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GLOBALIZATION FOR GEOMETRIC PARTIAL COMODULES

PAOLO SARACCO AND JOOST VERCRUYSSE

Abstract. We discuss globalization for geometric partial comodules in a monoidal cat-
egory with pushouts and we provide a concrete procedure to construct it, whenever it
exists. The mild assumptions required by our approach make it possible to apply it in a
number of contexts of interests, recovering and extending numerous ad hoc globalization
constructions from the literature in some cases and providing obstruction for globalization
in some other cases.

1. Introduction

The notion of partial action of a group on a set (also known as partial dynamical system)
appeared in [21] within the theory of operator algebras as an approach to C∗-algebras
generated by partial isometries, permitting, in particular, the study of their K-theory, ideal
structure and representations. The point of view of crossed products by partial actions of
groups has been enormously successful for classifying C∗-algebras and in the last few years
the investigation of topological and C∗-algebraic partial dynamical systems experienced a
period of intense activity (for instance, recently, partial coactions of C∗-bialgebras and of
C∗-quantum groups on C∗-algebras were introduced and studied in [29]).

At the same time, the study of partial actions and representations from a more algebraic
point of view attracted the attention of numerous researchers in the field and soon it
became an independent topic of interest in algebra and ring theory, resulting in remarkable
applications and theoretic development (for an idea of the impact of partial (co)actions on
contemporary Mathematics, we refer the reader to the recent survey [16] and the references
therein). In particular, motivated by an extension of classical Galois theory [20], partial
actions entered the realm of Hopf algebras [13], [14].

One of the relevant questions in the study of partial actions is the problem of the existence
and uniqueness of a globalization (also called an enveloping action). Any action of a group
on a set induces a partial action of the group on any subset by restriction (see Example
2.6 below). The other way around, “globalizing” a given partial action means to find a
(minimal) global action such that the initial partial action can be realized as the restriction
of this global one. The aim of the restriction and globalization procedures is to relate
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partial and global actions in such a way that results can be extended from the global to the
more general partial setting and, conversely, general results in the partial case can be used
to refine and complete our understanding of global actions. In addition, globalizable partial
actions play a key role in the development of Galois theory of partial group actions in [20].

The study of this problem begun in the context of partial actions of groups on topological
spaces in [1] and, independently, [26], where it was proved that, up to isomorphism, each
partial action can be globalized (see also [27]). For the partial actions of a group on a
unital associative algebra, a criterion for the globalizability was given in [18, Theorem 4.5].
This criterion was generalized to the so-called left s-unital rings (i.e. rings with left local
units) in [17] and it was also used to analyse when a partial action on a semiprime ring
is globalizable [11, 15]. In [19], a globalization for twisted partial actions was established
and in [23] the problem of globalizability of partial actions on non-necessarily unital rings,
algebras and C∗-algebras was studied. In the theory of partial (co)actions of Hopf algebras,
one of the first results obtained was exactly that every partial action of a Hopf algebra on a
unital algebra admits a suitable globalization [3, 4], which however is not necessarily unital.
Similar theorems were proved in other contexts such as partial actions of Hopf algebras on
k-linear categories [2], twisted partial actions of Hopf algebras [6], partial modules over a
Hopf algebra [7], partial actions of multiplier Hopf algebras [24], partial groupoid actions
on rings [8], on s-unital rings [9] and, very recently, on R-categories [31]. In this framework
as well, having a globalization theorem triggered several new results. For example, in [4]
the authors obtained a version of Blattner-Montgomery theorem for the case of partial
actions, extending the analogue of the Cohen-Montgomery duality obtained in [28].

However, in each of the previous situations there is an ad hoc construction of the
globalization, depending heavily on the nature of the objects carrying the partial action. In
this paper we propose a unified approach to globalization in a categorical setting and we
provide a concrete procedure to construct it.

Our approach relies on the notion of geometric partial comodule recently introduced in
[25]. Unlike partial actions as described above, which exist only for (topological) groups
and Hopf algebras, geometric partial comodules can be defined over any coalgebra in a
monoidal category. Hence, their field of applications is much wider and, at the same time,
it encompasses classical partial actions, which can be recovered by considering a group as a
coalgebra in the opposite of the category of sets. Moreover, geometric partial comodules
allow us to describe phenomena that are out of the reach of the theory of partial (co)actions
in the Hopf algebra framework. For instance, recall that the coordinate algebras of algebraic
groups provide classical examples of Hopf algebras, which in turn are the backbone of the
algebraic approach to the representation theory of those, in the sense that regular actions of
algebraic groups on affine varieties correspond to coactions of the coordinate Hopf algebras
on the corresponding coordinate rings. Despite this, it has been shown in [10] that a partial
coaction in the sense of [14] of the coordinate Hopf algebra O(G) of an algebraic group G
on the coordinate ring O(X) of an affine space X is always global, unless X is a disjoint
union of non-empty subspaces.

The notion of geometric partial comodules was proposed in [25] as an alternative to partial
(co)actions of Hopf algebras, in order to describe genuine (e.g. irreducible) partial actions
of algebraic groups from a Hopf-algebraic point of view. In view of this purpose, the prefix
geometric was added, in order to distinguish the latter ones from the algebraic ones as
in [14]. At the same time, however, it turned out that geometric partial comodules allow
to approach in a unified way partial actions of groups on sets, partial coactions of Hopf
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algebras on algebras and partial (co)actions of Hopf algebras on vector spaces (i.e. partial
(co)representations of Hopf algebras) as well. As a consequence, the question of studying
the existence (and uniqueness) of globalization for geometric partial comodules naturally
arises as a unifying way to address the issue. The present paper is devoted to deal with
this question.

After recalling the main features of the theory of geometric partial comodules over
coalgebras in §2.1, in §2.2 we recall the procedure to construct a geometric partial comodule
from a global comodule Y together with an epimorphism p : Y → X in the underlying
category. The resulting geometric partial comodule X is said to be induced by the pair
(Y, p). Moreover, by defining a suitable category of ‘covers’, which are triples (Y,X, p) as
above, we show that this construction becomes functorial.

Our main results are proven in §3.1, where we also introduce the concept of globalization
for geometric partial comodules. In Theorem 3.5, definitely the most important of the paper,
we provide necessary and sufficient conditions for the existence of the globalization and
we exhibit an explicit construction of the latter, whenever it exists. In Corollary 3.8, this
construction is proven to be functorial and to provide a right adjoint G to the fully faithful
embedding from global comodules into globalizable partial comodules. A remarkable fact is
that this adjunction provides a splitting of the classical free-forgetful adjunction for global
comodules (see Proposition 3.10), which shows once more how the theory of (geometric)
partial comodules provides a refinement of the classical global theory.

