
Physics in Medicine & Biology
     

PAPER • OPEN ACCESS

Deep learning-based image reconstruction and
motion estimation from undersampled radial k-
space for real-time MRI-guided radiotherapy
To cite this article: Maarten L Terpstra et al 2020 Phys. Med. Biol. 65 155015

 

View the article online for updates and enhancements.

You may also like
A generative adversarial network (GAN)-
based technique for synthesizing realistic
respiratory motion in the extended cardiac-
torso (XCAT) phantoms
Yushi Chang, Zhuoran Jiang, William Paul
Segars et al.

-

Motion-aware temporal regularization for
improved 4D cone-beam computed
tomography
Cyril Mory, Guillaume Janssens and
Simon Rit

-

A biomechanical modeling-guided
simultaneous motion estimation and image
reconstruction technique (SMEIR-Bio) for
4D-CBCT reconstruction
Xiaokun Huang, You Zhang and Jing
Wang

-

This content was downloaded from IP address 130.186.99.159 on 27/05/2022 at 18:28

https://doi.org/10.1088/1361-6560/ab9358
/article/10.1088/1361-6560/ac01b4
/article/10.1088/1361-6560/ac01b4
/article/10.1088/1361-6560/ac01b4
/article/10.1088/1361-6560/ac01b4
/article/10.1088/0031-9155/61/18/6856
/article/10.1088/0031-9155/61/18/6856
/article/10.1088/0031-9155/61/18/6856
/article/10.1088/1361-6560/aaa730
/article/10.1088/1361-6560/aaa730
/article/10.1088/1361-6560/aaa730
/article/10.1088/1361-6560/aaa730
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsss2LfEv1WI676V9rxyTorAtrzS6pzmUkaqioJIHIOm67YxtkgF6qQVEAXyl2JcqJZz9w61v1UD1E94viPEY_kalnXcXKCSsFcaoR9Eg6c_FoP6DWW65GP7_wggYw9TXexD0jyebwNFqqtsKHdTmGerrN__5U4UjsmldBy76t_pJ6Y-LImaAQqlLr7cpSA9IaFKDAKRcO6gJhyaeco-n9PRTysDo1Yt1Wj5KeqFMjq7iBl_mZN9gjuqwE85tctMPXfbOZviq-Omnj3ASEgj8VXjBIB-vOZ_Rjo&sig=Cg0ArKJSzAPB3c3GUf7Z&fbs_aeid=[gw_fbsaeid]&adurl=https://iopscience.iop.org/bookListInfo/physics-engineering-medicine-biology-series%23series


Phys. Med. Biol. 65 (2020) 155015 https://doi.org/10.1088/1361-6560/ab9358

Physics in Medicine & Biology

OPEN ACCESS

RECEIVED

13 March 2020

REVISED

7 May 2020

ACCEPTED FOR PUBLICATION

14 May 2020

PUBLISHED

30 July 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author (s) and the
title of the work, journal
citation and DOI.

PAPER

Deep learning-based image reconstruction and motion estimation
from undersampled radial k-space for real-time MRI-guided
radiotherapy
Maarten L Terpstra1,2, Matteo Maspero1,2, Federico d’Agata1,2,3, Bjorn Stemkens1,2,
Martijn P W Intven1, Jan J W Lagendijk1, Cornelis A T van den Berg1,2 and Rob H N Tijssen1,4

1 Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
2 Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht,
Utrecht, The Netherlands

3 Department of Neurosciences, University of Turin, Turin, Italy
4 Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands

E-mail: m.l.terpstra-5@umcutrecht.nl

Keywords: deep learning, MRI, reconstruction, undersampling, motion estimation, mr-linac, radiotherapy, real-time

Abstract
To enable magnetic resonance imaging (MRI)-guided radiotherapy with real-time adaptation,
motion must be quickly estimated with low latency. The motion estimate is used to adapt the
radiation beam to the current anatomy, yielding a more conformal dose distribution. As the MR
acquisition is the largest component of latency, deep learning (DL) may reduce the total latency by
enabling much higher undersampling factors compared to conventional reconstruction and
motion estimation methods. The benefit of DL on image reconstruction and motion estimation
was investigated for obtaining accurate deformation vector fields (DVFs) with high temporal
resolution and minimal latency.

2D cine MRI acquired at 1.5 T from 135 abdominal cancer patients were retrospectively
included in this study. Undersampled radial golden angle acquisitions were retrospectively
simulated. DVFs were computed using different combinations of conventional- and DL-based
methods for image reconstruction and motion estimation, allowing a comparison of four
approaches to achieve real-time motion estimation. The four approaches were evaluated based on
the end-point-error and root-mean-square error compared to a ground-truth optical flow estimate
on fully-sampled images, the structural similarity (SSIM) after registration and time necessary to
acquire k-space, reconstruct an image and estimate motion.

The lowest DVF error and highest SSIM were obtained using conventional methods up to
R≤ 10. For undersampling factorsR> 10, the lowest DVF error and highest SSIM were obtained
using conventional image reconstruction and DL-based motion estimation. We have found that,
with this combination, accurate DVFs can be obtained up toR= 25 with an average
root-mean-square error up to 1 millimeter and an SSIM greater than 0.8 after registration, taking
60 milliseconds.

