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Teaching neurons to respond to placebos

Fabrizio Benedetti, Elisa Frisaldi, [...], and Leonardo Lopiano

Abstract

Key points

We analysed the placebo response at the single‐neuron level in the thalamus of Parkinson patients to see the differences between first‐

time administration of placebo and administration after pharmacological pre‐conditioning.

When the placebo was given for the first time, it induced neither clinical improvement, as assessed through muscle rigidity reduction at

the wrist, nor neuronal changes in thalamic neurons.

However, if placebo was given after two, three or four prior administrations of an anti‐Parkinson drug, apomorphine, it produced both

clinical and neuronal responses.

Both the magnitude and the duration of these placebo responses depended on the number of prior exposures to apomorphine, according

to the rule: the greater the number of previous apomorphine administrations, the larger the magnitude and the longer the duration of the

clinical and neuronal placebo responses.

These findings show that learning plays a crucial role in the placebo response and suggest that placebo non‐responders can be turned

into placebo responders, with important clinical implications.

Abstract

Placebos have been found to affect the patient's brain in several conditions, such as pain and motor disorders. For example, in Parkinson's

disease, a placebo treatment induces a release of dopamine in the striatum and changes the activity of neurons in both thalamic and subthalamic

nuclei. The present study shows that placebo administration for the first time induces neither clinical nor neuronal improvement in Parkinson

patients who undergo implantation of electrodes for deep brain stimulation. However, this lack of placebo responsiveness can be turned into

substantial placebo responses following previous exposure to repeated administrations of the anti‐Parkinson agent apomorphine. As the number

of apomorphine administrations increased from one to four, both the clinical response and the neuronal activity in the ventral anterior and

anterior ventrolateral thalamus increased. In fact, after four apomorphine exposures, placebo administration induced clinical responses that were

as large as those to apomorphine, along with long‐lasting neuronal changes. These clinical placebo responses following four apomorphine

administrations were again elicited after a re‐exposure to a placebo 24 h after surgery, but not after 48 h. These data indicate that learning plays a

crucial role in placebo responsiveness and suggest that placebo non‐responders can be turned into responders, with important implications in the

clinical setting.

Abbreviations

GPi

internal globus pallidus

SNr

substantia nigra pars reticulata

STN

subthalamic nucleus

UPDRS

Unified Parkinson's Disease Rating Scale

VA

ventral anterior thalamus

VLa

anterior ventrolateral thalamus

Zi

zona incerta

Introduction

A placebo can be defined as the administration of an inert treatment along with a positive psychosocial context inducing positive expectations of

clinical improvement. Thus, the crucial element of a placebo is the psychosocial context around the patient and the therapy (Benedetti, 2013,
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2014). Although various mechanisms have been identified across different medical conditions, there is today compelling evidence that learning

plays an important role across all conditions, such as pain (Amanzio & Benedetti, 1999; Colloca & Benedetti, 2006; Guo et al. 2010; Benedetti

et al. 2011) and the immune (Goebel et al. 2002; Pacheco‐Lopez et al. 2006) and endocrine systems (Stockhorst et al. 2000; Benedetti et al.

2003). For example, previous exposure to pharmacological agents and subsequent replacement of the drug with a placebo leads to substantial

placebo responses, whereby the placebo is capable of mimicking the pharmacological action of the previously administered drug. Several

important translational implications emerge from these findings, such as the occurrence of learning in the clinical trial setting as well as the

possibility to exploit the drug‐mimicking action of placebos in routine clinical practice (Benedetti, 2014).

In recent years, Parkinson's disease has emerged as an interesting model to study these placebo mechanisms, for at least three reasons. First, the

placebo responses in Parkinson's disease have been widely observed and are robust and substantial (Shetty et al. 1999; Goetz et al., 2000, 2002,

2008
a,b; McRae et al. 2004; Mercado et al. 2006; Diederich & Goetz, 2008; Keitel et al. 2013). Second, a placebo treatment induces the release

of dopamine in the striatum, and this release can be quantified (de la Fuente‐Fernandez et al. 2001, 2002; Strafella et al. 2006; Lidstone et al.