Finally, in Theorem 3.11 we show that the category of globalizable geometric partial
comodules is equivalent to the one of minimal proper covers, thus offering a way of concretely
describing the globalizable partial comodules among all the geometric partial ones.

These results do not only provide an effective tool to compute the globalization whenever
it exists, but they also allow to test if a globalization indeed exists and to provide an
obstruction in case it does not. In fact, although globalizations of partial actions on
topological spaces always exist, it is known that the topological properties of the initial
space are not necessarily shared by its globalization (for example, the globalization of a
partial action on a Hausdorff space is not necessarily Hausdorff). Similarly, partial actions
on C∗-algebras are not globalizable in general (see [1, Proposition 2.1] for a criterion for the
existence of a globalization of a partial action on commutative C∗-algebras). Theorem 3.5
allows to identify more cases of this phenomenon and, in particular, Corollary 3.7 shows
that in the category of algebras over a field there exist geometric partial comodules which
do not admit a globalization. We conclude the paper with a few additional examples.

In two forthcoming papers [33, 34], we analyse closely a number of concrete instances of
globalization obtained by applying the general approach of the present paper. In particular,
we will show how globalization theorems appearing in the literature (and recalled above)
are subsumed as particular instances of our results and, moreover, how our approach allows
to obtain new types of globalizations as well.

2. Geometric partial comodules

2.1. Preliminaries. Let (C,⊗, I, a, l, r) be a monoidal category with pushouts. For any
object X in C, we usually denote the identity morphism on X again by X. Moreover, for any
algebra A and any coalgebra H in C, we denote by ModA the category of (right) A-modules
and by ComH the category of (right) H-comodules. We also assume implicitly the category
C to be strict (i.e. a, l, r being identities) and hence omit the constraint isomorphisms.
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Recall now from [25, §2] the following definitions.
Definition 2.1. Let (H,∆, ε) be a coalgebra in C. A partial comodule datum is a cospan

X
ρX

((
X ⊗H

πX
uuuu

X •H
(1)

in C where πX is an epimorphism.
Remark 2.2. Recall that cospans in a category with pushouts form a bicategory. The same is
true for those cospans admitting a leg which is an epimorphism, as in (1). The composition
is defined by means of the pushout of the adjacent maps, that is to say, for the cospans

X1

f1 ''

X2

π1wwww
Y1

and
X2

f2 ''

X3

π2wwww
Y2

the composition is provided by the cospan
X1

f1 ''

X2

π1wwww f2 ''

X3

π2wwww
Y1

f̃2
''

Y2

π̃1
wwww

Y3.

��?
?

Given two cospans (Y1, f1, π1) and (Y2, f2, π2) with same domain X1 and same codomain
X2, a morphism α : (Y1, f1, π1) → (Y2, f2, π2) of cospans is a morphism α : Y1 → Y2 in C
such that π2 = α ◦ π1 and f2 = α ◦ f1. Notice that if a morphism α as before exists, then it
is unique and it is an epimorphism, because π1 and π2 are epimorphisms themselves. As a
consequence, the Hom-categories in the bicategory of cospans with one epimorphic leg are in
fact partially ordered sets. Thus, if between two such cospans there exist morphisms in both
directions, then these morphisms are mutual inverses and so, in particular, isomorphisms.

Any partial comodule datum induces canonically the following pushouts

X ⊗H
πX

zzzz

ρX⊗H

$$
X •H

ρX•H $$

(X •H)⊗H
πX•Hzzzz

(X •H) •H
��?
?

X ⊗H
πX

zzzz

X⊗∆

$$
X •H

X•∆ $$

X ⊗H ⊗H

πX,∆zzzz
πX⊗H
$$

X • (H ⊗H)

π′X $$

��?
?

(X •H)⊗H

π′
X,∆zzzz

X • (H •H)
��?
?

(2)

Definition 2.3. Let (H,∆, ε) be a coalgebra in C. A geometric partial comodule is a partial
comodule datum (X,X •H, πX , ρX) that satisfies the following conditions.
(GP1) Counitality: there exists a morphism X • ε : X •H → X which makes the following

diagram commutative.
X

idX ,,

ρX

++
X ⊗HπX

ssss

X⊗εrr

X •H
X•ε
��
X.



GLOBALIZATION FOR GEOMETRIC PARTIAL COMODULES 5

(GP2) Geometric coassociativity: there exists an isomorphism
θ : X • (H •H)→ (X •H) •H

such that the following diagrams commute

(X •H)⊗H
π′

X,∆
{{{{

πX•H
## ##

X • (H •H)
θ
// (X •H) •H

X
ρX //

ρX

��

X •H ρX•H // (X •H) •H

X •H
X•∆

// X • (H ⊗H)
π′X

// X • (H •H).
θ

OO

If (X,X • H, πX , ρX) and (Y, Y • H, πY , ρY ) are geometric partial comodules, then a
morphism of geometric partial comodules is a pair (f, f • H) of morphisms in C with
f : X → Y and f •H : X •H → Y •H such that the following diagram commutes

X

f
��

ρX

**
X ⊗HπXtttt

f⊗H
��

X •H
f•H

��
Y

ρY
**

Y ⊗H
πY
tttt

Y •H.

(3)

We will often denote a geometric partial comodule (X,X •H, πX , ρX) simply by X and a
morphism as above simply by f . Moreover, we denote by gPComH the category of geometric
partial comodules over H.

From the above definitions (and more precisely from the fact that the morphisms πX are
epimorphisms) it follows that the obvious forgetful functor U : gPComH → C is faithful. In
addition, any usual (global) comodule (X, δX) over H is a geometric partial comodule where
πX is the identity and ρX := δX . More precisely, ComH is a full subcategory of gPComH

and we denote the associated embedding functor by I : ComH → gPComH .
By specializing C to appropriate categories, examples of geometric partial comodules

can be obtained from various partial structures studied extensively in literature, such as
partial actions of (topological) groups and monoids (see [1, 26, 27]), partial (co)actions and
(co)representations of Hopf algebras (see [5, 7]) and partial comodule algebras (see [4, 14]).
For some concrete examples we refer the reader to [25], [33] and [34].

Remarks 2.4. (i) The notion of geometric partial comodule should not be confused with
the notion of partial comodule over a Hopf algebra as it appears in [5, §3].

