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Abstract

We analyze the role of disease containment policy in the form of treatment in a stochas-
tic economic-epidemiological framework in which the probability of the occurrence of ran-
dom shocks is state dependent, namely it is related to the level of disease prevalence.
Random shocks are associated with the diffusion of a new strain of the disease which af-
fects both the number of infectives and the growth rate of infection, and the probability of
such shocks realization may be either increasing or decreasing in the number of infectives.
We determine the optimal policy and the steady state of such a stochastic framework,
which is characterized by an invariant measure supported on strictly positive prevalence
levels, suggesting that complete eradication is never a possible long run outcome where
instead endemicity will prevail. Our results show that: (i) independently of the features
of the state-dependent probabilities, treatment allows to shift leftward the support of the
invariant measure; and (ii) the features of the state-dependent probabilities affect the
shape and spread of the distribution of disease prevalence over its support, allowing for
a steady state outcome characterized by a distribution alternatively highly concentrated
over low prevalence levels or more spread out over a larger range of prevalence (possibly
higher) levels.

Keywords: Economic Epidemiology, Invariant Distribution, Optimal Policy, State-Dependent
Probability
JEL Classification: C60. H50, 110

1 Introduction

Infectious diseases have historically played a major role in shaping the prospects of economic de-
velopment both in industrialized and developing countries through a variety of microeconomic



and macroeconomic channels (Acemoglu and Johnson, 2007; Lopez et al., 2006; Boucekkine
et al., 2009; Adda, 2016; Bloom et al., 2022). The ongoing COVID-19 pandemics has shown
more clearly than ever that understanding how to contain the spread of communicable diseases
is essential not only to protect human lives but also to preserve economic prosperity (World
Bank, 2020; McKee and Stuckler, 2020). The economic epidemiology literature has extensively
discussed the role of disease containment policies, mainly in the form of pharmaceutical in-
terventions (generally classified as either preventive or treatment measures), in both limiting
the spread of epidemic diseases (Philipson, 2000; Goldman and Lightwood, 2002; Gersovitz
and Hammer, 2004; Anderson et al, 2010) and supporting economic activity (Goenka and Liu,
2012, 2019; Goenka et al., 2014; La Torre et al., 2020). The issue has been become even more
popular following the COVID-19 outbreak, when a huge and growing number of works has
analyzed from a normative perspective the optimal policy response to balance the economic
and health trade-off involved in non-pharmaceutical interventions, such as social distancing,
lockdowns and travel bans (Acemoglu et al., 2021; Alvarez et al., 2021; La Torre et al., 2021;
Eichenbaum et al., 2021). Despite the high level of uncertainty associated with epidemic dy-
namics most of the studies have assumed that disease spreading is entirely deterministic, and
very limited are those exploring the implications of stochasticity on the determination of the
optimal containment policy (Federico and Ferrari, 2021; Hong et al., 2021; Shevchenko et al.,
2021). Federico and Ferrari (2021) analyze how randomness in the disease transmission rate
as well as in the time horizon impact policymakers’ optimal response. Hong et al. (2021)
shows that accounting for stochasticity in disease transmission yields richer optimal mitigation
strategies than those derived in deterministic contexts. Shevchenko et al. (2021) discuss how
stochastic epidemic shocks affect economic and environmental conditions analyzing their im-
pact on optimal climate change policies. In all these works the probability of shocks affecting
disease spreading is constant and thus completely independent of the level of disease preva-
lence. This is a strong simplification of reality where prevalence determines the likelihood of
epidemic-related shocks by influencing disease incidence and individuals’ behavioral responses.
Our paper tries contributing to this scant literature by exploring how the optimal containment
policy is related to stochastic shocks under state-dependent probabilities, that is the proba-
bility of shock realization depends on disease prevalence. State-dependent probabilities are a
straightforward generalization of constant probabilities which allow to account for the mutual
relation between epidemic shocks and epidemic dynamics.

Specifically, we develop a stylized economic-epidemiological framework in which the social
planner needs to choose the optimal mitigation policy to limit the spread of an infectious dis-
ease by determining the intensity of treatment measures, accounting for the effects of stochastic
shocks. Random shocks are associated with the diffusion of a new strain of the disease, which
affects disease prevalence both additively (by increasing the number of infectives) and multi-
plicatively (by modifying the growth rate of infection), and the probability of shocks realiza-
tion is state-dependent. In particular, we allow the shocks probability to be either increasing
or decreasing in the number of infectives to account for the eventual presence or absence of
individuals’ behavioral changes in an attempt to reduce their disease exposure, respectively.
Such two alternative setups may be well suited to describe individuals’ response to different
types of infections (common diseases vs. potentially deadly diseases), and thus allow us to
characterize from a normative perspective how the optimal policy may change according to the
specific features of the epidemic threat. In this context we explicitly derive the optimal policy
by solving in closed-form the Bellman equation associated with our stochastic framework with
state-dependent probabilities. This allows us to analyze its stochastic steady state which is
represented by an invariant distribution of disease prevalence, with support on strictly positive