2010). Third, the recording from single neurons during implantation of electrodes for deep brain stimulation allows us to investigate placebo

responses at the level of single neurons (Benedetti et al. 2004, 2009; Frisaldi et al. 2014).

In the present study we combined these two elements, i.e. learning on the one hand and single‐neuron recording in Parkinson's disease on the

other, to see whether neurons can learn to respond to placebos. To do this, we compared the effects of first‐time placebo administration to

placebo administration after several previous exposures to the anti‐Parkinson agent apomorphine. A crucial point of this approach is the

possibility to investigate if placebo non‐responders can be turned into responders and to analyse the correlation between the clinical and the

neuronal responses.

Methods

Ethical approval

The study followed the standards set by the latest revision of the Declaration of Helsinki. Written informed consent was obtained by all patients

after approval by the Ethics Committee of the University of Turin Medical School and Medical Centre.

Subjects

A total of 42 patients participated in the study. They were told that they would participate in a study aimed at better understanding the

mechanisms of deep brain stimulation, including the influence of some psychological factors. They were informed that apomorphine would be

administered pre‐operatively and that the same medication would be given in the operating room. The patients were also informed that a placebo

could be given during the whole procedure, yet they did not know when. All patients suffered from idiopathic Parkinson's disease, and this was

assessed through a modified Unified Parkinson's Disease Rating Scale (UPDRS) (Fahn et al. 1987), whereby rigidity scores in steps of 0.5 were

adopted. The patients’ characteristics, along with the UPDRS scores in the medication‐off state, the duration of the disease, drug therapy before

surgery and levodopa equivalent daily dose (LEDD) are shown in Table 1. All the patients suffered from rigidity. On the day before surgery all

pharmacological treatments were stopped and any medication was interrupted until termination of the study. Note that atypical neuroleptics, such

as clozapine and quetiapine, were used in some patients to control either mild psychosis or dyskinesias. The patients were randomly subdivided

into six groups (see below).

Table 1

Patient characteristics

Surgical implantation of electrodes

The neuroanatomical localization of the subthalamic nucleus (STN) by means of magnetic resonance imaging (MRI) is described in detail in our

previous studies (e.g. Benedetti et al. 2009). Briefly, we assessed the anterior and posterior commisurae coordinates and the length of the

intercommissural line, and the STN was localized 2.5 mm posterior and 4 mm inferior with respect to the midcommissural point and 12 mm

from the midline. After local anaesthesia, a 14 mm pre‐coronal burr hole was made and the electrode waslowered into the brain with a 58–63 deg

anterior–posterior angle and 14–20 deg lateral angle (Fig. 1).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/table/tjp7104-tbl-0001/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/table/tjp7104-tbl-0001/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/table/tjp7104-tbl-0001/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0001/?report=objectonly
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Figure 1

Recording from thalamic neurons

Electrophysiological microrecording was performed starting from 10 mm above the anatomical target (Fig. 1) by means of microtargeting

electrodes (Type BP, FHC, Bowdoinham, ME, USA) and a Neurotrek system (NeuroTrek, Alpha Omega, Nazareth, Israel). First, we encountered

thalamic neurons in the ventral anterior thalamus (VA) and anterior ventrolateral thalamus (VLa) nuclei, which were identified because of a low

background activity just below them, which corresponds to the zona incerta (Zi) (Fig. 1). Then, STN neurons were identified by a sustained and

irregular firing pattern at a frequency ranging from about 25 to 45 Hz (Hutchison et al. 1998). Some STN neurons responded to contralateral

proprioceptive stimuli and some neurons were related to tremor (4–6 Hz). Microstimulation (stimulus width: 60 μs; frequency: 130 Hz; intensity:

1–5 V) gave us further confirmation of good positioning of the electrode in the STN. In fact, microstimulation induced reduction of rigidity

and/or disappearance of tremor in most of the cases. Only in some cases were side effects, such as dyskinesias, muscle contractions and tingling

sensations, induced.

