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Abstract 

Research in linguistic typology has shown 
that languages do not fall into the neat 
morphological types (synthetic vs. analytic) 
postulated in the 19th century. Instead, 
analytic and synthetic must be viewed as 
two poles of a continuum and languages 
may show a mix analytic and synthetic 
strategies to different degrees. 
Unfortunately, empirical studies that offer a 
more fine-grained morphological 
classification of languages based on these 
parameters remain few. In this paper, we 
build upon previous research by Liu & Xu 
(2011) and investigate the possibility of 
inferring information on morphological 
complexity from syntactic dependency 
networks.    

1 Introduction 

Language classification based on morphological 
profiles has prominently featured in the linguistic 
typology research agenda since the earliest days of 
the discipline. 
 Earlier 19th century classifications essentially 
focused on morphological complexity in terms of 
the number of morphemes per word and the 
number of meanings per morpheme, and proposed 
that languages may be typologized into neatly 
discrete type, e.g. ‘isolating’, ‘agglutinative’, 
‘inflectional’ (see Schwegler 1990). 1  However, it 
soon became clear that such a holistic approach 
does not adequately capture the variation of natural 
languages (already Sapir 1921). Instead, 
morphological complexity should be viewed as an 

 
1 We use the term morphological complexity in the narrow 
sense of enumerative complexity, that is, “the number of 
elements of which a given morphological entity consists, 
mainly inventory size and string length” (Arkadiev & 
Gardani 2020: 8). 

empirically measurable “multidimensional 
typological space” (Arkadiev & Klamer 2018: 
444), in which languages can be arranged based on 
a number of parameters.2 

Based on this line of reasoning, scholars have 
variously tried to measure morphological 
complexity by means of quantitative methods and 
classify languages accordingly. In this paper, we 
build upon a proposal by Liu & Xu (2011) and 
investigate whether syntactic dependency networks 
can be effectively used as tools for measuring (at 
least some aspects of) morphological complexity.  

The paper is structured as follows: in Section 2 
we review previous research on quantitative 
approaches to morphological typology. Section 3 
briefly introduces syntactic dependency networks 
and network analysis. Section 4 is devoted to our 
own analysis. We first illustrate our data and 
methods (Section 4.1 and 4.2), and then present and 
discuss our results (Section 4.3 and 4.4). Section 5 
contains a summary of our findings. 
 

2 Quantitative morphological typology: 
previous research 

Scholars generally agree that a more accurate and 
realistic morphological typology can only be 
achieved through empirical investigations of 
naturalistic (corpus) data, but how this 
measurement is to be carried out remains a matter 
of debate. To our knowledge, there exist two main 
approaches that have so far been pursued in the 
quantitative study of morphological typology.3 

2 For the large scale cross-linguistic investigation of some of 
these parameters see e.g. Bickel & Nichols (2013a; 2013b; 
2013c). 
3 By quantitative study, we intend here typological studies 
based on corpus data, that is, what Levshina (2019) refers to 
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 The first approach stems from Greenberg 
(1960). Greenberg proposes that morphological 
complexity be decomposed in a few easily 
measurable indexes, e.g. the number of morphemes 
per word and the number of meanings expressed by 
each morpheme. To test this approach, Greenberg 
calculated each index by looking at 100-word 
stretches of texts in 8 different languages. 
 Siegel et al. (2014) follow a similar approach 
and focus on two morphological indexes, that is, the 
analyticity and the syntheticity indexes. They 
measure these by taking into account several 
parameters, including e.g. number of morphemes 
per words, in randomized samples of 1000 
manually annotated token for 19 languages (4 
languages plus 13 varieties of English and two 
English-based creoles). 
 The main advantage of the approach pursued by 
Greenberg (1960) and Siegel et al. (2014) is that 
they employ indexes that are theoretically well-
grounded and offer an accurate morphological 
typology of the languages investigated. However, 
previous studies of this type present two major 
shortcomings. The first one concerns the data: both 
studies focus on a relatively narrow set of 
languages. The second one concerns the 
methodology: the indexes must be calculated by 
manually annotating (a sample of) tokens in each 
of the languages under investigation. While this 
methodology undoubtedly results in high quality 
and reliable data, it is a labor-intensive and time-
consuming task, less suitable to investigate 
morphological complexity on a large cross-
linguistic scale.  