values meaning that complete eradication is never a possible outcome. We also characterize
how the properties of the invariant distributions are related to the characteristics (in terms
of monotonicity and steepness) of the probability function. We derive two interesting sets of
conclusions. First, the optimal policy is independent of the features of the state-dependent
probabilities, and independently of them treatment allows to shift leftward the support of the
invariant measure. This suggests that the disease containment efforts are effective in reducing
the possible endemic prevalence levels associated with the steady state outcome. Second, the
features of the state-dependent probabilities do matter as they affect the distribution of disease
prevalence (in particular its shape and spread) over its support. In particular, their mono-
tonicity property determines the shape of the invariant distribution: whenever the probability
function is decreasing the steady state outcome is characterized by a skewed distribution highly
concentrated over extremely low or high prevalence levels, while whenever it is increasing the
disease outcome is associated with epidemic waves giving rise to a distribution more evenly
spread out over a large range of prevalence (possibly higher) levels. The steepness property
of the state-dependent probabilities instead determines where most of the mass is concen-
trated, that is whether the probability of low prevalence levels is higher or lower; however,
the likelihood of low prevalence depends in a nontrivial way on the interactions between the
monotonic and steepness characteristics of the state-dependent probability function. Moreover,
we present a new result, more general than those discussed in extant literature (Mitra et al.,
2003; Shmerkin, 2014), determining sufficient conditions for the invariant measure to be either
singular or absolutely continuous with respect to the Lebesgue measure, showing that this ul-
timately depends on the relative magnitude of the net infectivity rate and the weight attached
to potential infections in the objective function.

By introducing state-dependent probabilities in the determination of the optimal disease
containment policy, our paper makes some interesting contributions in two different branches
of the literature. With respect to the economic epidemiology literature (Goldman and Light-
wood, 2002; Gersovitz and Hammer, 2004; Goenka et al., 2014; La Torre et al., 2020) which
discusses that the economy may converge to a situation of eradication or endemicity according
to the effectiveness of disease containment policies, we show that complete eradication is not
possible and the steady state outcome is represented by an endemic state in which the distri-
bution of disease prevalence may be more or less concentrated around lower or higher levels
according to the characteristics of the shock probabilities. Methodologically, instead, we rely
on the theory of iterated function systems with state-dependent probabilities to characterize
the long run properties of the dynamic system associated with our economic-epidemiological
framework. Iterated function systems (IFS) with constant probabilities have been extensively
employed in economic applications to characterize the fractal properties of the steady state
in stochastic optimal growth models (Montrucchio and Privileggi, 1999; Mitra et al., 2003;
Mitra and Privileggi, 2009; La Torre et al., 2015), while iterated function systems with state-
dependent probabilities (IFSSDP) have been frequently employed only in the mathematics
literature (Barnsley et al., 1985; Stenflo, 2002) and only seldom in economics (La Torre et al.,
2019). Different from La Torre et al. (2019) who analyze how state-dependent probabilities
affect the long run outcome in a purely dynamic context, we determine their implications on the
optimal policy in a normative framework where the social planner specifically accounts for the
role of state-dependent probabilities in its policy decisions. To the best of our knowledge, ours is
the first attempt to address a stochastic dynamic optimization problem under state-dependent
probabilities in economics.

The paper proceeds as follows. Section 2 reviews some concepts on the IFS theory and it
focuses in particular on the theory of IFSSDP. Section 3 introduces our stochastic epidemiolog-



ical framework where random shocks associated with the diffusion of a new disease strain occur
with state-dependent probabilities. Section 4 introduces our economic framework in which the
social planner determines the optimal treatment policy accounting for the state-dependency of
such probabilities. Section 5 explicitly derives the optimal solution discussing the role of the
optimal policy in determining the steady state outcome and the role of state-dependent proba-
bilities. Section 6 discusses the characteristics of the invariant measure in terms of singularity
vs absolute continuity. Section 7 as usual presents concluding remarks and highlights directions
for future research. All the proofs of our main results are presented in appendix A.

2 Iterated Function Systems

We now review some basic concepts and the main results in the theory of Iterated Function
Systems (IFSs) with constant and state-dependent probabilities. The notion of IFS was firstly
introduced by Barnsley et al. (1990) and Hutchinson (1981) and then extended in different
contexts (see Kunze et al., 2012, and the references therein).