(ii) If (Y, δY ) is an H-comodule, viewed as a geometric partial comodule under the em-
bedding functor I, and if (X,X • H, πX , ρX) is a geometric partial comodule, then
f : Y → X is a morphism of geometric partial comodules I(Y )→ X if and only if the
following diagram commutes

Y
f //

δY

��

X

ρX

��
Y ⊗H f⊗H // X ⊗H πX // X •H.

(4)

Let us conclude this subsection by recalling that one of the most important sources
of geometric partial comodules is provided by the so-called induction procedure. This
construction appears originally as [25, Example 2.5] under slightly stronger hypotheses on
the base category C, but the argument in [25] still holds in the present context, too.
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Definition 2.5. Let (Y, δ) be an H-comodule and let p : Y → X an epimorphism in C.
The pushout

Y (p⊗H)◦δ
))

p

uuuu
X

ρX ))
X ⊗H

πX
uuuu

X •H
��?
? (5)

makes (X,X • H, πX , ρX) a geometric partial comodule and p becomes a morphism of
geometric partial comodules p : I(Y )→ X. We refer to this as the induced partial comodule
structure from Y to X.

The motivation for the above construction comes from the following example.

Example 2.6. Considering the case C = Setop, assume that Y is a G-set with global action
β : G× Y → Y and that j : X ⊆ Y is any subset. One can perform the pullback

Y

G×X

β◦(G×j) 55

X
6 V

jii

G •X.
6 Vι

ii
α

55
��?
?

Because j is injective, it turns out that G •X = {(g, x) ∈ G×X | βg(x) ∈ X} and that
α(g, x) = βg(x) for all x ∈ X ∩ β−1

g (X). If we define Xg−1 = {x ∈ X | (g, x) ∈ G •X} and
αg(x) := α(g, x) for all g ∈ G, then {Xg, αg} gives a partial action of G on X in the sense
of [22, Definition 1.2]. We say that this is the partial action induced from Y to X.

The so-called globalization question concerns exactly the problem of deciding when a
geometric partial comodule structure on an object X over a coalgebra H has been induced
by a (preferably, uniquely determined) global comodule (Y, δ) as in Definition 2.5 and which
geometric partial comodules admit such an inducing global comodule. In the present paper
we will address both these questions by providing a criterion to determine when a geometric
partial comodule is globalizable (Theorem 3.5) and by providing a complete description
(under some mild assumptions on the category of H-comodules) of the globalizable geometric
partial comodules, in terms of what we are going to call in the next subsection the minimal
proper covers (Theorem 3.11).

2.2. Making induction functorial: the category of global covers. Inspired by the
construction from Definition 2.5, we introduce the following definition, which allows us to
make the process of induction functorial.

Definition 2.7. We denote by CovH the category whose objects are triples (Y,X, p) where
Y is a global H-comodule, X is an object in C and p : Y → X is an epimorphism in C. We
will refer to these objects as (global) covers and often denote them simply by p : Y → X.

A morphism (F, f) : (Y,X, p) → (Y ′, X ′, p′) in CovH consists of a morphism of H-
comodules F : Y → Y ′ and a C-morphism f : X → X ′ such that p′ ◦ F = f ◦ p.

Proposition 2.8. The procedure of constructing the induced geometric partial comodule
structure from a global cover as in Definition 2.5 defines a functor

Ind : CovH → gPComH .
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Proof. From Definition 2.5 we see that Ind is well-defined on objects. If (F, f) : (Y,X, p)→
(Y ′, X ′, p′) is a morphism in CovH , then we set Ind(F, f) := f . Since F is H-colinear,
πX′ ◦ (f ⊗H) ◦ (p⊗H) ◦ δY = πX′ ◦ (p′ ⊗H) ◦ (F ⊗H) ◦ δY = πX′ ◦ (p′ ⊗H) ◦ δY ′ ◦ F

(5)= ρX′ ◦ p′ ◦ F = ρX′ ◦ f ◦ p
and therefore, by the universal property of the pushout X•H, there exists a unique morphism
f •H : X •H → X ′•H in C such that (f •H)◦ρX = ρX′ ◦f and (f •H)◦πX = πX′ ◦(f⊗H),
i.e. (f, f •H) is a morphism in gPComH . �

The following example shows that the same geometric partial comodule can be induced
by many different global comodules.
Example 2.9. Assume that X and Y are global H-comodules and that p : Y → X is an
epimorphism which is H-colinear. One may check directly that we have the pushout

Y (p⊗H)◦δY
))

p

uuuu
X

δX
))

X ⊗H

X ⊗H
��?
?

and hence the induced geometric partial comodule structure on X is its own global one.
In view of Example 2.9, it is natural to introduce the following definitions, in order to

avoid that a cover contains superfluous information.
Definition 2.10. Let (Y, δY ) be a global comodule over the coalgebra H in C and let
p : Y → X be an epimorphism in C. We say that Y is co-generated by X as a comodule if
the following composition is a monomorphism in ComH :

(p⊗H) ◦ δY : Y → X ⊗H.

Example 2.11. The subsequent examples argue in favour of the appropriateness of the
terminology just introduced.

(1) If we rephrase Definition 2.10 for C = Vectop
k , then we recover the classical notion of

module generated by a subspace.
(2) If we let C be Setop and H be a group, then we recover the familiar notion of orbit

under the action of H.
(3) In C = Vectk instead, it says exactly that Y is isomorphic to a subcomodule of the

free comodule X ⊗H (via (p⊗H) ◦ δY ), which is in accordance with the definition of
finitely co-generated comodules in Vectk used in [35, Example 1.2].

Definition 2.12. A global cover (Y,X, p) is called proper if Y is co-generated by X, that
is, if (p⊗H) ◦ δY is a monomorphism in ComH . Denote by CovHpr the full subcategory of
CovH consisting of all proper covers.

