 1

G2α

)k]
< 0 (10)

and one can numerically check whether (10) indeed holds under a given distribution {pk}k.

4.1.2 Extension to without-item-repetition.
The case without-item-repetition can in principle be handled in the same way as with-item-repetition, but unfortunately
the exact computation of winning probabilities bi requires now the enumeration of all dispositions of K objects from N
objects, whose number becomes intractable for large values of N ,K. Therefore, we propose the following approximate
computation of Kmin for the case without-item-repetition, which turns out to be very accurate when compared to exact
(computationally feasible) results. The approximation is based on the following idea: we assume that the top two
objects are extracted without repetition, whereas all other objects can be extracted with repetition. By so doing, we
capture the fact that the two most important objects for our purposes are correctly extracted without repetition, while all
of the others, whose precise identity is not important to determine winning probabilities bN ,bN−1, are approximately
extracted with repetition to allow scalable computation. Let p∗ = 1− pN − pN−1 be the probability to choose a ball
within set {1, . . . , N − 2}.
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Given an extraction of K balls, we have that neither object N nor object N − 1 wins with probability (p∗)K . Then,
if we determine bN−1, we can easily obtain the complementary bN = 1− (p∗)K − bN−1. Therefore, bN ≥ bN−1 is
equivalent to bN−1 ≤ 1−(p∗)K

2 . To compute the winning probability of object N − 1, we consider that object N − 1
wins when: m objects different from N ,N − 1 are initially extracted, 0 ≤ m ≤ K − 1 (and put back in the urn); object
N − 1 is extracted (and not put back in the urn); N − 1−m objects different from N are extracted with renormalized
probability p∗/(1− pN−1).

It follows:

bN−1 ∼
K−1∑
m=0

(p∗)mpN−1

(
p∗

1− pN−1

)K−m−1
= (p∗)K−1

1− (1− pN−1)K

(1− pN−1)K−1

and we obtain the approximate value of Kmin:

Kmin = min
K

{
K : 2

(
1−G−1 −G−12−α

1−G−1

)K−1
≤ 1− (1−G−1 −G−12−α)K

1− (1−G−1)K

}
. (11)

Under the above approximation of Kmin for the case without-item-repetition, all properties listed in Proposition 4.2 still
holds, as one can check along the same lines of the proof reported in Appendix D. The fundamental difference with
respect to with-item-repetition is the behavior of Kmin as α grows large:

Corollary 4.2. For given N > 1, in the case without-item-repetition, under approximation (11), Kmin → 2 as α→∞.

Proof. The right hand side of (11) is larger than one for any α. The left-hand side of (11) is equivalent to

2
(

1− 1
(G−1)2α

)K−1
. Since (G − 1)2α = 1 +

∑∞
i=3( 2

i )
α tends to 1 as α → ∞, the left hand side of (11) tends to

zero as α→∞, hence K = 2 is enough to make the inequality valid for large α.
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Figure 5: Minimum value of K such that the natural permutation is the only stable point, for different values of
N , without-item-repetition. Thin curves refer to approximation (11), whereas thick curves show exact results (when
computation is feasible).

Figure 5 shows Kmin as function of α, for different values of N , obtained either by the approximate inequality (11)
(thick curves), or by exact numerical computation of all stable points, which is feasible only for small values of N ,K
(we were not able to obtain exact results beyond N = 30). A number of interesting observations can be drawn from
Figure 5: i) the approximate formula (11), which can scale to arbitrarily large values of N,K, gets very close to exact
values, except for little discrepancies around the points at which Kmin varies by 1; ii) properties in Proposition 4.2 are
indeed verified also for without-item-repetition, and in particular Kmin still diverges for 0 < α ≤ 1; iii) for fixed N and
α, Kmin is smaller under without-item-repetition with respect to with-item-repetition, as one can check by comparison
with Figure 4; iv) in contrast to with-item-repetition, Kmin = 2 for large α, as predicted by Corollary 4.2.
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Remark 4.3. Results in Figure 5 confirms the existence of a harmful regime of mild popularity bias (0 < α < 1) also
in the more realistic case without-item-repetition. To give the reader an intuitive explanation of this phenomenon,
consider the case K = 2. Denote with H the highest-quality object, M the second highest-quality object, and L a
generic object of lower quality. The critical permutation in which M becomes more popular than H can be a system
stable point for N sufficiently large and, say, α around 0.5. Indeed, suppose to start already in this configuration.
Then H will struggle to regain popularity versus M , because pre-selections of type {M,L} (note that there are many
different choices of low-quality item L), which reinforce the popularity of M vs H , become jointly more likely than
those of type {M,H} or {H,L}, which would reinforce the popularity of H .

Note however that, in the extreme case of α = 0, any pre-selection of the N objects is equally likely to be generated,
and those in which H wins are more numerous than those in which M wins (indeed, H wins also in the direct match
{M,H}). Hence for α sufficiently small we expect that the only stable point will be the natural permutation.