Given a compact metric space (X,d), an N-map [terated Function System (IFS) on X,
w = {wy,...,wy}, is a set of N contraction mappings on X, i.e., w; : X — X, i=1,..., N,
with contraction factors ¢; € [0,1). It can be proved that under these assumptions the following
set-valued mapping w defined on the space H (X) of nonempty compact subsets of X:

=Jw(S), SeH(X).

is a contraction on the complete metric space H (X) endowed with the classical Hausdorff
distance h defined as:

h (A, B) = max {sup inf d (z,y),sup inf d (z, y)}

reAYEB reBYEA

This result implies the existence and uniqueness of a fixed point A such that w(A) = A.
Moreover, A is self-similar, that is, it is the union of distorted copies of itself and it is also
attracting, that is, for any B € H (X), h (A, w'B) — 0 as t — oc.

An N-map iterated function system with (constant) probabilities (w,p) is an N-map IFS w
with associated probabilities p = {p1,...,pn}, Zf\;l p; = 1. It can be proved that the Markov
operator defined by v(S) = (Mp)(S):

v (S) = (Mp) (8) = > _pap (wi"

is a contraction mapping on the space M (X) composed by all probability measures on (Borel
subsets of) X with respect to the Monge-Kantorovich distance defined as follows: For any pair
of probability measures u, v € M (X), we have

dur (p,v) = sup [/fdu /de},
feLip1(X)

where Lipy (X)) ={f: X =R :|f(x)— f(y)] <d(x,y)}. These assumptions imply the exis-
tence of a unique attracting measure g € M (X).



The family of IFS with state-dependent probabilities extends the above definitions. Within
this framework, the probabilities p; are no longer constant but they are are state-dependent,
i.e., p; : X — [0, 1] such that:

N
Zpi (x) =1, for all z € X. (1)

=1

The result is an N-map IFS with state-dependent probabilities (IFSSDP). The Markov op-
erator M : M (X) — M (X) associated with an N-map IFSSDP, (w, p), is defined as:

v =Mp©) =3 [ @), ®)

where € M(X) and S C X is a Borel set.

Theorem 1 (La Torre et al., 2018a) Given M as defined in equation (2), then M maps
M (X)) to itself. In other words, if p € M (X), thenv = Mp e M (X).

Under appropriate conditions, the above Markov operator can be contractive with respect
to the Monge-Kantorovich metric.

Theorem 2 (La Torre et al., 2018a) Let (X,d) be a compact metric space and (w,p) an
N-map IFSSDP with IFS maps w; : X — X with contraction factors ¢; € [0,1). Furthermore,
assume that the probabilities p; : X — R are Lipschitz functions, with Lipschitz constants
K; > 0. Let M : M(X) — M (X) be the Markov operator associated with this IFSSDP, as
defined in (2). Then for any u,v € M (X),

Ay (Mp, Mv) < (¢+ KDN) dpyg (1, v)
where ¢ = max; ¢;, K = max; K; and D = diam (X) < oco.

Theorem 3 (La Torre et al., 2018a) Under the same assumptions as in the above Theo-
rem, if c + KDN < 1 then the Markov operator M has a unique fized point p in M (X).
Furthermore, for any v € M (X), the orbit M™v converges to j in dyx when n — 400.

We now describe the so-called Chaos Game for an IFS with probabilities. Start with xy € X,
and define the sequence x; € X by:

Ti41 = Wey (ﬁt) )

where o, € {1,2,..., N} is chosen according to the probabilities p; (x;) (that is, P loy =i| =
pi (z:)). We note that the sequence (z;) is a Markov chain with values in X. The following
theorem (from results in Elton, 1987; and Barnsley et al., 1988) gives conditions as to when
an [FSSDP has a unique stationary distribution x and the Chaos Game “converges” to u in a
distributional sense.

Theorem 4 (Elton, 1987; Barnsley et al., 1988) Suppose that there is a § > 0 so that
pi(x) >0 forallx € X andi =1,2,...,N and suppose further that the moduli of continuity
of the p;s satisfy Dini’s condition (see Elton, 1987; and Barnsley et al., 1988). Then there is
a unique stationary distribution i for the Markov operator. Furthermore, for each continuous

function f: X — R,
Y s = [ f@ dn), ®)



Theorem 4 can be used to show the following result.

Corollary 1 Suppose that the IFSSDP {w,p;} satisfies the hypothesis of Theorem 4. Then the
support of the invariant measure fi of the N-map IFSSDP (w,p) is the attractor A of the IFS
w, i.€.,

supp it = A.

Therefore the invariant measure p satisfies the following equation

&= [ wanw. ()

for any subset S of X. This equation shows how the invariant measure can be obtained by
combining different distorted copies of itself. This justifies why the invariant measure is a self-
similar object. These basic concepts related to the theory of IFSSDP will be useful to derive
the steady state equilibrium and understand its characteristics in our economic-epidemiological
model.

