
29 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Are complex causal models less likely to be true than simple ones? A critical comment on
Trafimow (2017)

Published version:

DOI:10.3758/s13428-020-01477-2

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1853348 since 2022-04-12T07:16:38Z



  
 

A Comment on Trafimow (2017) 1 

 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
Are Complex Causal Models Less Likely to Be True Than Simple Ones?  

A Critical Comment on Trafimow (2017) 
 
 
 
 

Marco Del Giudice 
 

University of New Mexico 
 
 
 
 
 
 

In press: Behavior Research Methods 
 
 
 
 

 
 
 
 
 

 
Marco Del Giudice, Department of Psychology, University of New Mexico.  
Address correspondence to Marco Del Giudice, Department of Psychology, University of New 
Mexico. Logan Hall, 2001 Redondo Dr. NE, Albuquerque, NM 87131, USA; email: 
marcodg@unm.edu  



  
 

A Comment on Trafimow (2017) 2 

 

 
Abstract 

 
Trafimow (2017) used probabilistic reasoning to argue that more complex causal models are less 
likely to be true than simpler ones, and that researchers should be skeptical of causal models 
involving more than a handful of variables (or even a single correlation coefficient) [Trafimow, 
D. (2017). The probability of simple versus complex causal models in causal analyses. Behavior 
Research Methods, 49, 739-746]. In this comment, I point out that Trafimow’s argument is 
misleading, and reduces to the observation that more informative models (that make definite 
statements about certain causal relations) are less likely to be true than less informative models 
(that remain silent about those relations, by omitting some variables from consideration). This 
correct but trivial statement does not deliver the epistemological leverage promised in the paper. 
When complexity is evaluated with reasonable criteria (such as the number of nonzero effects in 
alternative models involving the same variables), more complex models can be more, less, or 
equally likely to be true compared with simpler ones. I also discuss Trafimow’s claim that, if a 
model is unlikely to be true a priori, researchers will seldom be able to gather evidence of 
sufficient quality to support it; in practice, even low-probability models can receive strong 
support without the need for extraordinary evidence. Researchers should evaluate the plausibility 
of causal models on a case-by-case basis, and be skeptical of overblown claims about the dangers 
of complex theories. 

 
Keywords: Causal models; epistemology; likelihood ratio; Occam’s razor; probability. 
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In “The probability of simple versus complex causal models in causal analyses”, 
Trafimow (2017) used probabilistic reasoning to argue that “a simple causal model based on a 
single correlation coefficient is more likely to be true than a complex causal model based on 
several correlation coefficients” (p. 743). The author wondered: “given that a simple causal 
model is much more likely to be true than is a complex one, why do journal editors and 
reviewers favor complexity?” (p. 743). After suggesting that the answer may lie in the cognitive 
limitations and biases of scientists (e.g., the conjunction fallacy), he concluded that, to be 
rational, “researchers should be more open to simple causal models based on a single correlation 
coefficient or they should be less open to complex causal models based on many correlation 
coefficients” (p. 745; emphasis in the original).  

 
Even if a given model is unlikely to be true a priori, the evidence in its favor can be so 

strong that it leads to a high posterior probability. Trafimow (2017) considered this Bayesian 
argument, but noted that the likelihood ratios required to overturn unfavorable prior probabilities 
can be large. For example, a model with a 25% prior probability of being true would require a 
likelihood ratio (LR) of 3 to reach a posterior ratio of 1 (the “point of indifference”), and a LR of 
30 to yield a posterior ratio of 10 (an often-used conventional threshold for “strong support”). 
The author argued that researchers will generally be unable to collect sufficient evidence to meet 
this threshold: “although this may be possible, collecting data of such quality constitutes a 
difficult challenge for researchers to overcome” (p. 745). More recently, Saylors and Trafimow 
(2020) built on this argument to make the startling claim that, since most published causal 
analyses involve more than a handful of variables, “much of the knowledge generated in top 
journals is likely false” (p. 1). These authors also provided an online calculator that computes the 
maximum a priori probability that a given causal model is true, based on the number of variables 
involved (https://practiceoftheory.weebly.com/a-causal-models-probability-of-being-true.html). 

 
On the surface, this is a seductive argument. It appears to formalize Occam’s razor in the 

domain of causal models, and promises to yield tremendous leverage based on nothing more than 
basic laws of probability. But a closer look shows that the argument is much weaker than it 
appears—in fact, so weak as to be effectively useless. 