High-quality 2D DVFs from highly undersampled k-space can be obtained with a high
temporal resolution with conventional image reconstruction and a deep learning-based motion
estimation approach for real-time adaptive MRI-guided radiotherapy.

1. Introduction

Magnetic resonance imaging-guided radiotherapy (MRIgRT) is increasingly adopted in clinical practice.
Hybrid MRI scanners with an integrated linear accelerator (MR-linac) have shown to be very efficient in
dealing with inter-fraction anatomical changes by employing online re-planning prior to each treatment
session (Mutic and Dempsey 2014, Winkel et al 2019).
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The future promise of hybrid MR-linac systems is to not only account for inter-fraction motion but also
adapt the radiation delivery in real-time during treatment to accommodate for respiration or
cardiac-induced intra-fraction motion (Keall et al 2019, Glitzner et al 2015, Fast et al 2017, Kontaxis et al
2017, Dietz et al 2019), peristaltic motion and tissue deformation, e.g. due to bladder filling or passing air
bubbles.

Real-time adaptive radiotherapy requires imaging with extremely high temporal resolution as well as a
very low total latency (i.e. the time between an event and response) of the MR-linac feedback chain (Keall
et al 2006). The most significant source of latency in the MR-linac feedback chain is MR image acquisition
(Borman et al 2018). If acquisitions could be significantly undersampled, motion could be estimated with
minimal latency. Although dense array radio-lucent receiver coils improve the acquisition speed of MR-linac
systems by use of parallel imaging (Zijlema et al 2019), most motion quantification techniques are
image-based and rely on high-quality images, which limits the maximum acceleration factors achievable
with parallel imaging (Wiesinger et al 2004). Regularized reconstruction methods like compressed sensing
(Lustig et al 2007) may achieve even higher acceleration factors, but the iterative nature of compressed
sensing reconstruction algorithms make it unsuitable for real-time applications.

Recently, deep learning (DL) has become a popular technique in many scientific fields due to its
high-quality results and speed. The use of neural networks to generate a hierarchical representation of the
input data to achieve high task-specific performance without the need of hand-engineered features has
proven extremely powerful for imaging applications (Litjens et al 2017, Meyer et al 2018, Sahiner et al 2019).
In computer vision, various DL methods have been developed that outperform traditional motion
estimation algorithms (Ranjan and Black 2017, Dosovitskiy et al 2015, Ilg et al 2017), while for MRI several
DL methods have been proposed to replace the computationally expensive compressed sensing
reconstructions (Schlemper et al 2018, Hammernik et al 2018, Lø nning et al 2019).

In this paper, we investigate the performance of DL for image reconstruction and motion quantification
on highly undersampled golden-angle (GA) radial acquisitions for real-time MRIgRT with the goal of
providing accurate motion quantification with minimal latency. We hypothesize that the benign
undersampling artifacts in GA radial MRI in combination with DL image reconstruction provides high
acceleration factors with image quality on par with CS reconstruction but at a fraction of the computation
time. The addition of a DL-based motion quantification approach is believed to relax the requirements for
high-quality images, potentially allowing even greater image acceleration factors.

In this work, we investigate a two-step process in which retrospectively undersampled dynamic GA radial
data are reconstructed by classical methods or using DL models. With this approach, we assess the individual
and the combined performance of DL-based image reconstruction and processing on computation time and
motion estimation accuracy for acceleration factors of up to 50.

2. Materials &methods

The study design is illustrated in figure 1. Image reconstruction from undersampled dynamic GA radial
k-space was performed with either a classical non-uniform fast Fourier transform (NUFFT) (Fessler and
Sutton 2003) or with dAUTOMAP (Schlemper et al 2019), a convolutional neural network designed for
image reconstruction. Subsequently, motion is estimated on the reconstructed images via a classical optical
flow (OF) based motion estimation algorithm, or a modified version of SPyNET, a multi-resolution layered
deep neural network that computes deformation vector fields (DVFs) at multiple resolutions, similar to OF
Ranjan and Black (2017). This allowed us to compare four approaches using varying degrees of DL to
estimate motion from undersampled dynamic GA radial k-space.

2.1. Patient data collection
Patients diagnosed with cancer in the abdomen undergoing radiotherapy simulation at our department
between June 2015 and December 2019 were included in this study when sagittal cine MRI were acquired. In
total, 135 patients were included, of whom 83 were male and 52 were female and were diagnosed with
tumors to the abdomen (7), liver (40), kidneys (62) and pancreas (26). The patients were between 37 and 89
years old with a mean age of 67± 11 years old. Two-dimensional (2D) Cartesian balanced steady-state free
precession (bSSFP) cine MRIs were acquired on a 1.5 T MRI scanner (Ingenia MR-RT, Philips, Best, the
Netherlands). Table 1 lists the acquisition parameters. The total acquisition time was between 25 s and
2.5 min, according to the number of dynamics acquired per scan, which varied between 50 and 300. Patients
were scanned on a flat tabletop in the supine position using a 16-channel anterior and a 12-channel posterior
phased-array coil. Two in-house built coil bridges supported the anterior coil to avoid skin contour
deformation and not to affect natural motion. In total, 31 750 magnitude-only dynamics were collected from
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Figure 1. Schematic overview of the study design. Generation of undersampled k-space (top) and the DVFs from fully-sampled
k-space (ground-truth) and undersampled k-space (bottom). Reconstruction can happen with a NUFFT or a DL-based image
reconstruction model. Motion estimation with the reference image happens with optical flow or a DL-based motion estimation
approach.