For large α, the stability of the critical permutation depends on the fact that item repetition is allowed or not. First of all,
note that for large α the probability to pre-select an item is concentrated on the most popular items. In without-item-
repetition, for large α the direct match {M,H} will appear more and more frequently, while pre-selections containing
also low quality objects will become negligible, so the critical permutation cannot be stable, and Kmin tends to 2.
Indeed, consider an extremely large α, and suppose to start from the critical permutation: after extracting M , M
can no longer be extracted, and we have to choose as second object H , which wins over M . In with-item-repetition,
the opposite behavior occurs for very large α: now almost all extractions of the first two objects will both be M ,
reinforcing M itself. Actually for any K there will be an α large enough that with high probability we extract M
consecutively K times, making the critical permutation stable. Hence with-item-repetition Kmin → ∞ as α → ∞
(corollary 4.1). Of course in a real system that randomizes the list of items proposed to the user objects are never
repeated, so without-item-repetition, though more difficult to analyze exactly, is more meaningful.
Example 4.1. As an example of possible application of our results, consider a Video-On-Demand platform offering
100 titles in response to queries for a given movie genre. Suppose that the system shows to users a randomized list of
the above titles, using as popularity metric the current number of views. If we want the best-quality movie (assuming
that this notion exists for movies) to always emerge from the competition with other movies of the same genre (which
occurs when the natural permutation is the only stable point), the popularity-based amount of randomness introduced
in the generation of the recommendation list (the value of α in our ranking model) must be carefully controlled. For
example, from Figure 5 we see that values of α around 0.5 are a very bad choice, unless the quality discrimination
power of the users is large (K ≥ 9).

5 Analysis of the average quality index

The performance of an online cultural market depends on a complex combination of factors including the way items are
internally ranked, the way in which they are visually presented to the user in response to a given query, an the user
behavior in exploring and selecting among alternatives. In our simple model, the system has been described by tuple
(N,K,α). Among this set, α can be considered as a parameter tunable by the online platform, and one can naturally
ask whether an optimal value α∗ can be computed so as to maximize a given performance metric.

In previous section, we have considered as primary objective the guaranteed emergence of the natural alignment between
popularity and quality. As a secondary objective, we consider here another important optimization criterion, which is
the average quality of items ultimately chosen by users. Indeed, it might not be desirable to just maximize such average
quality, i.e., to make the top-quality item monopolize the market. In general, a system might prefer to achieve a desired
level of ‘fairness’ among the different alternatives, so that also mid-quality items have non-negligible chances to be
chosen.

Note that in this section we will analyze the average quality index assuming that the system has a single stable point
(the natural alignment). In Section 6 we will extend the definition of average quality index to the case in which there are
multiple stable points, when we will introduce the extension of the model to multiple classes of users.

5.1 Obtaining a desired average quality

Assuming that K ≥ Kmin, so that the system is guaranteed to achieve the natural alignment, the average quality index q
takes value in the range [1, N ]. Since the extreme case q = N , corresponding to a system in which only the top-quality
item is chosen, is in general undesirable, we assume that our goal is to achieve a given, intermediate value 1 ≤ q̃ ≤ N .

To understand whether a given q̃ is indeed feasible, we need to compute how metric q associated to the natural
permutation depends on system parameters (N,K,α), separately considering the cases with-item-repetition and
without-item-repetition.

14



Reconciling the Quality vs Popularity Dichotomy

Proposition 5.1 (Average quality index under with-item-repetition.). For given N and fixed K, the average quality q of
the natural permutation is an increasing function of α. Possible values of q lie in the range [qmin, N), where qmin is the
value attained with α = 0:

qmin = N −
∑N−1
i=1 iK

NK

while q → N as α→∞.

For given N and α, the average quality q of the natural permutation is an increasing function of K.

Proof. See Appendix E.

Under without-item-repetition, a formal proof of the monotonicity of q with respect to α and K is more difficult, since
winning probabilities bi’s lack a simple closed form expression. However, we have numerically verified that q indeed
increases with α and K, and results analogous to those stated in Proposition 5.1 holds under without-item-repetition.
However, the lower extreme of possible values of q is different, since here, for α = 0, we get:

qmin =

N∑
i=K

i ·
(
i−1
K−1

)(
N
K

) =

∑N
i=K K

(
i
K

)(
N
K

) = K

(
N+1
K+1

)(
N
K

) = K
N + 1

K + 1
. (12)

It is interesting to see how qmin in (12) depends on K: with K = 1 we obtain N+1
2 , which is the baseline performance

of a system in which quality does not come into play, and any item is equally likely to win the competition.4 For
K = N , the top-quality item always win, and we obtain, as expected, the maximum possible value N .

As immediate consequence of Proposition 5.1, for given N and K, any desired average quality index q̃ ∈
[qmin(N,K), N) can be obtained by a unique choice of α∗ ∈ R+ ∪ 0, where we have specified for clarity the
dependency of qmin on both N and K.

5.2 Approaching a desired winning probability distribution

Instead of the average quality index, one could try to obtain a specific winning probability b̃i for each item, assuming
that {b̃i}i form an increasing sequence with i, corresponding to a system operating under the natural permutation.

As an example, we consider a family of desired winning probabilities {b̃i}i specified by a rank-based power-law of
exponent β > 0:

b̃i ,
(N − i+ 1)−β∑N

j=1 j
−β

[desired winning probability]. (13)

Here, β is a pre-defined exponent reflecting the desired level of fairness: when β = 0 we have the extreme case in which
all items have the same winning probability, irrespective of their intrinsic quality; for β →∞ we approach the other
extreme case in which only item N wins. Correspondingly, we have the desired average quality index q̃ ,

∑N
i=1 i · b̃i.

Since winning probabilities b̃i cannot be perfectly achieved, we consider as optimal α∗ the value of α that minimizes a
suitable distance metric between probability distributions {bi}i and {b̃i}i. We will also consider the difference:

∆q , |q̃ − q| (14)

between the desired average quality index and the actual average quality index.

5.3 An optimization example

As an example, we consider an online cultural market containing N = 20 items where the user discrimination parameter
is K = 5. Suppose that our goal is to approach the winning probabilities {b̃i} obtained by using β = 2 in (13), i.e., the
second-best item has winning probability equal to 1/4 of the winning probability of the best item.