A proper cover (Y,X, p) is called minimal if it does not factor through another proper
cover. More explicitly, if (Y ′, X, p′) is another proper cover such that p = p′ ◦ q for some
morphism q : Y → Y ′ in C, then q is an isomorphism. Denote by CovHpr,min the full
subcategory of CovHpr consisting of all minimal proper covers.
Corollary 2.13. The functor Ind from Proposition 2.8 restricts to a faithful functor
Ind : CovHpr → gPComH .
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Proof. Consider morphisms (F, f), (F ′, f) : (Y,X, p) → (Y ′, X ′, p′) in CovHpr, so that
Ind(F, f) = f = Ind(F ′, f). Then by a similar computation as in the proof of Propo-
sition 2.8, we find that

(p′ ⊗H) ◦ δY ′ ◦ F = (f ⊗H) ◦ (p′ ⊗H) ◦ δY = (p′ ⊗H) ◦ δY ′ ◦ F ′.
Since (Y ′, X ′, p′) is proper, (p′ ⊗ H) ◦ δY ′ is a monomorphism in ComH , hence F = F ′,
hence (F, f) = (F ′, f) and Ind is faithful. �

Example 2.14. It is important to notice that the functor Ind from Corollary 2.13 is not
full. For example, in C = Topop consider the topological group H := ((R, τ),+, 0) and the
natural (topological) global action ρX of H on X := (R, τ) itself given by translation, where
all the copies of R have the ordinary euclidean topology τ. Then (X,X, idR) is an object in
CovHpr and Ind(X,X, idR) = (X,H ×X, idH×X , ρX) with the global action of H.

Consider also the global action of H = ((R, τ),+, 0) on Y := (R, τ′), but with the trivial
topology τ′ := {∅,R}. The identity p := idR : (R, τ) → (R, τ′) is a continuous R-linear
monomorphism. The triple (Y,X, p) is an object in CovHpr, because H×X idR×p−−−→ H×Y → Y
is a continuous epimorphism. The geometric partial comodule Ind(Y,X, p) in this case is
again simply the global action (X,H ×X, idH×X , ρX) of H on X.

Therefore, (idX , idH×X) ∈ gPComH(Ind(X,X, idR), Ind(Y,X, p)) = gPComH(X,X), but
since the identity map on R is not a continuous morphism from Y to X, the morphism
(idX , idH×X) is not in the image of the functor Ind, hence the functor is not full.

Remark however that the cover (Y,X, p) in Example 2.14 is not minimal: Z := (R, τ′′)
where τ′′ is any intermediate topology τ′ ( τ′′ ( τ provides an intermediate, non homeo-
morphic, proper cover. In §3.2, and under some mild assumptions, we will prove that the
restriction of the functor Ind to the category of minimal proper covers is full, by means of
the globalization procedure (see Theorem 3.11).

3. The globalization question

As mentioned at the end of §2.1, the globalization question concerns the problem of
determining when a geometric partial comodule structure is induced by a (unique) global
one and how to describe the induced partial comodules among all the geometric partial
ones. We begin by addressing the first problem.

3.1. Globalization for geometric partial comodules. As the globalization of a partial
action of a group G on a set X is the smallest G-set containing X and such that the partial
action is induced by restriction of the global one (see [1, Theorem 1.1]), we expect the
globalization of a partial comodule X to be a universal H-comodule “covering” X and such
that the partial coaction is induced by the global one.

Definition 3.1. Given a geometric partial comodule (X,X •H, πX , ρX) over the coalgebra
H in the monoidal category with pushouts C, a globalization for X is a global comodule
(Y, δ) with a morphism p : Y → X in C such that
(GL1) p : I(Y )→ X is a morphism of geometric partial comodules (that is, (4) commutes);
(GL2) the corresponding diagram (5) is a pushout square in C;
(GL3) Y is universal among all global comodules admitting a morphism of geometric partial

comodules to X: if (Z, δ′) is global and q : I(Z)→ X is of partial comodules, then
there is a unique morphism of global comodules η : Z → Y such that p ◦ η = q.
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We say that X is globalizable if a globalization for X exists and we denote by gPComH
gl the

full subcategory of gPComH composed by the globalizable partial comodules.

Lemma 3.2. Let (X,X •H, πX , ρX) be a geometric partial comodule and (Y, δ) be a global
comodule. If p : Y → X is a morphism of geometric partial comodules in C such that (5) is
a pushout diagram, then p is an epimorphism.

Proof. If f, g : X → S are two morphisms in C such that f ◦ p = g ◦ p, then
g ◦ (X ⊗ ε) ◦ (p⊗H) ◦ δ = g ◦ p = f ◦ p

and hence, by the universal property of the pushout, there exists a unique morphism
σ : X •H → S in C such that σ ◦ρX = f and σ ◦πX = g ◦ (X⊗ ε). However, the counitality
condition (GP1) entails that σ ◦πX = g ◦ (X⊗ε) = g ◦ (X •ε)◦πX and hence σ = g ◦ (X •ε).
Thus, by (GP1) again, f = σ ◦ ρX = g ◦ (X • ε) ◦ ρX = g. �

Let (X,X •H, πX , ρX) be a geometric partial comodule over H. Axioms (GL1), (GL2)
and Lemma 3.2 tell us that the partial comodule X is induced by the global comodule Y
as in Definition 2.5. Axiom (GL3) ensures that Y does not carry superfluous information,
as it is clear that if p′ : Y ′ → Y is an epimorphism of global comodules, then X is induced
by p ◦ p′ : Y ′ → X as well. The universal property (GL3) assures also that a globalization
is unique up to isomorphism, whenever it exists.

Therefore, the globalization of X is, by definition, a global cover (Y,X, p) in the sense of
Definition 2.7 such that the given geometric partial comodule structure on X is induced
by the global comodule structure on Y and such that Y is universal with respect to this
property. This suggests that one may call an inducing global cover a global comodule Y
satisfying (GL1) and (GL2) and then the globalization would be the universal inducing
global cover, in the sense of condition (GL3).

Similarly, one may observe that conditions (GL1) and (GL3) can be treated independently
from condition (GL2) (see [33, Remark 2.4]). This suggests that one may also call pre-
globalization a global module (Y, δ) together with a morphism p : Y → X in C satisfying
(GL1) and (GL3) and not necessarily (GL2).

However, since we are interested in globalizations as they have been dealt with in the
literature (that is, which are inducing the given partial comodule structure and which are
universal with respect to this property), we focus on global comodules satisfying all the
conditions (GL1)-(GL3) at the same time.

The following lemma represents the key step toward our globalization theorem.