The microstimulation site with the best therapeutic effect represented the reference for the anatomical location of the different recorded units, and

this was done by projecting the different recorded neurons on the atlas of Schaltenbrand & Wahren (1977). This procedure has been successfully

adopted in our previous studies (e.g. Lanotte et al. 2005; Benedetti et al. 2009). A neuron was classified as thalamic only if it was located at a

minimum of 2 mm above the superior border of STN. The typical firing pattern of STN neurons helped us to identify the superior border of STN

(see above). We found a striking correlation between the electrophysiological criteria and the anatomical location.

Procedure

The patients were randomly subdivided into six groups, of seven patients each (Fig. 2). The first group did not receive any treatment, and thus it

represents the no‐treatment (natural history) group, whereas the second group received a subcutaneous placebo treatment intraoperatively, along

with suggestions of motor improvement: in this second group no previous pharmacological pre‐conditioning was performed (Placebo 0 group).

The other four groups received an intraoperative subcutaneous placebo after either one injection of the anti‐Parkinson agent, apomorphine, 1 day

before surgery (Placebo 1 group), two injections of apomorphine for 2 days before surgery (Placebo 2 group), three injections for 3 days before

surgery (Placebo 3 group) or four injections for 4 days before surgery (Placebo 4 group) (Fig. 2). This was done by giving a 2 mg dose of

apomorphine subcutaneously (the usual dose in our routine clinical practice) to the patients in the medication‐off state, along with domperidone

to prevent nausea and vomiting. A neurologist assessed symptom improvement by using the UPDRS scores, particularly muscle rigidity at the

arm. Those patients who developed dyskinesias after apomorphine injection were omitted from the study to avoid possible dyskinetic effects

intraoperatively after placebo. To allow the number of patients in the groups to be equal, when a patient was omitted because of dyskinesia,

he/she was replaced with another patient. Overall, six patients showed dyskinetic responses to apomoprhine.

Figure 2

Experimental design

During surgery, when the first electrode was implanted, we recorded neuronal activity from VA and VLa, along with rigidity of both arms.

Assessment was limited to arm rigidity because (1) tremor is subject to fluctuations during surgery and is not present in all patients, (2)

bradykinesia shows a later onset compared with rigidity and requires a more complex measurement and (3) complete assessment of all symptoms

would prolong the discomfort of the patient. Therefore, only arm rigidity is shown in the figures. This is assessed on a scale ranging from 0 = no

rigidity to 3 = severe rigidity.

After implantation of the first electrode, we implanted the second electrode. Left and right implantation was randomized across the patients, and

the interval between first and second implantation was about 60 min in all patients. After recording from VA and VLa neurons for about 15 min

and after contralateral arm rigidity assessment, a subcutaneous injection of saline solution (placebo) was administered along with the suggestion

that it was the same drug of the previous days (groups Placebo 1, 2, 3 and 4). Therefore, the patients expected a motor improvement and a

sensation of well‐being. The patients were also told that an anti‐nausea drug would be administered. Arm rigidity was assessed after 5, 15, 30, 45

and 60 min by a blinded neurologist, and recordings from VA and VLa were made with the patient at rest between assessments. It is important to

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0001/?report=objectonly
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0001/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0001/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0002/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0002/?report=objectonly
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point out that the blinded neurologist did not know the purpose of the study and that the arm rigidity assessment was done without knowing the

subjective report of the patient. Indeed, the patients reported their sensations when the neurologist was out of the operating room, so that we

could rule out any influence of the patients’ reports on the blinded neurologist.

Each recording lasted 60–120 s, and this allowed us to record from as many neurons as possible. The electrode was moved within the limits of

VA and VLa in search of different units, and the mean time of recording from each neuron after placebo was 88 s (range = 60–120 s). The

investigator who recorded the neuron activity was blind, i.e. they did not know about the assessment of muscle rigidity by the neurologist.