 As an alternative, Liu & Xu (2011) propose to 
use syntactic dependency networks to explore 
morphological typology. The main assumption 
behind this approach is that network structure can 
be used as a proxy of morphological complexity, 
which can thus be measured by means of 
topological indexes of networks (see Section 3). 
The main advantage of this approach is that it 
allows to compare a potentially large number of 
languages for which annotated corpora are 
available, without the need to manually code each 
token for its morphological features. 

 
as token-based typology and Gerdes et al. (2021) as 
typometrics. This contrasts with e.g. the classifications 
proposed by Bickel & Nichols (2013a; 2013b; 2013c), which 
are based on a sample of few formatives per language (Bickel 
& Nichols 2013d) and thus fall within the more traditional 
type-based typology (Levshina 2019). 

Liu & Xu (2011) results suggest that networks 
can indeed be a useful tool to explore 
morphological typology, but their work may be 
improved in a number of respects. First, the 
methodology needs to be tested on a wider set of 
languages (Liu and Xu’s sample includes only 15 
languages, with a significant overrepresentation of 
Indo-European languages). Secondly, the authors 
partly leave open the question of which network 
measure best captures morphological complexity. 

3 Syntactic dependency networks 

In this section, we describe syntactic dependency 
networks and their properties (Section 3.1), and we 
illustrate various indexes that can be used to 
interpret network structure (Section 3.2), with a 
focus on those indexes that we use in our own 
analysis in Section 4. 

3.1 Defining syntactic dependency networks 

A network is a structure consisting of a set of 
objects, called vertices or nodes, and a set of links, 
called edges. Edges connect two nodes and may be 
directed, if two nodes are involved in a hierarchical 
structure, or undirected. Directed and undirected 
networks differ based on whether they feature 
directed or undirected edges, respectively. 4 
 Networks have been shown to be a suitable tool 
to represent syntactic relations (Liu 2008; Čech & 
Mačutek 2009; Čech, Mačutek & Žabokrtský 2011; 
Passarotti 2014; Čech, Mačutek & Liu 2016). This 
holds particularly true for dependency grammars, 
which view syntactic structures as binary and 
hierarchical relations between lexical nodes 
(Robinson 1970), thereby allowing the 
representation of sentences as rooted trees. 5  In 
Figure 1, we illustrate the representation of the 
sentences ‘John calls Mary’, ‘John eats an apple’, 
‘The apple is red’ and ‘Mary buys some apples’ as 
dependency trees. 

4  For the purpose of this work, we treat dependencies as 
undirected. 
5 A tree is a graph in which no cycle can be found. A rooted 
tree is a tree in which one node is designated as the root of 
the tree. 
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 A syntactic dependency network is a network 
representing dependency relations. We follow the 
definition of syntactic dependency network given 
by Ferrer i Cancho et al. (2004), that is, a set of 
words V, consisting of the vocabulary of a 
language, and an adjacency matrix A. If it happens 
in at least one sentence that two elements of V, let 
us call them x and y, are syntactically related, then 
the value in A, corresponding to column x and row 
y, will be equal to 1, otherwise it will be 0. The 
network is then induced from the matrix. This 
means that syntactic dependency networks built 
from treebanks actually consist of the combination 
of all networks that can be drawn from individual 
dependency trees. Taking the trees in Figure 1 as 
representing our treebank, the corresponding 
network has the structure shown in Figure 2.  
 Dependency networks can be further 
differentiated into word-based and lemma-based 
networks (see Čech & Mačutek 2009). The former 
feature words occurring in sentences as nodes, 
while in the latter the nodes consist of lemmas. The 
difference between word- and lemma-based 
networks is shown in Figure 2 and 3. 
 