From Figure 5 we observe that, in the case without-item-repetition, K = 5 is enough to guarantee emergence of the
natural permutation for any α, so here we do not need to check whether we indeed have K > Kmin.5

4Recall that with K = 1 any permutation is equally likely to emerge, but since bi = 1/N for any item, the specific permutation
is not important.

5In general, α∗ has to be found in the restricted set of α values for which K > Kmin.
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Figure 6 shows the results of our numerical optimization. We plot the value of three distance metrics between discrete
probability distributions:

1√
2

√√√√ N∑
i=1

(
√
bi −

√
b̃i)2 [Hellinger distance]

N∑
i=1

bi log(
bi

b̃i
) [Relative entropy]

− ln(

N∑
i=1

√
bib̃i) [Bhattacharyya distance]

as functions of α. Interestingly, all considered distances between probability distributions {bi} and {b̃i} reach their
minimum value for α∗ close to 0.58. At the same time, there exists a unique value for α (α∗ = 0.40) that nullifies ∆q,
as a consequence of Proposition 5.1. Note that both values of α∗ computed above fall in the harmful regime 0 < α ≤ 1:
though we can safely operate in this regime with just 20 items, doing so with larger values of N could be unfeasible,
since Kmin would become too large (see Figure 5).
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Figure 6: Distance between probability distributions {bi} and {b̃i} as a function of α.

6 Heterogeneous perception of quality

So far we have assumed the existence of an intrinsic quality metric of each item, such that all users would rank the N
items in the same order (provided that they had the time to independently examine all of them). Since quality is highly
subjective, and its assessment may vary among users, we now extend the model to the case of a (finite) number C of
user classes: the user arriving at time n is assumed to belong to class 1 ≤ c ≤ C with probability fc, independently of
other users. Of course we have the constraint

∑C
c=1 fc = 1.

Users belonging to the same class are assumed to perceive items’ quality in such a way that they would all rank the
items in the same order (provided that they had the time to independently examine all of them). Therefore, user class c
is characterized by a unique (fixed) vector vc, listing the items’ id’s in increasing order of their quality, as perceived by
users belonging to that class. Note that in the base setting there is a single class (C = 1), with v1 = [1, 2, . . . , N ]. Our
model is quite general, since we do not impose any restriction on vectors vc, that could differ completely from one
class to another. For example, users belonging to a class may perceive an item as high-quality, while users belonging to
another user may perceive the same item as low-quality.

It turns out that the multi-class version of the system can be analyzed essentially in the same way as the single-class
instance, by substituting the winning probability of each item by a weighted average (where weights correspond to
probabilities {fc}) of the winning probabilities computed for the same item according to the different classes. Therefore,
we can introduce a generalized mapping function B(.) as done in Section 4 and easily extend to the multi-class case the
Definition 4.1 of system stable point.
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Algorithm 2 Randomized computation of equilibria with multiple users classes
Require: N ∈ N+, K ∈ {1, . . . , N}, α ∈ R+

1: Choose random positive values {w̃i}Ni=1 :
∑N
i=1 w̃i = 1 . Initialization of wi’s

2: fixedpoint⇐ false
3: while (fixedpoint = false) do
4: ri ⇐ index of i in sorted w̃ , ri ∈ {0, . . . , N − 1}
5: pi ⇐ (N − ri)−α,∀i . popularity of i
6: normalize pi’s such that

∑N
i=1 pi = 1

7: b⇐ 0
8: for c=1 to C do
9: pi,c ⇐ pvc[i], i ∈ {1, . . . , N} . popularity of objects, ordered by quality, according to class c

10: compute bi,c = P[object i wins], i ∈ {1, . . . , N} . using either (4) or (5), and pi,c in place of pi
11: bvc[i] ⇐ bvc[i] + fcbi,c, i ∈ {1, . . . , N} . contribution of class c to winning probability of object i
12: end for
13: if b = w̃ then
14: fixedpoint⇐ true
15: else
16: w̃ ⇐ b
17: end if
18: end while
19: if bi 6= bj ,∀i 6= j then
20: b is a stable point
21: end if

The numerical computation of system stable points can thus be performed in a similar way as for the single-class setting.
Algorithm 2 is a simple and quite straightforward generalization of Algorithm 1 to the case of multiple user classes.

Unfortunately, instead, the analytical results on Kmin derived in Section 4.1 no longer apply to the multi-class case,
since they are crucially based on the assumption that there exists a unique quality ranking for the items. Given the
wide variety of multi-class scenarios that can be considered (notice that, beyond the number C of classes, detailed
characteristics of each class as specified by vector vc can affect the transient and asymptotic system behavior), we have
limited ourselves to a preliminary investigations of just a few scenarios.

As an example, we have considered the case of N = 10 items, with at most three user classes whose characteristics are
summarized in Table 2: for each class c, c = 1, 2, 3, the id’s of the items, ordered by quality as perceived by users of
class c (i.e., vector vc), are listed from the lowest-quality (left-most item) to the highest quality (right-most item). Note
that vectors vc where chosen simply at random from the space of 10! permutations.

(class 1) v1: 5 7 4 9 8 1 2 6 3 0
(class 2) v2: 3 1 2 5 9 7 4 8 0 6
(class 3) v3: 7 9 0 4 2 3 8 1 5 6

Table 2: Items ordered by increasing quality, according to 3 users classes

Figure 7 reports, on a log vertical scale, the number of system stable points as function of K, for 4 different values
of α = 0, 0.5, 1, 2, comparing 3 systems with N = 10, with-item-repetition: a system with C = 1 (only class 1, left
plot); a system with C = 2 (classes 1 and 2, middle plot); a system with C = 3 (classes 1,2, and 3, right plot). In all
scenarios we assume that classes are equally represented (i.e., ∀c, fc = 1

C ).