Table 1. Scan parameters for sagittal and coronal 2D Cartesian balanced steady-state free precession MRI used in this work.

Parameter Sagittal Coronal

TE (ms) 1.4 1.4
TR (ms) 2.8 2.7
Flip angle 50◦ 50◦

Resolution (mm2) 1.4× 1.4 2.0× 2.0
FOV (mm2) 320× 320 450× 450
Reconstruction resolution (px2) 224× 224 224× 224
Slice thickness (mm) 7 7
Readout direction FH FH
Bandwidth (Hz/px) 724 - 2034 1431 - 2034
Temporal resolution (ms) 500-570 500-570
Number of dynamics 50-300 100-300

200 cine MRIs, as for some patients the cine data were acquired multiple times. Of these 200 cine MRIs, 126
were scanned after contrast agent injection.

For 30 of the 135 patients, 42 coronal cine MRIs were also acquired. Coronal cine MRIs were used for
model validation. The scan parameters of these cine MRIs are also detailed in table 1.

2.2. Data preparation
The signal intensity over all dynamics was linearly rescaled to an output range of [0, 1], clipping to the 99th

percentile of intensity values of the dynamics in a cine MRI. Complex k-space was obtained by adding
simulated phase to the magnitude-only images and computing the non-uniform Fourier transform
(NUFFT) (Fessler and Sutton 2003) using PyNUFFT version 2019.1.1 (Lin 2018) with an undersampled GA
radial readout trajectory. The simulated phase was generated per dynamic, as suggested by Zhu et al (2018),
i.e. by generating two two-dimensional sinusoids with a randomly-chosen spatial frequency between 0.05 Hz
and 0.25 Hz and rotating these sinusoids separately with a random angle around the origin. These sinusoids
were added together and the amplitude normalized to [−π,π] such that the intensity represents phase
values. K-space was density-compensated with a Ram-Lak filter and gridded to a Cartesian grid.

To ensure that representative noise was present in the retrospectively undersampled k-space, additional
Gaussian noise X∼N (0, ϵ · |k0|) was added separately to the real and imaginary channels, where ε was
randomly chosen between

[
3 · 10−3,5 · 10−3

)
. The range for ε was determined from separate noise scans as

the magnitude of the noise divided by the magnitude of the DC component.
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The undersampling factorR was determined by dividing the number of spokes required for a
Nyquist-sampled radial acquisition at the reconstruction resolution by the undersampling factor, i.e.
⌈224 ·π/2⌉ ·R−1 = 352 ·R−1. The induced latency of this acquisition scheme is half of the acquisition time,
i.e. 352 ·R−1 ·TR/2 (Borman et al 2018). Data was prepared for the undersampling factorsR=1, 5, 10, 16,
20, 25, 30, 40 and 50.

2.3. Image reconstruction
The generated k-space of each dynamic was reconstructed with a conventional method and a DL-based
approach.

2.3.1. Conventional
Non-Cartesian k-space was reconstructed with a NUFFT adjoint reconstruction, obtaining a fast
reconstruction at the cost of undersampling artifacts compared to an iterative reconstruction algorithm.

2.3.2. Deep learning
For image reconstruction from undersampled k-space dAUTOMAP1 (Schlemper et al 2019) was trained on a
GPU (Tesla P100, NVIDIA, Santa Clara, CA, USA). dAUTOMAP is a model that performs non-iterative
reconstruction with low parameter count, which makes it suitable for real-time image reconstruction. As
dAUTOMAP assumes that the k-space points lie on a Cartesian grid, the k-space was re-gridded and
density-compensated, as illustrated in figure 2 (top). The model was implemented in PyTorch 1.0.1 and had
913 473 trainable parameters. dAUTOMAP was initialized using Xavier initialization (Glorot and Bengio
2010) and trained using the Adam optimizer (Kingma and Ba 2015) using β1 = 0.9,β2 = 0.999 and a
learning rate of 10−3 with a batch size of 64 on an undersampled k-space withR=10 to minimize the
mean-square-error (MSE) between reconstruction and target. After 50 epochs, the high-frequency error
norm (HFEN) (Ravishankar and Bresler 2011) was added to the loss function as it was found to improve
performance. dAUTOMAP was trained until validation loss converged.R=10 was chosen as the
undersampling factor for training as a balance between a fast acquisition and image quality, as training with
higher undersampling factors became unstable. The learning rate was halved if the validation error
plateaued, i.e. if the validation error has not improved with at least 10−8 in the last ten epochs. dAUTOMAP
was trained on 119 cine MRIs from 81 patients comprising 60% of all sagittal dynamics. The
hyper-parameters were validated on 38 cine MRIs from 26 patients comprising 20% of all sagittal dynamics.
The final model was tested on 43 cine MRIs from 28 patients comprising 20% of all sagittal dynamics.