3.2 Network indexes 

The structure of networks can be analyzed by 
taking into account a number of parameters, or 
indexes. Here, we briefly illustrate the network 
topological indexes that we employ in our analysis 
(we refer to Albert & Barabasi 2002; Liu & Xu 
2011 for extensive discussion on how the indexes 
are measured).  

 Number of edges and nodes: this is the total 
count of all nodes and edges featured in a network.  
 Average degree: the count of the links in which 
a node is involved is called degree. The average of 
the degrees of a network is the simplest measure 
that can be calculated. 
 Average path length: in a connected network, it 
is always possible to find a path between two given 
nodes. If two nodes are connected, the path length 
between them is 1, if they are not directly 
connected, then the path length is computed 
‘jumping’ from one node to another starting from 
the source node until the target node is reached. The 
distance is calculated by considering the shortest 
possible path. The average path length refers to the 
average of the distances between each pair of nodes 
in the network. 
 Clustering coefficient: syntactic dependency 
networks have the tendency to form clusters in 
which groups of three elements are completely 
connected. Clustering coefficient measures the 
proportion of fully connected triplets of nodes over 
the number of all the possible groups of three nodes 
in the network. 
 Diameter: the diameter of a network is the 
maximal distance between any pair of its nodes. 

 

Figure 1: Dependency trees 

Figure 2: Word-based dependency network 

Figure 3: Lemma-based dependency network 
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 Network centralization (Horvath & Dong 
2008): network centralization (NC) is a measure to 
find the most central nodes in a network.  
 Gamma:  according to Albert & Barabási 
(2002), in so-called real networks the degree 
distribution follows a power-law. It has been shown 
that syntactic dependency networks are real 
networks and likewise follow a power-law P(k) ~ k-

γ (thus Ferrer i Cancho et al. 2004).  
 In particular, based on data discussed by (Ferrer 
i Cancho 2005), it seems that syntactic dependency 
networks share a common behavior: their degree 
distributions follow a power-law, their average path 
length is similar to average path length in random 
graphs (Erdös-Rényi graphs) and their clustering 
coefficient is significantly higher than clustering 
coefficient in random graphs. These features allow 
us to consider syntactic dependency networks as 
small-world and scale-free networks (see further 
Albert & Barabási 2002; Ferrer i Cancho et al. 
2004; Liu & Xu 2011 for discussion). 

4 Using networks to measure 
morphological complexity 

Studies by Liu & Xu (2011) and Čech & Mačutek 
(2009) make a strong case that dependency 
networks may be used to infer morphological 
complexity. In this paper, we focus on the networks’ 
potential to explore one component of 
morphological complexity, that is, the 
analyticity/syntheticity index. This index reflects 
the prevalence of synthetic vs. analytic strategies in 
individual languages. Based on Greenberg’s (1960) 
insights, our assumption is that the index is a 
gradient, and languages may vary from highly 
synthetic (prevalence of synthesis) to highly 
analytic (prevalence of analysis), with several 
intermediate types.  
 Following Siegel et al. (2014: 52–53), we 
distinguish analytic vs. synthetic strategies based 
on how they convey grammatical information: 
analytic strategies use free markers, whereas 
synthetic strategies use bound markers (see also 
Bickel & Nichols 2013a for discussion).  

 Dependency treebanks are well suited to 
explore analyticity/syntheticity for a number of 

 
6 Clearly, the reliability of tokenization is a potential issue, 
especially considering problematic items such as clitics. In 
this study, we work with UD treebanks, which share a 

reasons. First, treebanks are already tokenized, 
which makes it straightforward to single out free vs. 
bound markers. 6  Moreover, the number of 
dependencies in a sentence can be indirectly taken 
as a sign of higher/lower analyticity.  