Note that the system with C = 1, equivalent to the single-class case, confirms results in Figure 4, according to which
Kmin = 2 for α = 0, Kmin = 3 for α = 0.5, Kmin = 4 for α = 1 or α = 2. When K < Kmin, it is interesting to
observe how the number of stable points (equal to 10! for K = 1) is drastically reduced by increasing K. A similar
strong impact of K on the number of stable points is observed also in the other two cases with multiple classes, but the
decay is slower, suggesting that systems with wildly different user classes are much more difficult to stabilize. Moreover,
while the system with C = 3 can actually reach a unique configuration for K sufficiently large (except for α = 2), the
system with C = 2 always leads to multiple stable points, except for α = 0, for which a unique configuration is stable
provided that K ≥ 2 (this special behavior for α = 0 holds in general).
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Interestingly, for C = 2, α = 0.5, the number of stable points is even non-monotonic with K. This anomaly prompted
us to investigate also the behavior of the average quality index, Figure 8. In the presence of multiple stable point, the
overall average quality index Q is computed as the weighted sum of average quality indexes of individual stable points,
weighted by their attractiveness:

Q =
∑
f

a(f) q(f)

Recall from Section 4 that attractiveness is defined as the number of permutations falling into a given fixed point by
recursive applications of function B(.). We use it as a proxy of the likelihood that the system converges to a given
equilibrium point, which is unfortunately hard to characterize since it depends on initial weights w[0].

Interestingly, Q always increases with K, suggesting, in line with intuition, that stronger quality-discrimination of users
leads to better average quality of selected items, also in the multi-class case. However, as we increase the number of
classes, achievable values of Q tend to decrease, as consequence of the fact that a certain stable point (unique or not)
inevitably cannot make happy users belonging to many (very different) classes.
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Figure 7: Number of system stable points as function of K, for different values of α, in the case of N = 10,
with-item-repetition: with only class 1 (left plot); with classes 1,2 (middle plot); with classes 1,2,3 (right plot).

At last, we performed also simulations of the above multi-class scenario, to derive performance metrics that cannot be
easily derived analytically, not even for the single-class case. One such metric is the distribution of the smallest time
for the system to reach one of its stable points. We assume that the system starts from the initial condition in which
popularity weights are all equal to 1, i.e., ∀i, wi[0] = 1. We simulated 106 run for each scenario, as we vary the number
C of classes and parameter α.

Figure 9 shows the median of the distribution of the smallest time to reach any stable point, as function of parameter
α, for N = 10, K = 5, without-item-repetition. We observe that, as a general trend, the stronger the popularity bias
represented by α, the longer it takes to the system to reach one of its stable points. One exception is in the case C = 3
(note that the median diminishes passing from α = 0.5 to α = 0.6): this can be explained by the fact that, in the interval
α ∈ [0.6, 0.8], the system has two stable points instead of 1 (intuitively, the higher the number of system stable points
the lower the time to reach any of them).

Figure 10 shows, on a log-log scale, the evolution over time of normalized weights w̃i[n] in a particular simulation run
obtained for one of the scenarios considered in Figure 9, i.e., C = 3, α = 0.5. We observe that, after a turbulent initial
phase characterized by large randomness affecting mid-popularity objects, trajectories converge to their asymptotic
constant value, becoming almost flat after about 106 user interactions.

7 Related work

Our work studies the consequences of using popularity as proxy for quality. There has been work supporting this
view. In [14], for example, authors consider two different social news aggregators, Reddit and Hacker News. They
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Figure 9: Median of the minimum time to reach a
system stable point as function of α, for different
number of classes.
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Figure 10: Evolution of normalized weights w̃i[n]
as function of time, in the case C = 3, K = 5,
α = 0.5.

define quality as the number of votes an article would have received if shown, in a bias-free way, to an equal number
of users. Using a Poisson regression method they find that popularity on Reddit and Hacker News is a relatively
strong reflection of quality. It is therefore to be expected that, especially in condition of limited attention, one makes
choices using popularity-based heuristics. There is a vast literature proving that popularity is indeed an important
factor that influences choices: Cai et al., e.g., studied the choices from a restaurant menu and showed that the demand
for the most popular dishes increased when this information was made explicitly available [15]. Salganick and
collaborators conducted a randomized experiment based on an artificial market for music downloads and proved a
marked difference in people choices when they are exposed to those of others [7]; such differences can ultimately
result in popularity rankings (for the same set objects) that differ greatly from experiment to experiment and from the
ranking that one would observe if choices where made in isolation and therefore independently. Such idiosyncrasies
can be attributed to the noisy popularity bias induced by the somewhat random choices made by the first users to
perform their choices, and they are the reason that make success hard to predict in cultural markets [8]. We can easily
appreciate the powerful effect of noisy initial fluctuations in popularity ranking in modelling cultural market, e.g.,
in [16] items equally appreciated by generic users can reach very different levels of popularity due to popularity biases.
Other studies have observed empirically the somewhat pernicious effect of popularity bias [5], or more in general of
social influence, in our choices [17]. A related, but distinct, issue is that when popularity informs the recommendation
of a recommending systems it can over concentrate the attention of users on the most popular items at the expense of
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equally valid but poorly recognized others (see e.g., [18]). Indeed, even when the recommender system is well aligned
with the preference of the majority, it can still happen it produces “unfairly” poor recommendation for those whose
preferences are misaligned with those of the majority of users [19]. Finally it is probably interesting to notice that also
in situations where a reasonably uncontroversial definition of quality can be assumed (where, e.g. it can be linked to
measurable outcomes or performances) popularity bias can provoke misalignments between quality and popularity
rankings [20]. In [21], a study about apps downloads from Google Play, the authors have shown that consumers are
more sensible to others revealed rather than stated preferences. A similar result is reported for hotels choices in [22].