2.4. Motion estimation
For every sagittal cine MRI, a reference image was chosen by randomly selecting a dynamic after ensuring
that the dynamic was acquired in the steady-state. This was ensured by excluding the first 30 dynamics of the
cine MRI from the selection of reference images. Then, DVFs were computed between every dynamic and the
reference image.

Five reference images were randomly selected per cine MRI as data augmentation strategy and to ensure
that the reference images were not only on an ‘extreme’ point of the respiratory phase, e.g. inspiration or
expiration.

This yielded a total of 130 475 DVFs for training and validation and 28 275 DVFs for testing.

2.4.1. Conventional
DVFs were computed using optical flow (Horn and Schunck 1981, Zachiu et al 2015a, Zachiu et al 2015b).

Optical flow is a registration algorithm that assumes the DVF to be smooth and the brightness of the
images is preserved over time. Optical flow estimates DVFs by minimizing the energy function given in
equation (1):

E=

ˆ̂
Ω

∣∣Ixu+ Iyv+ It
∣∣+β2

(
||∇u||22 + ||∇v||22

)
dxdy (1)

where Ω⊆ R2 is the image domain, u and v are components of the DVF, Ix, Iy, It are the spatial and temporal
partial derivatives of the images, respectively, and β is the regularization parameter enforcing smoothness.

Optical flow refines the motion estimate through iteration and estimating motion at multiple resolution
levels in a pyramid approach in order to resolve large displacements.

In a preliminary study that is presented in appendix A, we compared an implementation of optical flow
and Elastix (Klein et al 2010) to assess the registration performance on our dataset.

1Reference implementation as found on https://github.com/js3611/dAUTOMAP.

4

https://github.com/js3611/dAUTOMAP


Phys. Med. Biol. 65 (2020) 155015 M L Terpstra et al

Figure 2. Schematic of the image reconstruction and motion estimation models. The dAUTOMAP model (top) reconstructs the
re-gridded and density-compensated undersampled k-space to an image. SPyNET (bottom) is a multi-resolution approach that
estimates a DVF between a reference image and dynamic using multiple CNNs. Blue and green layers are two-dimensional
convolution layers with and without non-linear activation, respectively.

As a result of this preliminary study, we opted to use optical flow as implemented with RealTITracker
(Zachiu et al 2015a, Zachiu et al 2015b) in this work. In particular, ground-truth DVFs were computed on
the fully-sampled dynamics by computing optical flow between every dynamic/reference image pair with
RealTITracker with β= 0.6.

2.4.2 Deep learning.
For motion estimation, the convolutional neural network called SPyNET (Ranjan and Black 2017) was
trained on a GPU (Tesla P100, NVIDIA, Santa Clara, CA, USA). SPyNET is a multi-resolution pyramid
approach. At every resolution level in the pyramid, a small CNN of 233 778 parameters is employed to
estimate motion from the input images together with an upsampled motion estimate from the previous
pyramid level. The motion estimation approach is illustrated in figure 2 (bottom). The model was
implemented in PyTorch 1.0.1 and was serially trained with four pyramid levels, for a total of 935 112
trainable parameters. The image pyramid had an image size of 224× 224 pixels at the highest resolution level
down to 28× 28 pixels at the lowest resolution level. SPyNET was trained separately on pairs of images
reconstructed with either a NUFFT or dAUTOMAP reconstruction withR=10 to learn the ground-truth
optical flow DVFs by minimizing the end-point-error

(
EPE=

√
(uest − ugt)2 +(vest − vgt)2

)
. The model

weights of all networks were initialized using Kaiming uniform initialization (He et al 2015).
The effect of the warping operator as defined in the original implementation of SPyNET, which registers

the images at lower resolution levels to resolve larger displacements, was evaluated and was found to be
detrimental to the motion estimation quality and therefore omitted.

Data augmentation was performed on the images consistent with the ground-truth DVF by random
horizontal and vertical flips and contrast jitter to prevent overfitting (Bloice et al 2019). The EPE was
minimized using the Adam optimizer β1 = 0.9,β2 = 0.999 with a learning rate of 5 · 10−4 until convergence
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of the validation loss. The batch size was limited by the available GPU memory and was 1024 for the lowest
resolution level and 32 for the highest resolution level.

Every SPyNET level was trained, tested and validated on the same data partition as dAUTOMAP. That is,
119 cine MRIs from 81 patients comprising 60% of all sagittal dynamics were used for training. The
hyper-parameters were validated on 38 cine MRIs from 26 patients comprising 20% of all sagittal dynamics.
The final model was tested on 43 cine MRIs from 28 patients comprising 20% of all sagittal dynamics.

2.5. Experiment setup
As image reconstruction and motion estimation can be computed with conventional or DL-based methods,
we investigated four different combinations to obtain DVFs from k-space:

• Using NUFFT reconstruction and optical flow motion estimation (NUFFT/OF);
• Using NUFFT reconstruction and SPyNET motion estimation (NUFFT/SPyNET);
• Using dAUTOMAP reconstruction and optical flow motion estimation (dAUTOMAP/OF);
• Using dAUTOMAP reconstruction and SPyNET motion estimation (dAUTOMAP/SPyNET).