To illustrate these points, let us compare the 
dependency trees of the sentence ‘I will eat the 
apple’ in Italian and English, as in Figure 4. The 
main difference between English and Italian is that 
in Italian grammatical information concerning 
verbal person/number and TAM is packed by a 
single form, i.e. mangerò ‘eat.FUT.1SG’, while the 
same content must be expressed by three free forms 
I will eat in English. In other words, to express 
future tense, Italian resorts to a more synthetic 
strategy than English. This is reflected in the 
number of nodes and links in the trees: the English 
tree features more nodes and hence more 
dependencies. This information easily translates 
into different network structures, in the sense that 
in principle the more analytic the construction the 
more edges and nodes the corresponding network 
will show. 

In the reminder of this section, we put Liu & 
Xu’s (2011) intuitions about the connection 
between analyticity and network structure to a test. 

4.1 Data sampling 

This study is based on a sample of 42 languages 
(Appendix A). The sampling procedure has been 
essentially practical in nature. First, we have only 
included languages for which treebanks are 
available in Universal Dependencies (UD) (Nivre 
et al. 2016; Croft et al. 2017). The reason to work 
with UD is both practical and theoretical. In the 
first place, UD allows to easily access already 

uniform tokenization schema. This limits the risk of biases 
induced by different tokenization styles across treebanks.  

 

Figure 4: Italian vs. English dependency trees 
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annotated data from a variety of languages. From a 
theoretical viewpoint, the UD annotation schema, 
which maximizes consistency of annotation across 
languages, makes UD treebanks particularly well 
suited for typological studies (see e.g. Levshina 
2019; Gerdes et al. 2021). 
  To maximize diversity among the available UD 
treebanks, we have picked out one treebank for each 
language family represented in UD (and one for 
each branch in each family, where available). 
Moreover, we have also included historical varieties 
within the same branch where possible (e.g. 
Classical Chinese and Mandarin Chinese, Ancient 
Greek and Modern Greek).  
 In addition, we have split the treebanks into two 
groups. The first group features a set of six 
treebanks that we use to set up our control group. 
These are languages that can be reasonably taken 
as instantiating two poles of higher analyticity vs. 
higher syntheticity. 7  The former include 
Vietnamese (vie), Mandarine Chinese (zho), and 
Classical Chinese (lzh). The latter are Russian 
(rus), Finnish (fin), and Uyghur (uig). The second 
group includes all the other languages in the 
sample, whose degree of analyticity/syntheticity 
we seek to measure. 

4.2 Methods  

Our study diverges from Liu & Xu (2011) in a 
number of significant methodological respects. In 
the first place, Liu & Xu (2011) calculated for each 
of the 15 languages in their sample several 
topological indexes and then performed a cluster 
analysis to classify languages accordingly. In this 
study, we do not apply clustering techniques. The 
reason is that clustering analysis may force 
languages into “hierarchically organized groups” 
even in absence of a real underlying motivation 
(Cysouw 2007: 63–64). In our case, we do not in 
principle expect languages to cluster into neatly 
defined groups based on their degree of analyticity. 
Instead, as we have already mentioned, we conceive 
analyticity/syntheticity as a one-dimension 
continuum (cf. Gerdes et al. 2021: 13–19).  

 
7 We are aware that the choice of these languages is in part 
arbitrary, but these are languages (or belong to language 
families) that have been repeatedly pointed out in the 
literature as instantiating prototypically analytic vs. synthetic 
languages. 

Abandoning clustering techniques also means 
that we need to independently single out among the 
topological indexes those that most likely reflect 
the difference between the prevalence of analytic 
vs. synthetic strategies. Moreover, we need take 
into consideration the different size of the 
treebanks in our sample (ranging from 955 tokens 
to 473.881 tokens), as treebank size could lead to 
potential biases when measuring network indexes. 

To overcome these issues, we first established 
which network indexes perform well in 
distinguishing analytic vs. synthetic languages 
irrespective of treebank size. To do so, we set 7 
arbitrary sizes (1.000, 5.000, 10.000, 20.000, 
30.000, 50.000 and 75.000 tokens) and we 
extracted one random sub-treebank for each of the 
above sizes for the languages in the control group. 