Many different, often overlapping, reasons lay behind our tendency to inform our choices by popularity. First, people’s
behavior carries information and there are circumstances in which it is a perfectly rational and effective strategy to
observe and copy, even though this may lead to information cascades, as demonstrated in the classical works [23, 24, 25].
Second, adopting popular choices can derive from social influence [26, 27, 28], which, in turn, can produce undesirable
outcomes such as herding effects, that have been well documented in many areas of human behavior [29]. Third, the
tendency of choosing the most popular items may reflect a cognitive “bias" or heuristics. In cognitive sciences the
notion of “recognition" heuristics has been widely studied. In the words of Goldstone and Gingerenzer [30]: “Consider
the task of inferring which of two objects has a higher value on some criterion (e.g., which is faster, higher, stronger).
The recognition heuristic for such tasks is simply stated: If one of two objects is recognized and the other is not, then
infer that the recognized object has the higher value".

While it can be cost and time effective to use popularity as a proxy for quality and value, this does not come without a
price. A side effect of popularity driven dynamics is that it implies a positive feedback loop by which items that are
already popular tend to become even more popular. The net effect of such dynamics is that, even when it produces
popularity rankings that are aligned with the quality of items, it concentrates the collective attention towards few items
at the top. Indeed, since the seminal work of Simon [31], the rich-get-richer phenomenon has been quantitatively
translated in the principle of linear growth and claimed to explain power law distribution of quantities that can be
regarded as popularity [32]. Most recently the principle has found new life in network science, where it is known as
preferential attachment [33] and has been used to justify the widespread occurrence of power law degree distributions
in network abstraction of real-world systems.

When this effect is brought to the extreme and all popularity is concentrated in only few items at the top of the ranking,
then, naturally, diversity in the system disappears. This danger has been noted in several contexts, including that of
recommender systems. In [34] authors deal with the problem of data scarcity affecting items in the tail of the popularity
distribution, and develop techniques to improve their estimated quality and robustness to shilling attacks. In [35]
authors propose a regularization-based framework to enhance the long-tail coverage of recommendation lists in a
learning-to-rank algorithm, in order to achieve a desired trade-off between accuracy and coverage. [36] further explores
the fairness problem in recommendation by considering how different user groups are affected by algorithmic popularity
bias. The same issues of popularity concentration towards few top-ranking items has been considered in studies about
search engines. These presumably use popularity as a signal of relevance. Also they direct attention towards already
popular sites via the (popularity-based) ranking they produce [37]. Also in this case there is an implicit risk of a positive
feedback loop, although this tendency is dampened by the diversity of user interests [38].

In the recommendation systems community, it is well known that popularity bias and feedback loop in a long run
operation have important consequences on the performance of the system itself. This has been studied - among the
others - by Chaney et al. [39], Jiang et al. [40], D’Amour et al. [41], and Mansoury et al. [42].

On the empirical side, a systematic study of the interplay between quality and popularity is problematic for several
reasons. The most prominent is that the notion of quality, especially where cultural markets are concerned, is to some
extent subjective and therefore difficult to operationalize. A number of studies have nevertheless confirmed the finding
of the music lab experiment [43, 44, 17, 45]. Motivated by [43], a number of theoretical papers have tried to avoid
the empirical difficulties by postulating some mechanism of choice that takes popularity into account. Krumme et al
proposed an agent based model that closely reproduces the findings of the music lab experiment [28]. Van Hentenryck
and collaborators considered a model of market in which customers can try products before committing to buying.
They introduce a policy which successfully recovers quality ranking but asymptotically leads to a monopoly of the
top-quality item [46].

Popularity bias is not easily eliminated, even when one is aware of it. In [47] authors investigate the non-random
missing data problem (NRMD), e.g., the fact that users are more likely to supply ratings for items that they do like, and
less likely to supply ratings for items that they do not like. Incorrect assumptions about missing data have been found to
lead to biased parameter estimation in collaborative ranking. In [48] authors focus on the impact of false-positives,
i.e., suggestions that are disliked by users, discovering a surprising degree of disagreement with true positives, actually
penalizing the most popular items. In [49] authors formally investigate how popularity bias is affected by random
variables such as item relevance, item discovery by users, and the decision by users to interact with discovered items.
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8 Conclusions and future work

In this paper we have shown that a small effort on behalf of users to discriminate quality out of popularity can, in
the long run, straighten out systems that, by themselves, could drift to undesirable configurations containing severe
misalignments, especially among the top-quality items.

Readers familiar with load balancing strategies might recognize an analogy between our findings and the so called
“power of two choices" paradigm [50], which has been applied also to other computer science problems, such as hashing
and shared memory machines [51]. For example, in the classical balls-and-bins model, suppose that n balls are thrown
into n bins. A logarithmic reduction in the maximum number of balls in any bin is obtained when, instead of throwing
each ball uniformly at random, we select two bins uniformly at random, and put the ball in the least loaded one [52].
Note that in our case the goal is not to obtain a balanced allocation of balls among the bins, but an allocation satisfying a
desired ranking (the one associated to intrinsic quality). Although our problem is different, the discovered phenomenon
is similar: a minimum, local effort performed during the addition of an individual ball can, in the long run, rectify the
distortions produced by a purely random choice, guaranteeing to achieve the desired configuration. In particular, in
analogy to the “power of two choices", we discovered that Kmin = 2 is enough to guarantee convergence to the desired
configuration in any system run (Section 3), assuming that items are selected uniformly at random.