As the goal of these methods is to estimate motion from undersampled k-space, quality is defined solely
by the correctness of the DVF. The four approaches were evaluated using the following criteria:

1 Registration performance The image similarity after registration of fully-sampled dynamics using a
DVF estimated on undersampled images was evaluated over the whole image. This was quantified by the
structural similarity (SSIM) (Wang et al 2004) over the whole image. In particular, the mean (± std) of
the SSIM after registration was computed for 100 dynamic/reference image pairs of each cine MRI for
every approach. In total, a sample of 2975 dynamic/reference pairs were considered.

2 DVF quality The quality of the DVF was measured by the mean absolute displacement error, as well as
the root-mean-square error (RMSE) compared to the ground truth in a region of interest (ROI) that was
manually generated to include relevant structures, e.g. liver veins, kidney structures or tumors.
The ROIs of all patients in the test set are presented in appendix B. The root-mean-square error of dis-
placement within the ROIs was considered as well. Bland-Altman plots (Altman and Bland 1983) of the
mean absolute displacement error were calculated to compare the average DVF magnitude within an
ROI to the ground-truth optical flow. These plots reveal the bias of a model for undersampled motion
estimation in the generated DVFs, computing statistical error bounds. The statistical significance was
estimated using the Wilcoxon signed-rank test.

3 Time The time necessary to estimate motion, including MR acquisition, was reported. For a fair com-
parison of the different approaches, only GPU timings were considered. Given that RealTITracker, the
optical flow implementation that we adopted, is available only for CPUs, we obtained the timing of con-
ventional motion estimation using a CUDA implementation of optical flow that is part of the OpenCV
library2. Note that such implementation uses a different algorithm (Farnebäck 2003) than the optical
flow implementation used to generate ground-truth data.

All the metrics were computed on the test set, consisting of 28 275 sagittal image pairs as well as 27 900
coronal image pairs, for undersampling factorsR=1, 5, 10, 16, 20, 25, 30, 40 and 50 without retraining of the
DL models, which were trained onR=10.

3. Results

dAUTOMAP was trained onR=10 for 300 epochs in approximately six hours. After training, inference of
the model to reconstruct a dynamic from gridded k-space was performed in 5 ms, making it as fast as
NUFFT adjoint reconstruction. Examples of NUFFT and dAUTOMAP reconstructions are shown in
figures 3(d) and (g), respectively. It can be observed that NUFFT reconstructions atR=20 suffer from
considerable streaking artifacts and dAUTOMAP reconstructions are overly smoothed with intensity
patches, as highlighted by the red arrows. Every SPyNET level was trainedR=10 for 12 hours until the
validation error converged which took between 200 and 1000 epochs, depending on the resolution level.
After training, inference of the four-level pyramid including resizing the input images and upsampling the
intermediate DVFs was performed in 15 ms, which is slower than a GPU optical flow implementation that
estimates motion in 5 ms. Example DVFs estimated by SPyNET are shown in figure 3(f) and (i), on NUFFT

2https://github.com/NeerajGulia/python-opencv-cuda.
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Figure 3. Example of a dynamic with image reconstruction and motion estimation. Figures 3(a) and (b) show the fully-sampled
sagittal reference image with region-of-interest in the red box and dynamic, respectively. The corresponding ground-truth DVF is
shown in figure 3(c). Figure 3(d) shows the NUFFT adjoint reconstruction of the 20-fold retrospectively undersampled dynamic.
The DVFs computed with the optical flow or SPyNET with adjoint reconstructions are shown in figures 3(e) and (f), respectively.
Figures 3(g)–(i) show the same as figures 3(d)–(f), respectively, but using dAUTOMAP for image reconstruction instead of a
NUFFT adjoint. The arrows in figure 3(g) indicate pseudo-random intensity patches introduced by dAUTOMAP.

and dAUTOMAP reconstructions, respectively. Example DVFs estimated by optical flow are shown in figure
3(e) and (h), on NUFFT and dAUTOMAP reconstructions, respectively. In the supplementary material, an
animation of figure 3 is reported (available online at stacks.iop.org/PMB/65/155015/mmedia). It can be
observed that optical flow DVFs in the liver are comparable to the ground-truth, but in this case SPyNET is
able to improve the motion estimate in the spine, which seems more physiologically plausible than for optical
flow.

3.1. Registration performance
Using the DVFs as generated by the four proposed methods to register the fully-sampled dynamics, the SSIM
quantifies the registration performance across the entire image. Figure 4 shows the SSIM as a function of the
undersampling factor. DVFs generated by SPyNET lead to a significantly higher SSIM after registration
compared to optical flow forR> 10 (Wilcoxon, p< 0.001), even though the models were trained atR=10.
AtR=30 an average SSIM of 0.8 is achieved using NUFFT/SPyNET, whereas using NUFFT/optical flow
results in an average SSIM of 0.72. Interestingly, using SPyNET with NUFFT reconstruction shows a similar
performance when evaluated on coronal acquisitions even though SPyNET was trained on sagittal dynamics,
as presented in figure 4. Using dAUTOMAP for image reconstruction results in a 5-25% drop in performance
when registering coronal images compared to sagittal images depending on the undersampling factor.