From each sub-treebank, we induced the 
corresponding word-based dependency network 
excluding punctuation marks, symbols and 
elliptical dependency relations. We calculated the 
topological indexes described in Section 3 using 
the python package igraph (Csárdi & Nepusz 
2006). 8  For the purpose of this paper, we have 
focused on word-based networks, as these have 
been claimed to better represent morphological 
variation than lemma-based networks (Liu & Xu 
2011; Čech & Mačutek 2009). 

 We then carried out a Welch t-test (Welch 1947) 
to establish which indexes are more reliable to 
separate the two groups, and have picked out only 
those indexes that perform significantly better 
across all sub-treebanks’ sizes.9 The Welch t-test is 
used to test the hypothesis that two groups have 
equal means. The null hypothesis, in our case, was 
that the two groups means were equal. If a t-test 
performed on a topological index resulted to 
discard null hypothesis (significance level=0.05), 
then we consider it as a metric able to separate the 
two groups, hence possibly reflecting the analytic 
vs. synthetic distinction. 

Once the significant metrics have been singled 
out, the second step was to measure these indexes 
for the rest of the languages in our sample and 
compare them with those of the control group. For 

8 The code and data used for this study are freely available at 
https://github.com/bavagliladri/tb2net. 
9 The test was carried out using the python library SciPy 
(Virtanen et al. 2020) 
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the other languages we extracted only one treebank 
for the largest possible size (up to 30k, see Section 
4.3), in order to make the best use of the available 
data. 10  For example, for the UD_Wolof-WTB 
treebank, whose size is 38.937 tokens, we produced 
a sub-treebank of 30.000 tokens. From these 
treebanks, we induced the corresponding 
dependency networks and calculated the relevant 
network indexes following the procedure outlined 
above. The results of our analysis are discussed in 
the next section. 

4.3 Results 

Let us first discuss the results of the t-test 
performed on the control group. Table 1 reports the 
p-value for each index across all treebank sizes 
(with 3 languages per group in the 1k-30k and 2 
languages per group in 50-70k; see Appendix B for 
the raw data). As the results show, the indexes that 
consistently give a p-value of less than 0.05 are 
number of nodes and average path length.  
 The other indexes give a mixed picture. Number 
of edges is never significant. However, the other 
indexes are significant for some specific sub-
size(s). For example, unlike Liu & Xu (2011: 4), we 
do not find network centrality (nc) to be a 
consistently significant index. This index performs 
well for treebank size 5k-30k, but not for the 
smallest size of 1k, and we found a similar result 
for clustering coefficient. By contrast, average 
degree gives consistent results only for the smallest 
sizes 1k and 5k. Nevertheless, since none of these 

 
10 An anonymous reviewer suggests that, as an alternative, 
one could also place each treebank in the uppermost 
allowable group and then, for treebanks with more than 5k, 
sample smaller sub-sets for each of the smaller sizes. While 
we see the potential for this approach, we have not pursued it 

indexes performs consistently well for size 1k-30k, 
for this preliminary study we have decided to leave 
these aside and focus only on number of nodes and 
average path length. More research is needed to 
fully understand the interplay between treebank 
size and topological indexes of the corresponding 
networks, also adopting other statistical tests. 
 In addition, note that none of the indexes yields 
significant results when the treebank size is 50k 
tokens or higher. It may be possible that the 
significant results obtained from the networks 
induced from the smaller treebanks are due to 
chance. However, it must be mentioned that only 4 
out of the 6 treebanks of the control group have 
more than 50k tokens and the reduced size of the 
control group may have affected the statistical 
testing. For these reasons, for treebanks more than 
30k tokens, we have randomly created 30k size sub-
treebanks and have only analyzed the 
corresponding networks, since beyond this size the 
indexes appear to be less reliable. 

We have then measured number of nodes and 
average path length for the networks induced from 
the rest of the languages in our sample. The results 
are reported in Appendix C. In Figure 5 and 6 we 
visualize the results for 5k and 30k treebanks 
respectively. Data is visualized as a one-dimension 
continuum for each index (see Gerdes et al. 2021: 
13–19). 

in this paper. The reason is that based on the control group, 
we establish which network indexes perform well 
irrespective of treebank size. Once treebank size becomes 
irrelevant, this means that for the rest of the sample we can 
safely look one treebank of the largest possible size. 