In contrast to classic results for the balls-and-bins model, we have considered also the case in which the candidate bins to
receive a new ball are not selected uniformly at random, but according to their current load (ranking model of exponent
α). Quite surprisingly, we have found that in this case K = 2 is not always enough to guarantee convergence to the
desired ranking. In particular, for 0 < α < 1, Kmin is even unbounded as N grows large, while for α > 1 we recover
the effect that a bounded, small K � N is enough (Section 4), though Kmin = 2 only for large α. Unfortunately, the
regime α > 1 might not allow us to achieve the desired level of fairness among items (Section 5.1).

Our analysis is not without limitations, and several directions could be pursued to generalize it and make it closer to
real systems. For example, we have assumed that users can always find the best-quality items among a subset of K: one
could incorporate also a possibly imperfect outcome of the user evaluation process. Moreover, the K inspected items
might not always be on the top of the list produced by the system (see example in Section 2.1), and one could try to
combine the effect of users focusing their attention on random items of the list. Another important point is that modern
platforms attempt to automatically estimate item quality in a way similar to what real users would do, e.g., by analyzing
reviews left by other users (e.g., by sentiment analysis), and combine such estimates with popularity metrics in building
their recommendation lists, de facto boosting the quality discrimination performed by users alone. Indeed it would be
interesting to develop models in which popularity, quality and randomness are jointly combined to determine the subset
of items inspected by users.

At last, we acknowledge that real systems do not construct recommendation lists based on our idealized ranking model
(power-law with exponent α): different laws (other than power-law) could be considered, as well as computationally
simpler strategies to present to users randomized lists so as to favor diversity and allow serendipity. For example, some
platforms (e.g., Amazon) seem to just perturb the list produced by their ranking algorithms by randomly moving up
or down a few items (occasionally adding also some ‘intruders’), so that each non-repeated query produces a slightly
different items view. It would be interesting to study whether such simpler ways to randomize lists could be mapped
onto our ranking model with properly chosen α. Another interesting direction would be to consider dynamic systems
[53] in which new items are progressively inserted into the catalog, and study strategies to let them quickly emerge over
older (worse) ones.

Finally, our preliminary investigation in Section 6 suggests that the system behavior in the case of multiple user classes
is much richer and more complex than the single class case. Future work should expand our understanding of the
multi-class scenario, and, more in general, the impact of heterogeneous perception of quality.
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A Proof of Proposition 3.1

Proof. Let rmin , mini
bi+1

bi
> 1 be the minimum ratio between two consecutive (positive) winning probabilities. For

example, in the case of winning probabilities (1) we have, for K ≤ i < N ,

bi+1

bi
=

i

i−K + 1

hence rmin = N−1
N−K > 1. Moreover, let bmin , mini{bi}.

Next, we recall the following classic bounds for the tails of the binomial distribution Bin(n, p) (see e.g. Lemma 1.1 p.
16 in [54]). Let µ := np, and

H(a) := 1− a+ a log a, a ∈ R+. (15)

For any 0 < k < n, we have:
if k ≥ µ, then

P (Bin(n, p) ≥ k) ≤ exp

(
−µH

(
k

µ

))
; (16)

if k ≤ µ, then

P (Bin(n, p) ≤ k) ≤ exp

(
−µH

(
k

µ

))
. (17)

We identify a suitable threshold ti in between each pair of consecutive winning probabilities (bi, bi+1). In particular,
we set ti as the geometric mean of bi and bi+1:

ti =
√
bibi+1, K ≤ i < N

and we also set tK−1 = 0, tN = 1. We denote by Cin = {ti−1 < wi[n]
n < ti} the event that, at round n, the empirical

frequency of the number of times object i wins is comprised in the interval (ti−1, ti). Observe that we can safely
disregard initial weights w[0], which provide vanishing contribution to empirical frequencies wi[n]

n .
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Note that the joint occurrence of all events Cin, ∀i, is a sufficient but not necessary condition for the occurrence of En,
which is the event that weights are correctly ordered. Therefore, denoting by E the complement of a generic event E,
we have:

En ⊇ (∩Ni=KCin)⇒ En ⊆ (∪Ni=KC
i

n)

By the union bound,

P(En) ≤
N∑
i=K

P(C
i

n).

Using the above deviation bounds of the binomial distribution, we have, for K < i < N :

P(C
i

n) = P(Bin(n, bi) ≥ nti) + P(Bin(n, bi) ≤ nti−1) ≤ exp (−nbiH(ti/bi)) + exp (−nbiH(ti−1/bi)) =

exp
(
−nbiH(

√
bi+1/bi

)
+ exp

(
−nbiH(

√
bi−1/bi

)
≤ exp (−nbiH(

√
rmin) + exp

(
−nbiH(

√
1/rmin

)
. (18)

For the special case i = K (i = N ), we have to consider only the right (left) tail, obtaining:

P(C
K

n ) = P(Bin(n, bK) ≥ ntK) ≤ exp (−nbKH(
√
rmin)

P(C
N

n ) = P(Bin(n, bK) ≤ ntN−1) ≤ exp
(
−nbNH(

√
1/rmin

)
.

In conclusion, since bi ≥ bmin, we have

P(En) ≤ (N − 1)
[

exp (−nbminH(
√
rmin) + exp

(
−nbminH(

√
1/rmin

) ]
meaning that the probability of event En decreases exponentially to zero as n increases. Since

∑
n P(En) <∞, the

assert follows from the Borel-Cantelli lemma.