Lemma 3.3. Let (H,∆, ε) be a coalgebra in C. Consider a geometric partial comodule
(X,X •H, πX , ρX), the associated free (global) H-comodule (X⊗H,X⊗∆) and the parallel
morphisms

(X ⊗H,X ⊗∆)
ρX⊗H //

(πX⊗H)◦(X⊗∆)
// (X •H ⊗H,X •H ⊗∆) (6)

in ComH . Consider as well a global H-comodule (Y, δ) and the induced geometric partial
comodule I(Y ) = (Y, Y ⊗H, id, δ). Then there is a bijective correspondence:
gPComH(I(Y ), X) ∼= {f ∈ ComH(Y,X ⊗H) | (ρX ⊗H) ◦ f = (πX ⊗H) ◦ (X ⊗∆) ◦ f}

g 7→ (g ⊗H) ◦ δ
(X ⊗ ε) ◦ f ←[ f
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Moreover, this correspondence is natural in both arguments Y and X.

Proof. Consider g ∈ gPComH(I(Y ), X), that is to say, πX ◦ (g ⊗H) ◦ δ = ρX ◦ g (see
(4)). Since both δ : Y → Y ⊗H and g ⊗H : Y ⊗H → X ⊗H are morphisms of global
H-comodules, so is (g ⊗H) ◦ δ. Moreover, we find that

(ρX ⊗H) ◦ (g ⊗H) ◦ δ (4)= (πX ⊗H) ◦ (g ⊗H ⊗H) ◦ (δ ⊗H) ◦ δ
= (πX ⊗H) ◦ (g ⊗H ⊗H) ◦ (Y ⊗∆) ◦ δ = (πX ⊗H) ◦ (X ⊗∆) ◦ (g ⊗H) ◦ δ.

Consequently, the first map of the statement is well-defined.
Conversely, for any morphism of global comodules f : Y → X ⊗H equalizing (ρX ⊗H)

and (πX ⊗H) ◦ (X ⊗∆) we find, using this equalizing property in the second equality, that
ρX ◦ (X ⊗ ε) ◦ f = (X •H ⊗ ε) ◦ (ρX ⊗H) ◦ f

= (X •H ⊗ ε) ◦ (πX ⊗H) ◦ (X ⊗∆) ◦ f
= πX ◦ (X ⊗H ⊗ ε) ◦ (X ⊗∆) ◦ f = πX ◦ f
= πX ◦ (X ⊗ ε⊗H) ◦ (X ⊗∆) ◦ f
= πX ◦ (X ⊗ ε⊗H) ◦ (f ⊗H) ◦ δ

where we used the H-colinearity of f in the last equality. Consequently (see (4)), (X⊗ε)◦f
is a morphism of geometric partial comodules.

As f ∈ ComH(Y,X ⊗ H) is H-colinear, we have that f = (X ⊗ ε ⊗ H) ◦ (f ⊗ H) ◦ δ.
Finally, for any g ∈ gPComH(I(Y ), X) we obviously have

(X ⊗ ε) ◦ (g ⊗H) ◦ δ = g ◦ (Y ⊗ ε) ◦ δ = g

and hence we obtain the required bijection. Naturality follows by a direct computation. �

In case C = Setop, Definition 3.1 coincides with the globalization (or enveloping action)
as defined and studied in [1]. It has been proven, for instance in [1, Theorem 1.1] or [26,
§3.1], that the globalization of a partial action of a group G on a set X or, equivalently, of
a geometric partial comodule

G×X X

G •X
α

66
5 Uι

hh

over G in Setop (see [25] and Example 2.6), always exists and it is given by the quotient
Y := (G×X)/ ∼, where (g, x) ∼ (h, y) if and only if (h−1g, x) ∈ G •X and α(h−1g, x) = y.
The (global) action of G on Y is given by

h · [g, x] = [hg, x],
where [g, x] denotes the equivalence class of (g, x) ∈ G × X under the relation ∼. The
following proposition clarifies the motivation behind the approach to globalization we
advocate in this paper.

Proposition 3.4. Consider a group G and a partial action (X,G • X, ι, α). Then the
globalization of X is given exactly by the the coequalizer in Set of the pair

G× (G •X)
G×α //

(µ×X)◦(G×ι)
// G×X. (7)
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Proof. From the remark preceding this proposition we know that the globalization G×X/ ∼,
being a quotient by an equivalence relation, is by definition the coequalizer of the pair
R

p1 //
p2
// G×X where

R := {((g, x), (h, y)) ∈ (G×X)× (G×X) | x ∈ Xg−1h and αh−1g(x) = y}

is the equivalence relation ∼ and p1, p2 are the (restrictions of the) canonical projections.
One may check that the assignments

ϕ : R→ G× (G •X), ((g, x), (h, y)) 7→ (h, (h−1g, x)),
ψ : G× (G •X)→ R, (m, (n, z)) 7→ ((mn, z), (m,n · z)),

are well-defined and each other inverses, making the following diagram

R
p1 //
p2

//

ϕ

��

G×X

G× (G •X)
(µ×X)◦(G×ι)

//

G×α
//

ψ

OO

G×X

to commute sequentially. Hence, it turns out that Y together with the obvious projection
p : G×X → Y, (g, x) 7→ [g, x], is the coequalizer in Set of the pair (7). �

Lemma 3.3 and Proposition 3.4 suggest that the globalization for a partial comodule
could be constructed by considering the equalizer of the corresponding pair (6). Our main
result, Theorem 3.5, shows that this is indeed the case.

As we henceforth need that a particular equalizer in the category of comodules over the
coalgebra H exists, let us recall that this is a rather mild condition. In fact, in [32] it is
shown that for C of the form Modk (for a commutative ring k) or AModA (for a possibly
non-commutative ring A), the category of comodules over any coalgebra in C is complete.
Furthermore, it is well-known that the limit of any given diagram in ComH exists whenever
the limit of the same diagram in C exists and the functor −⊗H ⊗H : C → C preserves it.
In particular,

ComH is complete if C is complete and H is a flat object in C,
that is, when the endofunctor −⊗H preserves limits. These observations can be deduced
from, for example, [12, Proposition 4.3.2].

The advantage of the last case is that limits can be computed in the underlying category C.
Examples of such categories are (Set,×, {∗}), (Setop,×, {∗}), (Vectk,⊗k,k), (Vectop

k ,⊗k,k)
and (CAlgk,⊗k,k) where k is a field, or the category (Modk,⊗k, k) of (symmetric) modules
over a commutative ring k, provided that the coalgebra (H,∆, ε) is such that H is flat as
k-module. The category (Topop,×, {∗}) is an example as well, provided that the monoid
(H,µ, u) in Top is such that H is locally compact Hausdorff (a sufficient condition to have
that − × H preserves colimits in Top) or that H is a topological group. The explicit
globalization for all these cases will be treated separately, in details, in [33, 34].