Table 1: Results of the t-test on the control group per size  
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4.4 Discussion 

Let us first comment upon the results of the t-test 
on the control group. Our hypothesis that average 
path length and number of nodes might be taken as 
proxies for the analyticity index can be 
linguistically motivated by the nature of networks.  
 Average path length represents the average 
distance between any pair of nodes and therefore 
reflects connectivity in the network. The more 
highly connected the nodes are, the easier it will be 
to reach any node in the network starting from any 
arbitrary point. In particular, the occurrence of hub 
nodes, that is, highly connected nodes, will result 
in a generally lower average path length, because 
hub nodes frequently serve as bridge between 
nodes which would otherwise be connected by 
longer paths. As shown by Passarotti (2014), in the 
case of syntactic dependency networks, hub nodes 

 
11 One anonymous reviewer suggests that the same result, i.e. 
higher number of nodes correlates with higher synthesis, 
could also be extracted by simply measuring the ratio of 
different word forms per lemma in treebanks, without the 

are often grammatical words like determiners, 
adpositions, and auxiliaries. Notably, these are as a 
general rule preferably used in analytic languages, 
which by definition tend to express grammatical 
information by means of independent words as 
opposed to bound morphology (see Siegel et al. 
2014: 52–53). The prediction is thus that analytic 
languages will have a lower average path length 
than synthetic languages.  
 Number of nodes also indirectly reflects 
morphological complexity. In particular, in word-
based networks, languages with inflectional 
morphology will feature more nodes per lexeme, 
one for each inflected form, than analytic 
languages. This can clearly be observed in Figure 
1, where apple and apples are two distinct nodes. 
The prediction is thus that analytic languages will 
have a lower number of nodes than synthetic 
languages. 11 

need to resorting to networks. However, a higher number of 
word forms per lemma does not necessarily mean that a 
language is more synthetic, but simply that it has larger 
inflectional paradigms. To achieve a more fine-grained 

Figure 5: average path length and number of nodes for 5k treebanks 

Figure 6: average path length and number of nodes for 30k treebanks 
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Both predictions are fully borne out by data from 
the control group (see Appendix B): networks 
induced from synthetic languages have higher 
average path length and higher number of nodes 
than those from analytic languages.  

Turning to the rest of the languages in the 
sample, for treebanks with size lower than 30k, in 
most cases the results seem to match our intuitions 
about the relationship between the indexes under 
analysis and the analyticity/syntheticity index. 
Consider Figure 5. First, languages are indeed 
placed along a continuum, and do not seem to 
cluster into neatly defined groups. This matches our 
assumption that analyticity is a continuum. 
Languages of the control group indeed seem to 
occupy different regions of the continuum. The 
other languages also pattern accordingly. For 
example, Chukchi (ckt) and Buryat (bua), both rich 
inflectional language (see Dunn 1999; Skribnik 
2003), show an average path length comparable to 
that of synthetic languages. By contrast, Yoruba, 
which shows a marked analytic profile (Awobuluyi 
1978), shows an average path degree even lower 
than that of the control group analytic languages.  

Unfortunately, the picture is not as neat for the 
rest of the languages in the sample. This is 
particularly true for the group of treebanks with 30k 
size (recall that this group also includes reduced 
versions of all treebanks with size over 30k in our 
sample). The results shown in Figure 6 can hardly 
reflect underlying morphological complexity of the 
languages under analysis. For example, it is not 
clear why most languages, even highly inflectional 
ones such as Latin and Ancient Greek, seem to 
pattern with the analytic languages in the control 
group. Further study is needed to understand why 
we get less reliable results with treebanks of higher 
size. Note that there seems to be a cluster of 
languages whose dependency networks have 
average path length between 3.5 and 4.0. This result 
has previously not been discussed in the literature, 
and more research is needed to investigate whether 
this is accidental or not. 