B Proof of Proposition 4.1

Sketch of proof. We present a simplified proof based on the analysis of the trajectory of mean (normalized) weights
w̄ = E[w̃]. As it usually occurs in Pólya urn models, the actual system exhibits wild random fluctuations at the
beginning of the process, but the impact of stochasticity diminishes over time due to the accumulation of balls in the
urns, which makes the randomness related to the addition of individual balls less and less important, so that the system
behavior becomes more and more concentrated around mean values, which follow a deterministic trajectory on which
we restrict our attention here.

Possible values of normalized weights w̃ lie in the simplex S = {w ∈ RN : w1+. . .+wN = 1, wi ≥ 0, i = 1, . . . , N},
which can be partitioned into M = N ! subregions {Si}M1 corresponding to the N ! possible permutations of indexes
{1, . . . , N} associated to sorted values of {w̃i}i. It is immediate to verify that subregions Si are convex. At the
beginning of round n (i.e., after n− 1 balls have been added, starting from n0 initial balls in the system), normalized
weights w̃[n − 1] lie in a subregion of S associated to the vector of winning probabilities b[n] = b(w̃[n − 1]). Let
∆[n] be the random vector denoting which ball is added at round n, i.e., a vector of all zeros except for the index of the
urn in which the ball is added, whose entry equals 1. We have

w̄[n] = E[w̃[n]] = E
[

(n0 + n− 1)w̃[n− 1] + ∆[n]

n0 + n

]
=

(n0 + n− 1)w̄[n− 1] + b[n]

n0 + n
.

Therefore, from n − 1 to n, w̄[n] moves within domain S along the segment connecting w̄[n − 1] to b[n]. Note
that b[n] can lie within a different subregion of S with respect to vector w̄[n− 1]. In that case, w̄[n] will eventually
enter the subregion of b[n], and since then start moving towards a possible different attraction point b. Instead, if
b[n] lies in the same subregion of S as w̄[n− 1], the trajectory will end up at point b[n], which must be a fixed point
of function B(.). Figure 11 illustrates examples of trajectories on the plane b3, b2 for the system N = 3, K = 2,
α = 1, with-item-repetition. In this case simplex S is partitioned into 6 subregions, and there are two stable points
e1 = ( 4

121 ,
21
121 ,

96
121 ) and e2 = ( 4

121 ,
60
121 ,

57
121 ). The associated permutation graph is shown on the right of Figure 11.

Special fixed points of B(.) lying exactly on the hyperspaces in which two or more components are equal are not stable,
due to the assumption that B(.) is an injective function of the rank of weights w̃. Indeed, small perturbations around
such points, which naturally occurs in the actual urn model, would drive the system towards different attraction points.

To show that fixed points of B(.) are the only possible stable points of the system, it remains to prove that the system
cannot have a limit cycle, or, in other words, the associated permutation graph is a DAG (directed acyclic graph). This
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Figure 11: Example trajectories (left) and permutation graph (right) for the system N = 3, K = 2, α = 1, with-item-
repetition. The attraction basin of both stable points e1 and e2 is half of S.

fact can be proven by contradiction: suppose that the system, as n→∞, visits in sequence subregions S1,S2, . . . ,SC ,
C ≥ 2, characterized by winning probabilities bi, 1 ≤ i ≤ C, and staying an asymptotic fraction fi of time in subregion
i, 1 ≤ i ≤ C. Then normalized weights will converge, as n → ∞, to the unique point b∞ =

∑C
i=1 fibi, hence it

cannot keep visiting different attraction points bi.

C Proof of Lemma 4.1

Proof. We analyze the stability of a generic permutation in which the v-th highest quality item is the first one (in the
natural sequence with increasing quality) that is not given the right popularity according to the natural permutation. In
the natural permutation, such item (the v-th highest quality) would get popularity [vαG]−1, and suppose instead that it
gets higher popularity [(v−∆)αG]−1, with ∆ ≥ 1, in the generic alternate permutation. For the alternate permutation to
be stable, the winning probability bv of this first disordered item must be higher than the winning probability of all items
receiving lower popularity, and most crucially of the item that gets popularity value [(v −∆ + 1)αG]−1, whose quality
cannot be smaller than that of the (v − 1)-th highest quality item, since items with quality rank v + 1, v + 2, . . . , N
are given their natural popularity, by hypothesis. In this situation, the popularities assigned to items with quality rank
N,N − 1, . . . , v, v − 1, are, respectively:

1

NαG
,

1

(N − 1)αG
, . . . ,

1

(v + 1)αG
,

1

(v −∆)αG
,

1

(v −∆ + 1)αG
.

Let s∗(v) =
∑N
i=v+1(iαG)−1, and notice that this is the cumulative popularity of all items with quality rank higher

than v, i.e., those items which receive by hypothesis their correct popularity according to the natural permutation. The
winning probability of the first disordered item is then

bv =

[
s∗(v) +

1

(v −∆)αG

]K
− [s∗(v)]K

while the winning probability of the item with quality rank v − 1 is:

bv−1 =

[
s∗(v) +

1

(v −∆)αG
+

1

(v −∆ + 1)αG

]K
−
[
s∗(v) +

1

(v −∆)αG

]K
.

The alternate permutation is stable provided that bv > bv−1, therefore we are left to equivalently analyze properties of
function F (∆, v,K):

F (∆, v,K) = 2

[
s∗(v) +

1

(v −∆)αG

]K
− [s∗(v)]K −

[
s∗(v) +

1

(v −∆)αG
+

1

(v −∆ + 1)αG

]K
(19)

where integers ∆, v,K can be chosen in the domain D : ∆ ∈ [1, N − 1], v ∈ [∆ + 1, N ],K ≥ 1, and we are especially
interested in possible monotonies of F (∆, v,K) in the subdomain D+ ⊆ D in which F (∆, v,K) is positive.