3.2. DVF quality
The root-mean-square displacement error of the DVF generated with conventional methods compared to
the ground-truth within an ROI on sagittal images significantly increases for acceleration factorsR≥ 20, as
presented in figure 5. For the NUFFT/SPyNET approach, the RMSE shows a slower rise as the
undersampling factor increases, indicating robustness to undersampling artifacts. For NUFFT/SPyNET the
root-mean-square displacement is lowest among all approaches at high undersampling factors (R≥ 20) and
remains within 1 mm with a narrower standard deviation, even forR=30.
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Figure 4. Comparison of the SSIM after registration over the whole image for sagittal images (left) and coronal images (right).
Shaded regions indicate standard deviation.

Figure 5. Root-mean-square displacement error within an ROI on sagittal images. Shaded regions indicate standard deviation.

Figure 6 reports Bland-Altman plots of the mean absolute displacement error within an ROI compared
to the ground-truth on sagittal images. AtR=10, there is no clear improvement of using DL rather than
conventional methods. The mean difference is zero for the fully conventional method and has standard
deviations within 0.95 mm, compared to a bias of -0.28 mm and a standard deviation up to 1.6 mm for
dAUTOMAP/SPyNET. However, atR=25 the smallest error is obtained when using NUFFT reconstruction
with SPyNET motion estimation as the bias is reduced to -0.1 mm and the standard deviation of the absolute
error remains within 2 mm, compared to a standard deviation up to 3.5 mm for NUFFT in combination
with optical flow.

8
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Figure 6. Bland-Altman plots of the average vector magnitude within an ROI on sagittal images as generated by the various model
configurations atR=10 andR=25 compared to the ground-truth. A positive value indicates an overestimation compared to the
ground-truth.

3.3. Time
AtR=25, approximately 40 ms would be spent acquiring k-space of a single dynamic with TR= 2.8 ms.
Combined with a NUFFT adjoint reconstruction which takes 5 ms and a SPyNET forward evaluation of
15 ms, DVFs can be computed with high quality in 60 ms, which is more than adequate for real-time
MRIgRT of respiratory induced moving targets.

Table 2 summarizes all quantitative results in the sagittal plane. It can be observed that almost 94% of all
vectors have a root-mean-square error of less than 2 mm when computed with a NUFFT adjoint
reconstruction and SPyNET for motion estimation.

4. Discussion

In this work, we have investigated the impact of conventional and DL-based approaches to estimate 2D DVFs
from highly undersampled k-space for real-time MRIgRT applications. In particular, we have quantified how
much specific deep learning models can accelerate MRI acquisition and processing over conventional

9
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Table 2. Quantitative results for the four approaches in the sagittal plane, displaying the structural similarity index (SSIM) after
registration for various undersampling factors, the root-mean-square error (RMSE) of the motion magnitude within an ROI (ROIs
displayed in B) and the time it takes for MRI acquisition, image reconstruction and motion estimation. Best results per metric per
undersampling factor are marked in boldface, excluding ground-truth.

Ground NUFFT NUFFT dAUTOMAP dAUTOMAP
Truth (R= 1) Optical Flow SPyNET Optical Flow SPyNET

SSIM after registration
R=1 0.91± 0.04 0.91± 0.04 0.89± 0.06 0.87± 0.06 0.89± 0.06
R=5 0.91± 0.04 0.88± 0.05 0.88± 0.06 0.85± 0.07 0.87± 0.07
R=10 0.91± 0.04 0.85± 0.06 0.85± 0.07 0.81± 0.07 0.85± 0.07
R=16 0.91± 0.04 0.81± 0.07 0.84± 0.07 0.77± 0.08 0.83± 0.07
R=20 0.91± 0.04 0.78± 0.07 0.83± 0.07 0.74± 0.08 0.82± 0.07
R=25 0.91± 0.04 0.74± 0.08 0.82± 0.07 0.70± 0.09 0.80± 0.08
R=30 0.91± 0.04 0.72± 0.10 0.80± 0.08 0.68± 0.09 0.78± 0.08
R=40 0.91± 0.04 0.66± 0.11 0.76± 0.08 0.62± 0.10 0.74± 0.09
R=50 0.91± 0.04 0.60± 0.13 0.72± 0.08 0.58± 0.11 0.71± 0.09

RMSE≤ 1 mm (within ROI)
R=5 100% 99.5% 95.5% 98.0% 95.5%
R=10 100% 95.3% 92.3% 92.8% 92.9%
R=16 100% 86.1% 86.1% 81.4% 88.5%
R=20 100% 78.1% 83.4% 70.1% 80.6%
R=25 100% 69.9% 76.6% 56.0% 71.1%
R=30 100% 61.8% 70.3% 48.1% 64.6%