Another limitation of the methodology pursued 
in this paper is that other indexes of morphological 

 
result, one would need to calculate and compare the ratio of 
word forms per lemma for various lemmas and various parts 
of speech. This is a more complex procedure than simply 
exploring the number of nodes in a network, which is 
therefore in principle a more efficient procedure. Notably, 

complexity cannot be inferred from network 
structure alone. For example, syntactic dependency 
networks do not allow to extrapolate more fine-
grained information about the internal structure of 
words in term of cumulation. This means that 
distinctions that are crucial to morphological 
typology, such as the distinction between 
cumulative vs. agglutinative strategies, cannot be 
measured with this methodology. 

5 Conclusions 

In this paper, we have put to an empirical test the 
proposal advanced by Liu & Xu (2011) that 
syntactic dependency networks can be exploited to 
investigate cross-linguistic variation in 
morphological complexity.  
 Our findings only partly support the validity of 
this methodology. While we are sympathetic with 
the underlying assumptions, we must conclude, 
against Liu & Xu’s (2011) more optimistic view, 
that when applied to larger cross-linguistic datasets, 
network indexes do not yet yield consistently 
interpretable results as to morphological 
complexity.   
 This means that more research is needed to fully 
ascertain the suitability of networks to explore 
morphological complexity. In particular, more 
attention needs to be paid to the role of treebank 
size and to the potential impact of annotation 
schemas. Another potentially confounding factor is 
that we have worked on networks directly extracted 
from treebanks as a whole. It needs to be tested 
whether better results may be achieved by working 
with networks that operate a finer-grained 
distinction for e.g. parts of speech.  

Finally, we must stress that even for neat data 
such as that in Figure 5, the proposed correlation 
between network indexes and the language’s 
analyticity index must remain at this stage tentative. 
While there might well be a linguistic motivation to 
link higher number of nodes and average path 
length to higher syntheticity, the validity of these 
assumptions needs to be tested against a finer-
grained qualitative assessment such as that 

variation in paradigm size  in inflectional languages can also 
be explored with networks, by comparing word-based with 
corresponding lemma-based networks (see Čech & Mačutek 
2009).  
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proposed by Greenberg (1960) and Siegel et al. 
(2014). 
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Language* ISO code Treebank Token size 