Theorem 3.5. Let H be a coalgebra in the monoidal category with pushouts C. Then a
geometric partial H-comodule X = (X,X •H, πX , ρX) is globalizable if and only if

(I) the equalizer (YX , κ) of the pair (6) exists in ComH and
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(II) the commutative diagram
YX κ

))
(X⊗ε)◦κ
uuuu

X
ρX ))

X ⊗H
πX
uuuu

X •H

(8)

is a pushout diagram in C.
Moreover, under these equivalent conditions YX is the globalization of X and this globalization
is co-generated by X as a global H-comodule.

Proof. Observe that, by definition, X is globalizable if and only if there exists a universal
arrow

(
(Y, δ), p

)
, in the sense of [30, §III.1], from I to X (conditions (GL1) and (GL3))

such that (GL2) holds. Therefore, if X is globalizable then the assignment
ComH(Z, Y )→ gPComH(I(Z), X),

η 7→ p ◦ η,
is bijective. Hence, by Lemma 3.3, Y with κ := (p ⊗ H) ◦ δ is the equalizer of ρX ⊗ H
and (πX ⊗H) ◦ (X ⊗∆) in ComH and so (I) holds. Moreover, since (X ⊗ ε) ◦ κ = p and
κ = (p⊗H) ◦ δ, diagram (8) coincides with diagram (5), which is a pushout by (GL2).

Conversely, if the equalizer
(
(YX , δ), κ

)
of (6) exists in ComH then the assignment

ComH(Z, YX)→ {f ∈ ComH(YX , X ⊗H) | (ρX ⊗H) ◦ f = (πX ⊗H) ◦ (X ⊗∆) ◦ f}
η 7→ κ ◦ η,

is bijective and hence, by Lemma 3.3 again, we have that ε := (X ⊗ ε) ◦ κ : I(YX) → X
is a universal arrow from I to X (i.e., (GL1) and (GL3) hold). Since property (II) in the
statement of the theorem is exactly axiom (GL2), YX is a globalization of X.

For the last statement, it follows from the above that the globalization of X is given by
YX . Moreover, since κ = (ε⊗H) ◦ δ : YX → X ⊗H is an equalizer, it is a monomorphism,
while ε = (X ⊗ ε) ◦ κ : YX → X is an epimorphism by Lemma 3.2. Therefore, by Definition
2.10, YX is co-generated by X as global comodule. �

It is of fundamental importance to realize that the necessary and sufficient conditions
of Theorem 3.5 are not always satisfied in general, contrarily to what happens for partial
actions of groups. In the next example, we show a case where they fail to be fulfilled.
Example 3.6. Let C = Algk, the category of algebras over a field k. Take H := k [x], the
monoid bialgebra over N with unit u : k → k[x], ∆(x) = x ⊗ x and ε(x) = 1, and take
A := k itself. Set A •H := k [y±1]. The canonical inclusion π : k[x]→ k [y±1] , x 7→ y, is an
epimorphism of algebras. Therefore, the cospan

k
u′ ((

k[x]
πvvvv

k [y±1]

is a partial comodule datum in Algk, where u′ : k → k [y±1] is the unit of k [y±1]. We
claim that (k, k[y±1], π, u′) is, in fact, a geometric partial comodule. First of all, observe
that k [y±1] is the group Hopf algebra k[Z] with counit ε′ and comultiplication ∆′ and that
π : k[x]→ k[y±1] is a bialgebra morphism. This means that ρ := u : k→ k[y±1] is simply
the extension of scalars of δ := u : k→ k[x] along π (and this intuitively justifies why it
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is coassociative and counital). Then, to compute (A •H) •H one observes that if B is a
k-algebra and f : k[y±1]→ B, g : k[y±1]⊗ k[x]→ B are morphism of algebras such that
g ◦ (u⊗k[x]) = f ◦π then: (i) g(1⊗x) = f(y) ∈ B×, the invertible elements in B, and hence
there exists a unique g̃ : k[y±1]→ B of k-algebras extending g ◦ (u⊗ k[x]) and (ii) since
g(1⊗ x) = g̃(y) and g(y⊗ 1) clearly commute in B, there exists a unique algebra morphism
ϕ : k[y±1] ⊗ k[y±1] → B such that ϕ(y ⊗ 1) = g(y ⊗ 1) and ϕ(1 ⊗ y) = g̃(y). It follows
that

(
k[y±1]⊗ k[y±1], u′⊗ k[y±1], k[y±1]⊗ π

)
is the pushout of (π, u⊗ k[x]) in Algk. On the

other hand, to compute A • (H •H) one observes that if B is a k-algebra with k-algebra
morphisms f : k[y±1]→ B, g : k[y±1]⊗ k[x]→ B such that f ◦ π = g ◦ (π ⊗ k[x]) ◦∆ then:
(i) since g(y ⊗ 1)g(1⊗ x) = g(π(x)⊗ x) = f(y) ∈ B×, g(1⊗ x) is invertible in B too, and
hence there exists a unique morphism of k-algebras g̃ : k[y±1] → B, y 7→ g(1 ⊗ x), and
(ii) since g(1⊗ x) = g̃(y) and g(y ⊗ 1) clearly commute in B, there exists a unique algebra
morphism ϕ : k[y±1] ⊗ k[y±1] → B such that ϕ(y ⊗ 1) = g(y ⊗ 1) and ϕ(1 ⊗ y) = g̃(y).
This implies that

(
k[y±1]⊗ k[y±1],∆′,k[y±1]⊗ π

)
is the pushout of

(
π, (π ⊗ k[x]) ◦∆

)
in

Algk. Therefore, θ = id and coassociativity and counitality are given by ∆′(1) = 1 ⊗ 1
and ε′(1) = 1. Summing up, (k,k [y±1] , π, u′) is a geometric partial k[x]-comodule in Algk.
However,

Y = Eq
(
u⊗ k[x], (π ⊗ k[x]) ◦∆

)
=
{
p(x) ∈ k[x]

∣∣∣∣∣ 1⊗ p(x) =
∑
i

piy
i ⊗ xi

}
= k

and clearly
k u

))
k

u ))
k[x]

π
uuuu

k [y±1]
cannot be a pushout diagram. Notice also that working instead with C = CAlgk, the
category of commutative k-algebras, the same argument leads to the same conclusion.

Since Theorem 3.5 shows that the globalization, whenever it exists, must be obtained as
the equalizer of (6), we get an obstruction for its existence in the category of (commutative)
algebras.