RMSE≤ 2 mm (within ROI)
R=5 100% 100.0% 99.2% 100.0% 99.1%
R=10 100% 99.7% 98.8% 99.2% 98.8%
R=16 100% 97.8% 97.7% 96.8% 98.1%
R=20 100% 95.6% 96.8% 93.9% 96.0%
R=25 100% 91.7% 94.8% 86.7% 91.8%
R=30 100% 85.8% 93.9% 80.1% 90.1%

Time (acquisition/reconstruction/motion (ms))
R=10 500/1/5 100/5/5 100/5/15 100/5/5 100/5/15
R=20 500/1/5 50/5/5 50/5/15 50/5/5 50/5/15
R=25 500/1/5 40/5/5 40/5/15 40/5/5 40/5/15

techniques and in which step deep learning is beneficial to obtaining high-quality motion estimates. We have
shown that motion can be estimated from heavily undersampled k-space with high temporal resolution and
low error compared to the ground-truth when images are reconstructed with a conventional NUFFT and
motion is estimated with deep learning. For example, the mean absolute displacement error remained within
2 mm and the RMSE remained within 1 mm atR=25 while the SSIM after registration remained above 0.8
when motion is estimated with NUFFT adjoint image reconstruction and SPyNET is used. Our method can
compute DVFs with these errors within 60 ms and induces a total latency of 40 ms of which 20 ms comes
from MRI acquisition (Borman et al 2018) and 20 ms comes from processing, but extra overhead may
present itself in a prospective setting. This demonstrated that reconstruction of DVFs is feasible at very high
undersampling factors despite severe artifacts in the reconstructed images, indicating that accurate motion
estimation is more resilient to undersampling than high-quality image reconstruction.

Results show that using SPyNET for motion estimation rather than optical flow significantly improves
DVF quality at undersampling factorsR≥ 10. Also, we observe that the best DL-based approach can achieve
the same SSIM after registration as the fully conventional approach with approximately two times more
undersampling.

Interestingly, applying SPyNET to NUFFT-reconstructed images also outperforms applying SPyNET to
dAUTOMAP-reconstructed images. This indicates that general-purpose trained DL-based image
reconstruction obtained with dAUTOMAP does not have added value for motion estimation. We observed
that dAUTOMAP favored overly smoothed reconstructions at high undersampling factors. We hypothesize
that this may be detrimental to recover motion information.

We believe we have designed a robust approach to motion estimation. Augmenting the input images with
flips and rotations makes dAUTOMAP and SPyNET robust against slight angulations. Moreover, the
NUFFT/SPyNET approach shows near-equivalent registration performance on coronal images compared to
registration of sagittal images without retraining. When dAUTOMAP is used for image reconstruction, the
performance is significantly lower on coronal images than on sagittal images as it fails to reconstruct
high-quality coronal images when trained on sagittal images. Even though the networks were trained at
R=10, evaluation at higher undersampling factors seems to have a low impact on the registration quality.
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NUFFT/SPyNET is thus able to resolve incoherent streaking artifacts introduced by radial sampling. An
interesting exploration would be to investigate whether other sampling strategies (e.g. variable-density
spirals) achieve similar results, but this was considered out of the scope of this paper. This robustness of
NUFFT/SPyNET could suggest that the model is well generalizable and might transfer to other body sites
and contrasts without retraining, which is currently under investigation.

This method of a radial readout with NUFFT image reconstruction and SPyNET motion estimation
could find its application in real-time MRI-guided radiotherapy applications. Keall et al (2006) suggest that
acquisition, motion estimation and dose delivery needs to happen within 200 milliseconds to maintain
accuracy. By using NUFFT/SPyNET, accurate DVFs can be obtained atR=25 in 60 ms with a latency of
40 ms, including MR acquisition. This leaves ample time for adaptation of the radiation beam to counteract
the motion. This could enable real-time tumor tracking to account for intra-fraction motion.

One of the limitations of our approach is that it requires a ground-truth motion estimate to learn. While
computing a ground-truth is feasible for retrospectively undersampled data, obtaining a high-quality
ground-truth motion estimate for prospectively undersampled in-vivo MR data is challenging. Prospective
data will also be acquired with multiple receiver coils while this work is focused on single-coil images.
Considering multi-coil images might be beneficial for motion estimation quality but also introduces new
challenges. It requires more data needs to be evaluated, which might result in more parameters to train and
higher inference times. Future work may investigate unsupervised approaches to learning motion or find
another way to obtain motion estimates from k-space acquired with multiple receiver coils.

Another limitation is that our networks were only trained atR=10. Performance might be improved at
high undersampling factors if they are retrained atR> 10.

When compared to other works, our method is significantly faster while achieving similar accuracy at
R=25, even when compared to other deep learning-based methods (Seegoolam et al 2019, Stemkens et al
2016, Haskell et al 2019). Seegoolam et al (2019) investigated motion estimation on 2D cardiac cine MRI for
R=9 andR=50 achieving an average SSIM after registration of 0.93 atR=9 versus 0.86 in this work and an
SSIM of 0.776 atR=51.2 versus 0.72 in this work. Also, they indicate that the motion estimation network
shows better generalization than the reconstruction network for various undersampling factors, which is in
accordance with what we observed. However, their reconstruction method takes approximately 1.8 seconds
per frame, excluding MR acquisition which is a significant performance penalty.