 
The crucial flaw lies in Trafimow’s notion of model complexity, which he defines as the 

number of variables (and corresponding number of correlations) involved in a causal model. As a 
result, the paper does not prove the interesting point that simpler models are more likely to be 
true, but only the trivial point that less informative models are more likely to be true, owing to 
the fact that they say nothing at all about certain variables and causal relations. Consider the toy 
example presented in the paper, in which the model A ® B is compared with the model A ® B 
® C and found more likely to be true (except in special cases). Importantly, the former model 
does not imply that A and C are causally unrelated, but instead leaves the question entirely open. 
If for example A = drinking coffee, B = focused attention, and C = learning, the A ® B ® C 
model implies that drinking coffee affects attention, which in turn affects learning. In contrast, 
the A ® B model implies that drinking coffee affects attention, which in turn may or may not 
affect learning. By any reasonable standard, this is not just a “simpler” account of the same 
phenomenon; instead, the A ® B model remains agnostic about the effects of coffee and 
attention on learning. Because it makes fewer definite claims about reality, this model is less 
informative than the A ® B ® C model. 
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The fact that less informative models are a priori more probable is obviously true—but 
not very useful as an epistemological tool. Consider the A ® B ® C hypothesis that drug A kills 
pathogen B, and as a result cures disease C. Naturally, this hypothesis is less likely to be true 
than the alternative A ® B hypothesis that drug A kills pathogen B, which may or may not cure 
disease C; not because the latter is “simpler”, but because it remains silent about some 
(important) causal relations. The same goes for the B ® C hypothesis that killing pathogen B 
cures disease C, while drug A may or may not kill the pathogen. Researchers trying to find a cure 
for the disease may be excused if they prefer to test the more informative model, despite its 
lower probability. 

 
When researchers evaluate alternative accounts of a phenomenon, they are typically 

interested in models that involve the same variables, and hence are equally informative about the 
presence vs. absence of relations among those variables. Model complexity can then be 
evaluated based on features such as the number of free parameters to estimate from the data. In 
typical applications, each additional nonzero effect (i.e., an arrow in the causal diagram) 
corresponds to an additional free parameter, which makes the number of effects a reasonable 
index of complexity. Consider the three causal models shown in Figure 1. In Model 1, A has a 
direct effect on C, while B is unrelated to both A and C. In Model 2, the effect of A on C is fully 
mediated by B. In model 3, A affects C both directly and via the mediating effect of B. The three 
models involve the same variables, but Model 2 is more complex than Model 1, and Model 3 is 
more complex than Model 2. Also note that both Model 1 and model 2 are nested within Model 
3. This is relevant because Trafimow (2017) specified that his argument applies unambiguously 
only to cases in which the more complex model “subsumes” the simpler one (p. 744). 

 
 
 

 
 

Figure 1. Three causal models of increasing complexity involving the same variables. 
 
 

 
Following the notation in Trafimow (2017), 𝜋! is the probability that A ® B, i.e., there is 

a nonzero causal relation between A and B and the effect runs in the hypothesized direction 
(from A to B); whereas (1 − 𝜋!) is the probability that there is no direct causal relation between 
A and B (Trafimow, 2017, p. 740). Thus, the example implicitly assumes that the direction of the 
effect (if it exists) is always correctly specified. For the sake of simplicity, in the following I 
make the same assumption as it does not change the substance of my critique. The other 
probabilities are 𝜋" (the probability that B ® C) and 𝜋# (the probability that A ® C). Assuming 
independence, the probability of Model 1 is (1 − 𝜋!)(1 − 𝜋")𝜋#; the probability of Model 2 is 
𝜋!𝜋"(1 − 𝜋#); and the probability of Model 3 is  𝜋!𝜋"𝜋#. It is easy to verify that, depending on 
the values of 𝜋!, 𝜋", and 𝜋#, any of the three models can become the most probable in the set. 
For example, Model 1 is the most probable for 𝜋! = 𝜋" = .40 and 𝜋# = .50, but Model 2 becomes 
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the most probable if 𝜋! = 𝜋" =	.40 and 𝜋# = .20. Crucially, there are many reasonable 
combinations of values that make Model 3 (i.e., the most complex model) more likely to be true 
than both Model 1 and Model 2. For example, consider the case in which 𝜋! = .60 and 𝜋" =  𝜋# = 
.70. Then Model 3 is the most probable (29%), followed by Model 2 (13%) and Model 1 (8%).  

 
In sum: when complexity is evaluated with reasonable criteria, more complex models can 

be more, less, or equally likely to be true compared with simpler models. Trafimow’s argument 
only applies when informative models that make definite statements about certain variables and 
causal relations are pitted against less models that exclude those variables from consideration. As 
I illustrated earlier, this is not helpful if the goal is to figure out the causal structure of the world. 
The reductio that researchers should prefer models involving just two variables and “a single 
correlation coefficient” brings about additional problems; notably, it becomes impossible to 
control for the distorting effect of confounders (see Kline, 2016; Pearl et al., 2016).  

 
But even if the complexity of a causal model is not a reliable guide to its plausibility, it 

may still be the case that one’s theoretical model—however simple or complex—has a low 
probability of being true a priori. What should one make, then, of Trafimow’s claim that 
researchers will seldom be able to gather enough evidence to turn an unlikely model into a well-
supported one? This assertion rests on a failure to appreciate that likelihood ratios relate to effect 
size and sample size in a highly nonlinear fashion. In the original paper, Trafimow (2017) 
seemed to imply that a LR of 50 is often prohibitively hard to obtain: “To take the worst-case 
scenario illustrated in Fig. 2 […] even an LR of 30 will be insufficient to instill confidence in the 
model (the required LR is 50!)” (p. 745). Similarly, Saylors and Trafimow (2020) considered a 
range of LR values from 10 to a maximum of 30, while claiming that even a LR of 10 “can be 
argued to overstate the quality of most data” (p. 9).  