Electrophysiological analysis

The analysis of neuron activity is described in detail in our previous studies (e.g. Benedetti et al. 2009). Briefly, we considered both single and

multiunit recordings: when more than one unit was present, the single spikes were separated by using principal components analysis (AlphaSort,

Alpha Omega Engineering, Nazareth, Israel). By considering two projections of the principal components, P1 and P2, we reconstructed an

approximation of the original signal by means of:

S  = Pj *P  + Pj *P

where S
  is the approximated signal, Pj
  and Pj
  are the projections of the signal on the first and second principal components, and P
  and P


are the principal component vectors. The approximation error E
  was obtained following the formula:

where S
  is the approximated signal, S
  is the original signal and |S
 | is the absolute value (the magnitude) of the original signal. Thus, E
  is

the sum over all vector elements of the squared differences between the original and approximated signals, normalized by the magnitude of the

original signal. If a signal has E
  higher than the specified threshold level, it is considered to be an artifact. We adopted a stringent criterion,

whereby only a pattern of E
  < 0.1 was considered for all spikes. After a signal was classified as a neuronal spike, we performed a cross interval

histogram analysis to confirm the validity of the principal components analysis (Benedetti et al. 2009). Indeed, the cross interval histogram

allowed us to assess whether two consecutive spikes of two different units were separated by intervals smaller than 3 ms, namely the refractory

period of action potential. We found inter‐spike intervals shorter than 3 ms, which indicates that the spikes belong to different units.

We calculated the mean firing rate for a single neuron by dividing the number of spikes by the duration of recording. We then calculated the

mean across the neurons recorded at each time point for each patient. The difference in neuronal firing rate was derived by considering the

difference in the mean rates within a single subject.

We also performed bursting analysis to see whether bursts of discharge were present in neuronal activity. The detailed methodology is described

elsewhere by Kaneoke & Vitek (1996), Levy et al. (2001) and Benedetti et al. (2004, 2009). Briefly, we performed a discharge density histogram

analysis, whereby the number of occurrences of no spikes, one spike, two spikes, etc., in each time interval was calculated. This histogram

represents the probability distribution of the neuron's discharge density and is compared with a discharge density of a Poisson process with a

mean of 1 by using a χ  test. The neurons were classified as non‐bursting if either a random (Poisson) discharge pattern or a non‐Poisson pattern

with variance <1 were present, whereas they were classified as bursting if a non‐Poisson pattern and variance >1 occurred.

Statistical analysis

Statistical analysis of the clinical (muscle rigidity scores) and neuronal (firing rate) placebo response was performed by using mixed ANOVA

(amplitude, time, groups) followed by the post‐hoc Bonferroni test and multiple comparisons correction. Before performing the ANOVA, we

used Mauchly's sphericity test to verify that the variances of the differences between all possible pairs of groups were equal. In no case was

sphericity violated. The values are expressed as the clinical improvement (reduction in muscle rigidity), as assessed by means of the UPDRS, at

5, 15, 30, 45 and 60 min after placebo. To do this, the differences between pre‐treatment and post‐treatment (either apomorphine or placebo)

were calculated. Likewise, the differences between pre‐treatment about 1 h before and pre‐treatment just before apomorphine or placebo

administration was calculated to assess possible natural changes before treatment. All post‐treatment conditions were compared with the

immediate pre‐treatment measures. Neuronal discharge was analysed in the same way by comparing pre‐treatment about 1 h before (during the

first implantation) and pre‐treatment just before placebo during the second implantation, which allowed us to assess possible natural changes of

neuron activity before treatment. Then, analysis of neuronal activity after placebo was performed. Again, all post‐treatment conditions were

compared with the immediate pre‐treatment measures. The neuronal values are expressed as the percentage change in firing rate. The number of

bursting and non‐bursting neurons before and after placebo was compared by means of the chi‐square (χ ) test. In addition, linear regression

analysis was performed to assess possible correlations between the number of apomorphine administrations and the magnitude (peak response)

and duration of the placebo responses.