Stemkens et al (2016) obtained a 3D motion estimation with an RMSE of 1 mm using a 360 ms 2D
acquisition and a few seconds of motion calculation. This error is comparable with we observed, even though
their work estimates motion in three dimensions. This is, however, not a ‘full’ 3D method but uses multi-2D
cine scans in conjunction with a 4DMRI to obtain 3Dmotion estimates, limiting the accuracy of the method.

The approach by Haskell et al (2019) significantly reduces motion artifacts in image space by combining
a CNN with a physics-based model. This approach of combining DL to remove artifacts with conventional
SENSE reconstruction (Pruessmann et al 1999) produces the best results, which is in line with what we
found. However, their approach requires fully-sampled data and the full motion correction model requires
several minutes to evaluate, making it unsuitable for real-time applications.

In this work, we showed that acquisition, reconstruction and motion estimation can be performed in
approximately 60 ms forR=25 achieving a root-mean-square displacement error of less than 1 millimeter
compared to a ground-truth motion estimate. This is of particular interest for applications with crucial time
constraints, such as MRIgRT (Lagendijk et al 2014). We believe that deep learning models play an important
role in facilitating real-time motion management on MR-Linacs, but should be carefully assessed, taking into
account the entire feedback chain. Replacing an individual ‘classic’ step in the processing pipeline by a DL
alternative does not necessarily result in improved performance. We did show that using a DL-based motion
estimation network in conjunction with a NUFFT yields a robust and generic method for motion estimation.
The combination of highly undersampled k-space with DL-based methods yields high-quality motion
estimation for a real-time MRIgRT with low latency, which makes it a worthwhile area of ongoing research.

In a future study, we will attempt to extend this method to a ‘full’ three-dimensional real-time motion
estimation method. We believe this will have a higher accuracy and performance than a multi-2D approach.
Motion has been successfully estimated from fully-sampled 3D MR cardiac images (Morales et al 2019), but
the method has not been demonstrated for real-time applications. We will investigate whether the use of
multi-channel MRI may further improve the current performances.

5. Conclusions

The performance of DL-based image reconstruction and motion estimation was assessed on retrospectively
undersampled GA radial MRI to allow real-time motion estimation with minimal latency. It was found that
DL-based motion estimation (SPyNET) allowed far greater acceleration factors than traditional optical flow
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Figure A1. The average error spectrum plot of optical flow and Elastix registrations.

based motion estimation. DL-based image reconstruction of undersampled radial data, however, did not
result in better performance compared to standard NUFFT reconstructions in combination with SPyNET
motion estimation. The NUFFT/SPyNET approach produced an acceptable performance for 25-fold
accelerated data, thereby achieving an imaging frame rate of 25 Hz while the root-mean-square error
remained within 1 millimeter.
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Appendix A.

High-quality ground-truth motion estimates are required for training SPyNET. To determine which motion
estimation is best suited for the dataset used in this work, a preliminary study was conducted comparing the
motion estimation quality of optical flow (Zachiu et al 2015b) and Elastix (Klein et al 2010). Both methods
were compared and evaluated based on registration performance. This was measured by the structural
similarity (SSIM) metric (Wang et al 2004), the mean-squared-error (MSE) between the reference image and
the registered image and evaluation of the error spectrum plot (ESP) (Kim and Haldar 2018) of the
registered images compared to the reference image were calculated over the entire image.

Optical flow and Elastix DVFs were computed for all fully-sampled cine MRIs in the training dataset used
in this work. Optical flow was computed as described in section 2.4.1 with β= 0.6. Elastix DVFs3 were
computed on four resolution levels using rigid, affine and deformable motion estimation using B-splines.
For rigid and affine motion was estimated using the mutual information metric. For deformable motion
estimation, mutual information was used with weight 1 and a transform bending energy penalty was added
with weight 2. For every cine MRI, 100 dynamic/reference image pairs were randomly sampled to ensure
representative measurements. The average SSIM, MSE and ESP were computed over 8100 dynamic/reference
image pairs.

It was found that optical flow yielded an average SSIM of 0.920± 0.045, which was significantly higher
than the average SSIM of Elastix registrations 0.899± 0.053 (Wilcoxon, p< 0.001). The average MSE was
3.63± 1.86 for optical flow, which was significantly lower than the MSE of Elastix (Wilcoxon, p< 0.001),
which was 5.08± 2.45. The averaged ESP is shown in figure A1. It can be observed that for nearly all
frequencies, the error of optical flow is lower than for Elastix, except for the very highest frequencies.

Based on these results have selected optical flow as ground-truth for evaluation and learning target for
deep learning models.

3 The exact parameter files can be found here: http://elastix.bigr.nl/wiki/index.php/Par0060.
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Appendix B.

Figure B1.Manually generated regions-of-interest (ROIs) of the 30 patients used in the test set. These ROIs were used for the
RMSE computation in table 2 and the Bland-Altman plots in figure 6. The ROIs were generated to include relevant structures and
have an average size of 1010± 442 mm2 or 4.1± 1.8% of the image.
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