 
These statements are puzzling because, in practice, it is easy to obtain likelihood ratios 

higher than 10 or 50—even by several orders of magnitude. To illustrate, the statistical package 
JASP (JASP Team, 2019) can be used to calculate the marginal likelihood ratio (or Bayes factor) 
for a single correlation coefficient, by pitting the hypothesis that two variables are correlated 
(with default priors on the size of the effect) against the hypothesis that the correlation is zero. 
With a sample size of N = 200, a sample correlation of r = .25 yields a marginal LR of about 50 
in favor of the effect. With N = 200 and r = .30, the ratio increases to about 1,000. With N = 200 
and r = .40 (hardly exceptional evidence), it exceeds two million. Note that, using a posterior 
ratio of 10 as a conventional cutoff, a LR of 1,000 would provide strong support for models with 
a prior probability of just about 1%. A LR of one million would support models with prior 
probabilities as low as 0.001%.  

 
Causal models are usually not tested piecemeal (e.g., one correlation at a time), but 

compared with one another based on their global ability to account for the data. A common 
approach is to employ information criteria such as the AIC (Akaike information criterion) and 
BIC (Bayesian information criterion). If ∆ is the absolute difference between the AIC or BIC 
statistics of two models, 𝑒∆/" approximates a Bayes factor that compares them (note that AIC 
and BIC imply different kinds of priors; see Weakliem, 2016). Thus, ∆ = 5 corresponds to a 
marginal LR of about 12 in favor of the best-performing model; ∆ = 15 corresponds to a ratio of 
about 1,800; and ∆ = 30 (far from an exceptionally large difference) corresponds to a ratio of 
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over three million. Of course, convincingly testing alternative causal models of a phenomenon is 
an arduous task that cannot be reduced to a single statistic, and typically requires the use of 
multiple methods and study designs (see e.g., Kline, 2016; Pearl et al., 2016; Wiedermann & von 
Eye, 2016). The point of these examples is that even models with very low probability can 
receive considerable support, without the need to collect implausible amounts of evidence. 

 
To conclude, Trafimow’s argument does not deliver the epistemological leverage 

promised in the paper. When complexity is evaluated with reasonable criteria, more complex 
models of a phenomenon can be more, less, or equally likely to be true compared with simpler 
models. Instead, one is left with the correct but trivial observation that less informative models 
are more likely to be true than more informative ones. And while interesting theories are often 
unlikely a priori, it can be relatively easy to obtain enough data to support or disconfirm them, 
without the need for extraordinary evidence. Because Trafimow’s argument is meant as a general 
heuristic in favor of simple causal models, I leave aside the deeper issue of whether researchers 
should be concerned with the literal truth of a model or merely with its verisimilitude, 
particularly in the “softer” disciplines (see e.g., Meehl & Waller, 2002). 

 
To be clear, I am not saying that theories and modeling practices in the behavioral 

sciences are just fine as they are. The proliferation of overly complex, poorly justified, and 
weakly supported models in the literature is definitely a concern (see Saylors & Trafimow, 
2020). Parsimony is important, and explanatory theories should not be more complex than they 
need to be to adequately explain the phenomenon at hand; but the plausibility of any given causal 
model can only be evaluated on a case-by-case basis. While simple theories are desirable all else 
being equal, reality is the ultimate arbiter. A survey of successful theories across disciplines 
would reveal many cases of genuine, intricate complexity; human behavior is hardly going to be 
an exception. If the ultimate goal is to improve the quality of our science, telling researchers that 
sophisticated theories “pose a major danger to truth” just because of their complexity (Saylors & 
Trafimow, 2020) may do more harm than good. 

 
References 

 
JASP Team (2019). JASP (Version 0.11). https://jasp-stats.org/  
Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed). Guilford. 
Meehl, P. E., & Waller, N. G. (2002). The path analysis controversy: A new statistical approach 

to strong appraisal of verisimilitude. Psychological Methods, 7, 283-300. 
https://doi.org/10.1037/1082-989X.7.3.283  

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley. 
Saylors, R., & Trafimow, D. (2020). Why the increasing use of complex causal models is a 

problem: On the danger sophisticated theoretical narratives pose to truth. Organizational 
Research Methods, 1094428119893452. https://doi.org/10.1177/1094428119893452  

Trafimow, D. (2017). The probability of simple versus complex causal models in causal 
analyses. Behavior Research Methods, 49, 739-746. https://doi.org/10.3758/s13428-016-
0731-3  

Weakliem, D. L. (2016). Hypothesis testing and model selection in the social sciences. Guilford. 
Wiedermann, W., & Von Eye, A. (2016). Statistics and causality. Wiley. 