Akkadian akk UD_Akkadian-RIAO 21961 

Arabic ara UD_Arabic-PADT 242383 

Bambara bam UD_Bambara-CRB 11873 

Buryat bua UD_Buryat-BDT 8333 

Catalan cat UD_Catalan-AnCora 473881 

Chukchi ckt UD_Chukchi-HSE 4740 

Coptic cop UD_Coptic-Scriptorium 45496 

Greek ell UD_Greek-GDT 56145 

English eng UD_English-GUM 97979 

Basque eus UD_Basque-BDT 101444 

Persian fas UD_Persian-PerDT 457439 

Finnish fin UD_Finnish-TDT 171836 

Old French fro UD_Old_French-SRCMF 170740 

Irish gle UD_Irish-IDT 104547 

Gothic got UD_Gothic-PROIEL 55317 

Ancient Greek grc UD_Ancient_Greek-PROIEL 213980 

Mbyá Guaraní gun UD_Mbya_Guarani-Thomas 1070 

Hindi hin UD_Hindi-HDTB 328101 

Hungarian hun UD_Hungarian-Szeged 36212 

Armenian hye UD_Armenian-ArmTDP 42213 

Indonesian ind UD_Indonesian-GSD 103238 

Japanese jpn UD_Japanese-GSD 172209 

Kazakh kaz UD_Kazakh-KTB 8316 

Korean kor UD_Korean-Kaist 310205 

Komi Zyrian kpv UD_Komi_Zyrian-Lattice 4060 

Latin lat UD_Latin-LLCT 206859 

Latvian lav UD_Latvian-LVTB 179744 

Classical Chinese lzh UD_Classical_Chinese-Kyoto 232188 

Erzya myv UD_Erzya-JR 13038 

Old Russian orv UD_Old_Russian-TOROT 149484 

Naija pcm UD_Naija-NSC 100557 

Russian rus UD_Russian-GSD 78200 

Sanskrit Vedic san UD_Sanskrit-Vedic 27117 

Nort Sami sme UD_North_Sami-Giella 22702 

Tamil tam UD_Tamil-TTB 8580 

Tagalog tgl UD_Tagalog-Ugnayan 955 

Thai tha UD_Thai-PUD 21916 

Uyghur uig UD_Uyghur-UDT 32401 

Vietnamese vie UD_Vietnamese-VTB 33887 

Wolof wol UD_Wolof-WTB 38937 

Yoruba yor UD_Yoruba-YTB 7119 

Appendix A: Language sample 
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Chinese zho UD_Chinese-GSD 105195 

 *Languages of the control group are in bold. 

 

 

 

 

 

ISO code Size avg_path_length n_nodes 

gun 1k 4,3342128 410 

kpv 1k 7,5279103 765 

tgl 1k 3,8475797 383 

bua 5k 6,7303552 3072 

ckt 5k 5,6628477 2471 

kaz 5k 7,3374322 3241 

tam 5k 5,7456242 2637 

yor 5k 3,7964219 1375 

bam 10k 3,1309446 1063 

myv 10k 5,6029887 5137 

akk 20k 4,0322794 2802 

sme 20k 4,4667009 7750 

tha 20k 3,5982284 4076 

ara 30k 3,8098087 8732 

 
12 For reasons of space, in Appendix B and C we only report data on average path lengths and number of nodes. Data on the 
other indexes can be consulted at https://github.com/bavagliladri/tb2net. 

Appendix B: number of nodes and average path length for the control group 

Size12 Index ISO code 

fin rus uig lzh vie zho 

1k avg_path_length 7,0926602 7,1181678 8,3712409 5,1750507 5,7376548 5,729498 
n_nodes 822 783 801 549 650 692 

5k avg_path_length 6,4890935 6,2090146 6,0436406 4,1943988 4,3817425 4,7894008 
n_nodes 3477 3359 3063 1642 2037 2534 

10k avg_path_length 6,0495081 5,8471496 5,5202574 3,8458437 4,0076761 4,4870999 
n_nodes 6309 6125 5306 2362 3050 4300 

20k avg_path_length 5,6139062 5,4378837 5,0921595 3,7027029 3,7923894 4,217152 
n_nodes 11174 10715 8888 3513 4588 7255 

30k avg_path_length 5,3847064 5,1784228 4,8219065 3,5586503 3,6615379 4,1005896 
n_nodes 15535 14699 11828 4154 5753 9682 

50k avg_path_length 5,0969112 4,95705 - 3,428777 - 3,9497258 
n_nodes 23451 22020 - 5273 - 13379 

75k avg_path_length 4,9043123 4,7678429 - 3,3602782 - 3,8341283 
n_nodes 31823 29734 - 6330 - 17393 

Appendix C: network indexes for the sample languages 
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cat 30k 3,6261545 7752 

cop 30k 3,1254 3341 

ell 30k 3,973389 7892 

eng 30k 3,8710204 8076 

eus 30k 4,463648 12130 

fas 30k 3,6510337 8517 

fro 30k 3,8691324 7066 

gle 30k 3,7789008 7670 

got 30k 3,7018547 6311 

grc 30k 4,0874524 8941 

hin 30k 3,5812191 6320 

hun 30k 4,4091939 12430 

hye 30k 4,704363 11406 

ind 30k 4,3958122 10332 

jpn 30k 3,5393915 7644 

kor 30k 6,2509272 17359 

lat 30k 3,7646329 3645 

lav 30k 4,9259688 13437 

orv 30k 4,2763492 10635 

pcm 30k 3,2327011 2876 

san 30k 4,5486621 7785 

wol 30k 3,6142526 5720 
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