Corollary 3.7 (of Theorem 3.5). In the categories Algk and CAlgk of (commutative) algebras
over a field k, a general globalization for geometric partial comodules does not exist.

Proof. This follows directly from Theorem 3.5 in combination with Example 3.6. �

A second important consequence of Theorem 3.5 is that the globalization construction is,
in fact, functorial and it provides a right adjoint to the inclusion functor I.

Corollary 3.8 (of Theorem 3.5). Every global comodule is globalizable as geometric partial
comodule. That is, the functor I : ComH → gPComH corestricts to a fully faithful functor

J : ComH → gPComH
gl .

Moreover, the assignment X 7→ YX induces a functor
G : gPComH

gl → ComH

which is right adjoint to the fully faithful functor J : ComH → gPComH
gl .
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Proof. For any global comodule Y , the identity morphism id : Y → Y satisfies all axioms
(GL1)–(GL3) and hence Y is the globalization of I(Y ). Thus, the image of the fully faithful
functor I : ComH → gPComH lies in the full subcategory of globalizable partial comodules.

Moreover for any globalizable partial comodule X, axioms (GL1) and (GL3) entail that
we have a (global) comodule G(X) := Y and a universal arrow p : I(Y )→ X from I to X,
which by Theorem 3.5 we can realize as the equalizer (YX , κ) of (6) and as the morphism
εX := (X ⊗ ε) ◦ κ, respectively. Therefore, by [30, §IV.1, Theorem 2(iv)], X 7→ YX is the
object function of a functor G : gPComH

gl → ComH which is right adjoint to J . �

Remarks 3.9. (a) For any global H-comodule (Y, δ) it is well-known that the following
diagram is an absolute equalizer

Y
δ // Y ⊗H

δ⊗H //

X⊗∆
// Y ⊗H ⊗H .

As this equalizer is exactly the equalizer of (6) applied the case X = J (Y ), we find that
Y ∼= GJ (Y ) and this isomorphism describes the unit of the adjunction (J ,G), which
reconfirms that J is a fully faithful functor. On the other hand, for any globalizable
partial comodule X the counit εX : JG(X)→ X of the adjunction is given exactly by

εX = (X ⊗ ε) ◦ κ,
where κ is the equalizer of (6), and which is a morphism of gPComH by Lemma 3.3.

(b) The conclusion of Corollary 3.8 can be rephrased by saying that ComH is a coreflexive
subcategory of gPComH

gl , because it is a full subcategory whose inclusion functor admits
a right adjoint, and that YX is the coreflector in ComH of X.

We conclude this subsection with a remarkable result, showing that the adjunction
of Corollary 3.8 provides a splitting of the classical free-forgetful adjunction for global
comodules. By carefully inspecting the proof of [25, Proposition 2.20], one realizes that
if V ⊗ ε : V ⊗ H → V is an epimorphism for every object V in C, then the forgetful
functor U : gPComH → C, (X,X •H, πX , ρX) 7→ X, admits a right adjoint T given by the
so-called trivial partial comodule construction. Namely, for every V ∈ C one puts V •H = V ,
πV = V ⊗ ε and ρV = idV . This makes (V, V •H, πV , ρV ) a geometric partial H-comodule.
The next proposition tells that the trivial partial comodule structure on an object V in C is
always globalizable and that its globalization is exactly the usual free comodule over V ,
supporting the fact that geometric partial comodules and the trivial-forgetful adjunction
are a refinement of usual comodules and the well-known free-forgetful adjunction.

Proposition 3.10. Assume that V ⊗ ε : V ⊗H → V is an epimorphism in C for every
object V . With notations as above, the free-forgetful adjunction between C and ComH factors
through the category of globalizable geometric partial comodules as in the following diagram,
where the inner and outer triangles commute.

C

T ##

−⊗H // ComH

J
yy

oo

gPComH
gl

G

99
U

cc

Proof. In view of Lemma 3.3, it is easy to check that (V ⊗H, V ⊗∆) is the globalization
of (V, V, V ⊗ ε, idV ). Thus, T (V ) is always globalizable. Obviously, U ◦ J : ComH → C
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coincides with the forgetful functor and, as G is right adjoint to J and T is right adjoint to
U , it follows by uniqueness of the right adjoint that G ◦ T ∼= −⊗H : C → ComH . �

3.2. Globalization versus global covers. By definition, a globalizable partial comodule
is induced by a global comodule. Conversely, we can now finally show that any induced par-
tial comodule is globalizable and moreover that there is an equivalence between globalizable
partial comodules and minimal proper covers.

Theorem 3.11. Let H be a coalgebra in C for which the equalizer of the pair (6) exists in
ComH for any geometric partial comodule (e.g. a coalgebra H for which ComH is complete).

If X is a geometric partial comodule that has been induced by a global comodule, then X
is globalizable. In other words the functor Ind from Proposition 2.8 co-restricts to a functor

Ind : CovH → gPComH
gl ,

which has a fully faithful right adjoint Gl given by Gl(X) = (G(X), X, εX). Moreover, for
any globalizable partial comodule, Gl(X) is a minimal proper cover in the sense of Definition
2.12 and the functors Ind and Gl induce an equivalence of categories

CovHpr,min
Ind //∼ gPComH

gl
Gl

oo .

Proof. Let (Y,X, p) be a cover and Ind(Y,X, p) = (X,X •H, πX , ρX) be the induced partial
comodule. By definition, p : Y → X is a morphism of geometric partial comodules. Then,
by Lemma 3.3 there exists a unique H-colinear morphism p̃ : Y → YX such that εX ◦ p̃ = p,
where YX is the equalizer (6) in ComH . Now consider the following diagram

Y

p

��

(p⊗H)◦δY

��

p̃

��
YXεX

uu

κ
))

X
ρX ))

X ⊗H
πX
uuuu

X •H
��?
?

The outer square is a pushout square, because X is induced by Y . Since the upper part of
the diagram commutes, it follows easily that the inner square is also a pushout square and
hence YX is a globalization of X by Theorem 3.5. This shows that the functor Ind indeed
corestricts to the category of globalizable geometric partial comodules.

The functor Gl is obviously well-defined and the adjunction property follows easily from
the adjunction (J ,G) in Corollary 3.8. As any globalizable geometric partial comodule is
induced by its globalization, we have that (Ind ◦ Gl) (X) ∼= X, from which it follows that Gl
is fully faithful.

If X is a globalizable geometric partial comodule, then we know from Theorem 3.5 that
its globalization G(X) = YX is co-generated by X as a global comodule, that is, that the
cover Gl(X) is proper. Moreover, by the universal property (GL3) of the globalization YX ,
the proper cover Gl(X) is also minimal.