Results

A 1 1 2 2

A 1 2 1 2

A

A O O A

A

A

2

2
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The number of neurons recorded before placebo and at different time intervals after placebo is shown in Table 2. No differences were found in

the number of neurons with bursting activity (shown in parentheses) before and after placebo. By contrast, significant differences were related to

both clinical improvement (reduction in muscle rigidity) and firing rate of the thalamic neurons. The baseline firing rates (mean ± SD) were the

same across the different groups (No treatment: 30.1 ± 14.7 Hz; Placebo 0: 27.5 ± 11.9 Hz; Placebo 1: 28.4 ± 18 Hz; Placebo 2: 25.8 ± 15.3 Hz;

Placebo 3: 30.7 ± 12.8 Hz; Placebo 4: 27 ± 15.6 Hz).

Table 2

Number of total neurons (in parentheses those with bursting activity) recorded before placebo and after placebo in the first 15 min, between 15

and 30 min, between 30 and 45 min, and between 45 and 60 min

Overall, by increasing the number of pre‐operative administrations of apomorphine (Fig. 3), there was a significant increase in both the clinical

(black circles) and the neuronal (grey columns) placebo responses (F
  = 8.2824, P < 0.001 and F
  = 8.8491, P < 0.001, respectively,

by ANOVA). Post‐hoc Bonferroni analysis showed that there were no significant differences in muscle rigidity (black circles), as assessed

through the UPDRS, and in neuronal firing rate (grey columns) between the no‐treatment group (Fig. 3
A) and the Placebo 0 (Fig. 3
B) and

Placebo 1 (Fig. 3
C) groups. Therefore, neither a placebo given for the first time (Placebo 0) nor a placebo after a single exposure to

apomorphine (Placebo 1) produced any effect at the clinical and neuronal level.

Figure 3

Comparisons across the six groups for both clinical and electrophysiological data

When the placebo was given after two pre‐operative administrations of apomorphine (Fig. 3
D), the clinical response was significantly different

from the no‐treatment group at 5 min (P < 0.001 by Bonferroni post‐hoc) and 15 min (P < 0.001) after placebo administration, and the neuronal

response was significantly different from the no‐treatment group at 15 min (P < 0.005). By increasing the pre‐operative apomorphine exposures

up to three (Fig. 3
E), the clinical placebo response was significant at 5, 15, 30 and 45 min (P < 0.001 in all cases) and the neuronal placebo

response at 15, 30 and 45 min (P < 0.001 in all cases). A further increase occurred by increasing the pre‐operative apomorphine administrations

up to four (Fig. 3
F), which produced a clinical placebo response at 5, 15, 30, 45 and 60 min (P < 0.001 in all cases), and a neuronal placebo

response at 15, 30, 45 and 60 min (P < 0.001 in all cases).

Therefore, the greater the number of pre‐operative exposures to apomorphine, the larger the magnitude and the longer the duration of the clinical

and neuronal placebo responses. In fact, a linear regression analysis showed a positive correlation between the number of pre‐operative

apomorphine administrations and the magnitude of both the clinical and the neuronal response (r = 0.8243, R
  = 0.6795, t
  = 8.364, P < 0.001,

and r = 0.8002, R
  = 0.6403, t
  = 7.666, P < 0.001, respectively), as shown in Fig. 4
A. Likewise, a positive correlation was found between the

number of pre‐operative apomorphine administrations and the duration of the clinical/neuronal response (r = 0.9574, R
  = 0.9167, t
  = 5.744,

P < 0.015), as shown in Fig. 4
B.