We observe that, in the special case K = 1:

F (∆, v, 1) =
1

G

[
1

(v −∆)α
− 1

(v −∆ + 1)α

]
> 0 ∀(∆, v) ∈ D
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which also suggests that, for K = 1, any local swap of two items, starting from the natural permutation, leads to a stable
alternate permutation. On the other hand, as K →∞, F (∆, v,K) becomes eventually negative, ∀(∆, v), meaning that,
for sufficiently large K, any alternate permutation w.r.t. the natural one becomes unstable, and therefore there exists
indeed Kmin such that for K ≥ Kmin the natural permutation is the only stable one. It remains to understand, for fixed
K, which pair (∆, v) provides the largest (positive) F (∆, v,K) in D+. It turns out that, for fixed ∆, F (∆, v,K) is a
decreasing function of v in subdomain D+. This means that, for given displacement ∆ of the first disordered item from
its natural position, F (∆, v,K) achieves its maximum for the minimum v = ∆ + 1. Moreover, F (∆,∆ + 1,K) is a
decreasing function of ∆, and therefore it achieves its maximum for the minimum ∆ = 1. In conclusion, F (∆, v,K)
achieves its maximum for ∆ = 1, v = ∆ + 1, hence Kmin is determined by the critical permutation in which the top
two highest quality objects are swapped.

D Proof of Proposition 4.2

Proof. For N = 1, we trivially have Kmin = 1. For N ≥ 2, properties of Kmin can be proven by applying basic
calculus to the real function of two real variables F (x,G) : [1,∞]× [1 + 2−α,∞]→ R:

F (x,G) = 2(1−G−12−α)x − 1− (1−G−1 −G−12−α)x

obtained by rewriting inequality (7) relaxing integer K to the real value x ≥ 1. We note that F (x,G) is continuous over
its domain in both x and G. Moreover F (1, G) is positive for any α > 0, while F (x,G)→ −1 as x→∞. Computing
∂F
∂x , one can easily see that there is at most one value of x at which ∂F

∂x = 0, which is enough to conclude that, for
α > 0, there exists a unique value x∗ > 1 at which F (x∗, G) = 0, ∂F∂x |x=x∗ < 0, before which F (x,G) is positive,
and after which F (x,G) is negative. Since K must be an integer, we take the smallest integer larger than or equal to x∗,
i.e., Kmin = dx∗e. In the special case α = 0, F (1, G) = 0 and F (x,G) is monotonically decreasing in x, and we can
use Kmin = 2 to guarantee that bN−1 < bN , for any N .

With respect to G, we observe that F (x,G)→ 0+ as G→∞, and by computing ∂F
∂G , we find that there is only one

value of G at which ∂F
∂G = 0. This is enough to conclude that ∂F∂G |x=x∗ > 0. The sign of the derivative of the implicit

function x = g(G) (implicitly defined by F (x,G) = 0) with respect to G can thus be determined by the implicit
function theorem, which provides:

dg

dG
= −∂F/∂G

∂F/∂x

at the points at which F (x,G) = 0. Since ∂F
∂G > 0, while ∂F

∂x < 0, we have that dg
dG is positive, and since G

monotonically increases with N we conclude that x∗ is an increasing function of N , and thus Kmin = dx∗e is a
non-decreasing function of N .

Since, when 0 < α ≤ 1, the Dirichlet series G =
∑∞
i=1 i

−α diverges, it follows that, for 0 < α ≤ 1, Kmin →∞ as
N →∞. Instead, when α > 1, asN →∞G converges to Riemann zeta function ζ(α). Therefore,K∞min := dg(ζ(α)e)
is an upper bound to Kmin for any N , when α > 1.

E Proof of Proposition 5.1

Proof. We will need the following auxiliary lemma which can be proven by elementary calculus.

Lemma E.1. Given any two positive integers N and K, with N > K, the function f(α) : R+ ∪ 0→ (0, 1):

f(α) =

∑K
i=1 i

−α∑N
j=1 j

−α

is monotonically increasing with α.

Proof.

df(α)

dα
=

1

G2

 N∑
j=1

j−α
K∑
i=1

(− log(i))i−α −
N∑
j=1

(− log(j))j−α
K∑
i=1

i−α

 .

The term in parenthesis can be simplified to:
K∑
i=1

i−α
N∑

j=K+1

log(j)j−α −
K∑
i=1

log(i)i−α
N∑

j=K+1

j−α
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which is positive since, for any i, we take indexes j > i, and thus:

K∑
i=1

i−α
N∑

j=K+1

log(j)j−α >

K∑
i=1

i−α
N∑

j=K+1

log(i)j−α.

Going back to Proposition 5.1, from the definition of q:

q =

N∑
i=1

i bi =

N∑
i=1

i(sKi − sKi−1) = N −
N−1∑
i=1

sKi (20)

where si =
∑i
j=1

(N−j+1)−α

G . Computing the derivative of the above expression with respect to α, we have

∂q

∂α
= −K

N−1∑
i=1

sK−1i

∂si
∂α

which is positive provided that ∂si∂α is negative, for any i. Since

si = 1−
∑N−i
j=1 j

−α∑N
j=1 j

−α

we can apply Lemma E.1 withK = N−i to conclude that si is indeed a decreasing function of α, for any i = 1 . . . N−1.

In the special case α = 0, we have si = i/N , and we obtain the minimum possible value

qmin = N −
∑N−1
i=1 iK

NK
.

As α→∞, all cumulants si, i = 1 . . . N − 1 vanish, and q approaches (from below) the limit N .

For given N and α, the fact that q increases with K stems directly from (20), since each term si of the summation,
being smaller than 1, decreases as we make K larger.
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