Finally, if (Y,X, p) is a minimal proper cover, then we know from the above that
Gl(X) = (YX , X, εX) is also a proper cover and moreover εX ◦ p̃ = p. Then the minimality
implies that p̃ is an isomorphism and hence (Y,X, p) and Gl(X) are isomorphic covers, from
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which we deduce that the restriction of the induction functor to minimal proper covers is
also fully faithful and so we have the required equivalence of categories. �

Remark 3.12. Observe that the functor Gl : gPComH
gl → CovHpr,min is always well-defined.

The original contribution of Theorem 3.11 is the fact that Ind : CovHpr,min → gPComH
gl is

well-defined, too.

3.3. Conclusions, examples and applications. We showed that there exists a general
procedure to compute the globalization of a geometric partial comodule, whenever this
globalization exists (Theorem 3.5). Our approach also provides an obstruction for its exis-
tence in certain categories, such as the category of (commutative) algebras. In forthcoming
papers [33, 34] we will show that globalization exists in many cases of interest such as
partial actions of monoids on sets, geometric partial coactions in abelian categories, partial
comodule algebras and partial (co)representations of Hopf algebras. Several globalization
theorems appearing in literature are hence subsumed as particular instances of our results.

To finish this paper, we provide some examples of explicit globalizations of (induced)
geometric partial comodules.

Example 3.13. Assume that we are in the situation of Example 2.9, that is, that we have a
surjective morphism of global comodules p : Y → X. As we have seen, the geometric partial
comodule structure induced on X by Y via p is the global one (X, δX). In addition, being
global, (X, δX) is already the absolute equalizer of (δX ⊗H,X ⊗∆) and so it follows that
the globalization of the induced geometric partial comodule structure is still the starting
global comodule structure.

Example 3.14. Consider G := (R,+, 0) and S := R. Then the action β : G × S →
S, (g, s) 7→ g + s, of G on S by translation can be seen as the action of an affine algebraic
group on an affine set. Consider V := {±1} = Z(X2 − 1) ⊆ R. Then we can look at the
restriction α of β to V as in Example 2.6. In this setting,
G • V = {(g, v) | v ∈ Vg−1} = {(0,±1), (2,−1), (−2, 1)} = Z(Z2 − 1, X2 + 2XZ) ⊆ R2

is an affine set as well and the diagram
V G× V

G • Vα

jj

⊆
44

is composed by polynomial maps, so that this provides an example of a “geometric partial
action”. Let us show that the globalization of this partial action gives back the whole line.

Passing to the ring of coordinates, we obtain a Hopf algebra H := R[X] (with X primitive)
and a geometric partial H-comodule structure on the algebra A := R[Z]/〈Z2 − 1〉 =: R[z]
which is given as follows. Set R[x, z] := R[X,Z]/〈Z2 − 1, X2 + 2XZ〉,

πA : R[X]⊗ R[z]→ R[x, z],
X ⊗ 1 7→ x

1⊗ z 7→ z
and ρA : R[z] 7→ R[x, z], z 7→ x+ z.

Then
A

ρA ((
H ⊗ A

πA
vvvv

H • A
is a geometric partial H-comodule structure on A in the category of affine algebras. Observe
that, since (A,H •A, πA, ρA) is an induced geometric partial comodule, the equalizer (YA, δ)
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of (6) is the globalization of A, by Theorem 3.5 and Theorem 3.11. Consider then the
equalizer YA of the pair (H ⊗ ρA, (H ⊗ πA)(∆⊗ A)). Since

(H ⊗ ρA)(X ⊗ 1) = X ⊗ 1,
(
(H ⊗ πA)(∆⊗ A)

)
(X ⊗ 1) = X ⊗ 1 + 1⊗ x,

(H ⊗ ρA)(1⊗ z) = 1⊗ x+ 1⊗ z,
(
(H ⊗ πA)(∆⊗ A)

)
(1⊗ z) = 1⊗ z,

it follows that X ⊗ 1 + 1⊗ z ∈ YA and we have a well-defined algebra map ψ : R[X]→ YA,
X 7→ X ⊗ 1 + 1⊗ z. It can be shown, with a bit of effort, that ψ is an isomorphism.

Example 3.15. Analogously to Example 3.14, consider G = SO(2,R) acting on R2 and
V = {a := (1, 0)} = Z(X − 1, Z). In this setting, G • V = {(I2, a)} together with the
inclusion G • V ⊆ G× V and the map G • V → V, (I2, a) 7→ a, gives a partial action of G
on V . By passing to the coordinate rings we find a geometric partial H-comodule structure
on R, where H = R[SO(2,R)]. Namely, the trivial geometric partial comodule structure

R H
εwwwwR

By Proposition 3.10, the equalizer YR is H, which corresponds to the unit circle in R2.
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[31] V. Maŕın, H. Pinedo, Partial groupoid actions on R-categories: globalization and the smash product. J.

Algebra Appl. 19 (2020), no. 5, 2050083, 22 pp.
[32] H.-E. Porst, On corings and comodules. Arch. Math. (Brno) 42 (2006), no. 4, 419-425.
[33] P. Saracco, J. Vercruysse, On the globalization for geometric partial (co)modules in the categories of

topological spaces and algebras (2021). To appear in Semigroup Forum. arXiv:2107.06574
[34] P. Saracco, J. Vercruysse, Geometric partial comodules over flat coalgebras in Abelian categories are

globalizable. Preprint (2021). arXiv:2107.07299
[35] M. Takeuchi, Morita theorems for categories of comodules. J. Fac. Sci., Univ. Tokyo, Sect. I A 24

(1977), 629-644.
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Département de Mathématique, Université Libre de Bruxelles, Boulevard du Triomphe,
B-1050 Brussels, Belgium.
URL: joost.vercruysse.web.ulb.be
Email address: joost.vercruysse@ulb.be

https://arxiv.org/abs/2107.06574
https://arxiv.org/abs/2107.07299
sites.google.com/view/paolo-saracco
paolo.saracco.web.ulb.be
joost.vercruysse.web.ulb.be

	1. Introduction
	2. Geometric partial comodules
	2.1. Preliminaries
	2.2. Making induction functorial: the category of global covers

	3. The globalization question
	3.1. Globalization for geometric partial comodules
	3.2. Globalization versus global covers
	3.3. Conclusions, examples and applications

	References