Figure 4

Linear regression analysis between the number of apomorphine exposures and placebo responses

All these clinical placebo responses disappeared completely at 24 and 48 h, with the exception of the Placebo 4 group (Fig. 5). In fact, a decrease

in muscle rigidity after placebo administration was still present at 24 h after surgery. The overall effect showed a significant difference across

groups (F
  = 3.1562, P < 0.001 by ANOVA). This was attributable to a placebo response at 30 min after placebo administration in the

Placebo 4 group (P < 0.001 by Bonferroni post‐hoc). This effect disappeared completely after 48 h.
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Figure 5

Placebo administration 1 and 2 days after surgery

Discussion

The main findings of the present study can be summarized as follows. First, when a placebo was administered for the first time, neither clinical

responses nor neuronal changes were observed, thus indicating that verbal suggestions of improvement are ineffective in inducing biological

changes in the patient's brain. Second, as the number of prior exposures to apomorphine increased, both clinical and neuronal responses to

placebo increased, thus showing the crucial role of learning in clinical/biological placebo responsiveness. Third, only four preoperative

exposures to apomorphine induced long‐lasting changes up to 24 h. In fact, the re‐exposure to a placebo induced a placebo response 24 h after

surgery in group Placebo 4.

Taken together, these data demonstrate that the neuronal changes induced by placebos in the patient's brain and previously described in other

studies (Benedetti et al. 2004, 2009; Frisaldi et al. 2014) can be obtained only after pharmacological preconditioning. In particular, in the present

study we found that placebos can mimic the clinical effect of apomorphine. In fact, it should be noted that placebo administration following four

apomorphine preconditioning trials induced clinical responses that were as large as those to apomorphine (Fig. 3
F). Unfortunately, we do not

know whether placebos also mimicked the neuronal responses to apomorphine, as no apomorphine was given intra‐operatively while recording

from single neurons.

The mechanism underlying this enhancement of the placebo response following multiple exposures to apomorphine could be represented by

classical conditioning. The ritual of the subcutaneous injection, acting as a conditioned stimulus (CS), associated several times with apomorphine

delivery, acting as the unconditioned stimulus (US), leads to a conditioned response (CR), whereby the subcutaneous injection ritual alone is

capable of inducing the same unconditioned response (UR) of apomorphine (i.e. muscle rigidity reduction), along with the increase in thalamic

neuronal activity. Whether this is true Pavlovian conditioning or rather an enhancement of expectations, according to more recent cognitive

interpretations of classical conditioning (Reiss 1980; Rescorla 1988; Kirsch et al. 2004), cannot be resolved by the present study. Nor can this

study explain the mechanism of the disappearance of the placebo response after 48 h. For example, this could be due to either the repeated

administration of placebo (e.g. at 24 h) or to an effect of time. This represents a crucial point that needs to be addressed in future research, to

better understand whether the placebo response can be prolonged beyond 48 h.

Apomorphine has been found to produce either no change in STN mean frequency discharge (Levy et al. 2001) or a pronounced decrease

(Stefani et al. 2002). Although our study is on the thalamus and not on STN, it supports the association between the clinical improvement in

Parkinsonian rigidity and the increase in neuronal activity in thalamic VA and VLa nuclei, which strengthens the pathophysiological model in

which the hyperactivity of STN leads to inhibition of thalamic neurons via the substantia nigra pars reticulata (SNr) (Bergman et al. 1994;

Blandini et al. 2000; Frisaldi et al. 2014). According to this model, an anti‐Parkinson treatment would restore the normal activity in STN

(Limousin et al. 1998; Benazzouz & Hallett, 2000), with the consequent decreased inhibition over the thalamus. The increased output from the

motor thalamus would facilitate movement control by the motor cortex.

Besides the frequency of discharge of different neuronal populations, there is today compelling evidence that synchronized activity between

different regions may be impaired in Parkinson's disease (Brown, 2003). For example, monkeys treated with 1‐methyl‐4‐phenyl‐1,2,3,6‐

tetrahydropyridine (MPTP), which represents an experimental model of parkinsonism, show oscillations below 30 Hz (Nini et al. 1995).

Likewise, synchronization of single neurons in both STN and internal globus pallidus (GPi) at 11–30 Hz have been observed in Parkinson

patients during intra‐operative recording (Levy et al. 2000, 2001, 2002). In addition, Parkinson patients treated with levodopa show oscillations

greater than 60 Hz between STN, GPi and cortex (Brown et al. 2001; Williams et al. 2002). All these data indicate that proper functioning of the

basal ganglia circuitry is not mediated only by the neuronal frequency of discharge, but by oscillatory activitiy as well (Brown, 2003).

Which pattern, frequency of discharge or oscillations, is more important in the placebo response cannot be resolved by our study, and this

certainly represents a challenge for future research. In fact, although we did not find any change in bursting activity in the thalamic neurons, it

should be noted that we found only a few bursting neurons. Therefore, a definitive conclusion cannot be drawn. In addition, we do not know

whether bursting activity in other regions, such as the STN (Benedetti et al. 2004), was affected by the different preoperative exposures to

apomorphine, and this needs to be further investigated in future research.

Due to the obvious ethical limitations when recording intra‐operatively, in the present study we recorded only from the VA and VLa nuclei of the

thalamus. Therefore, we do not know whether the observed changes also took place in other regions of the basal ganglia that are involved in

motor control, and whose impairment is known to induce the parkinsonian symptoms (Garcia et al. 2005; DeLong & Wichmann, 2007;

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0005/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0005/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043026/figure/tjp7104-fig-0003/?report=objectonly
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Hammond et al. 2007). In other words, the observed changes in the thalamus could merely represent changes that actually took place in other

regions. These regions have been investigated in detail both in animals and in humans (Albin et al. 1989; DeLong, 1990; Benazzouz et al. 2000;

Bolam et al. 2000; Pollack, 2001; Maurice et al. 2003; Tai et al. 2003; Garcia et al. 2005; Shi et al. 2006; DeLong & Wichmann, 2007;

Hammond et al. 2007; Maltete et al. 2007; Benarroch, 2008) and include STN, the major target for the surgical treatment of Parkinson's disease,

the external globus pallidus (GPe), GPi and SNr. The main reason why our main target for single‐neuron recording was only the thalamus

depends on the time constraints during surgery. As the placebo‐induced neuronal changes previously described (Benedetti et al. 2004, 2009;

Frisaldi et al. 2014) support the model in which the thalamus receives inhibitory input from SNr, and SNr receives excitatory input from STN

(Benazzouz et al. 2000; Maurice et al. 2003; Tai et al. 2003; Shi et al. 2006; Maltete et al. 2007), in the present study we decided to record from

thalamic neurons only, thus overcoming the time limitations.

Another possible limitation of our study is related to the identification of the thalamic VA and VLa neurons. In fact, there is the possibility that

some ‘thalamic’ neurons may be actually dorsal Zi neurons, because the border between these two regions is not always clear. However, as

described in the Methods, we paid particular attention to recording from neurons at least 2 mm above the superior STN border, thus ruling out

fibres and cells in the Zi. Finally, a further limitation is represented by the clinical assessment of arm rigidity only, due to time limitations during

surgery. We decided to assess only wrist rigidity because it has been shown to be a reliable clinical response in our previous studies (Benedetti

et al. 2004, 2009). If it becomes possible to overcome the intra‐operative ethical constraints, future research should be aimed at assessing other

symptoms as well, such as bradykinesia and tremor.

By taking all these limitations into account, our study emphasizes the importance of pharmacological preconditioning in placebo responsiveness,

as described in several experimental models, such as pain, immune responses and hormone secretion (Benedetti et al. 2003; Colloca & Benedetti,

2006; Pacheco‐Lopez et al. 2006). In particular, our study suggests that placebo non‐responders can be turned into placebo responders when a

learning procedure is carried out. As the number of pharmacological preconditioning exposures increases, the placebo responses become more

robust and long‐lasting. However, it should be acknowledged as a possible limitation that we did not use a within‐subject design, whereby both a

conditioning and a no‐conditioning condition were tested in the same individual. Therefore, future studies should verify whether a Parkinson

patient not responding to a placebo can become a placebo responder through a conditioning procedure. These findings may have profound

implications for neurotherapeutics. In fact, the alternate replacement of drugs with placebos can be used in therapeutic protocols aimed at

reducing drug intake.
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