3 The Epidemiological Model

We start discussing the epidemiological context abstracting completely from containment poli-
cies in order to clarify our setup and the role of state-dependent probabilities. We develop a
very simple framework to characterize the spread of a communicable disease, which may be
either a common disease (i.e., the seasonal flu, the common cold) or a potentially deadly in-
fection (i.e., SARS, COVID-19). Different from traditional epidemiological setups in which the
interactions between different population groups (i.e., susceptibles and infectives) drive the epi-
demic dynamics, we focus only on the determinants of disease prevalence. In such a simplistic
context we account for the uncertainty associated with infection diffusion by considering the
role played by the arise of a new disease strain and by endogeneizing the likelihood with which
random shocks occur assuming that the their probability is state dependent.

The population size, which is constant and normalized to unity without loss of generality,
N = 1, is composed by healthy individuals who are susceptible to the disease, S, and the
infectives who have already contracted the disease and can transmit it by getting in contact
with susceptibles, I;, thus at any moment in time we have that 1 = S; + I;. We assume that
the disease dynamics is described by the following equation:

I = Qzdy + 2, (5)

where € > 0 measures the net infectivity rate (i.e., the infectivity rate net of the recovery
rate) and z; denotes random shocks that can take one of the two values, r; or ry, such that
0 <71 < r9. The equation above states that the dynamics of disease prevalence depends on the
biological features of the disease (€2) and the realization of random shocks (z;). Biological factors
combined with the disease prevalence determine the disease incidence €2[; which characterizes
the pace of disease diffusion in the presence of only one strain of the disease. The random shock
term captures the twofold impact of a new disease strain on the evolution of the disease. (i) A
new strain is discovered when an individual is found to be infected with a genetic variant of the
microorganism (i.e., a virus or bacterium) causing the infectious disease. Thus, the diffusion of
a new strain gives rise to some new infections not related to the single-strain disease incidence,
captured by the additive term +z;. (ii) A new strain is characterized by different infectivity



and recovery rates with respect to the original strain of the disease, such that the biological
disease parameters change from one strain to the next. Thus, with the origin of a new strain
the average biological parameters of the disease between strains change, such that the net
infectivity rate may become higher or lower following the discovery of a new strain, captured
by the multiplicative term Qz,I;.

The probability of the realization of such random shocks is not constant but state dependent,
that is it depends on the level of disease prevalence p(I;). Specifically, {z},-, is a Bernoulli
process such that at each date ¢:

o with probability p (I;) (6)
= ry,  with probability 1 —p (I;) ’

where either p’ < 0, that is the probability that the smaller shock value, 1, (larger shock value
o) is decreasing (increasing) in the number of infectives, or p’ > 0, that is the probability that
the smaller shock value, ry, (larger shock value r5) is increasing (decreasing) in the number of
infectives. The former case represents a situation in which individuals do not automatically
implement behavioral changes in response to increases in disease prevalence, and this in turn
expands the spread of the disease and thus also the eventual diffusion of a new strain. The latter
case instead describes a situation in which individuals do automatically implement behavioral
changes in response to increases in disease prevalence by reducing their possible exposure to
the disease and this in turn limits the spread of the disease and thus also the likelihood of
diffusion of a new strain. We believe that both scenarios are realistic conceptualizations of how
a disease may spread following individuals’ behavioral response, because such a response may
largely depend on the biological features of specific diseases. For example, when dealing with
common diseases (such as the seasonal flu) individuals rarely implement behavioral changes to
limit their exposure thus the p’ < 0 case may apply, while when dealing with potentially deadly
diseases (such as COVID-19) behavioral changes may become predominant thus the p’ > 0
case may apply instead. In the following we shall consider both scenarios and analyze how the
features of the probability function p(-) may affect our conclusions.

Equation (5) describes the evolution of disease prevalence based on the idea that there
exists some universality in the features of epidemic dynamics independently of the specific epi-
demiological model underlying disease spreading (i.e., SI, SIS, SIR, SIRS...). A similar setup is
frequently used in empirical applications to perform estimation and forecasting of the evolution
of the number of infectives without specifying a particular epidemiological model (Zakharov et
al., 2020; Remuzzi and Remuzzi, 2020), and also in epidemiological studies to describe infec-
tion dynamics in early stages of an epidemic when the number of infectives is relatively small
compared to the susceptible population (Chowell et al., 2016; Ma, 2020). Basically, the net
infectivity rate determines the growth factor of infection and if this is large enough disease
prevalence will tend to increase over time, while if it is small prevalence will tend to decrease.
By affecting the magnitude of such a growth factor, the state dependency of shocks realization
may give rise to periods of positive and negative prevalence growth, resulting eventually in the
occurrence of different disease waves. Specifically, in the p’ > 0 case when prevalence is low
the probability of the larger shock value is high and this tends to increase prevalence giving
rise to an expansionary period of infection, but as prevalence increases also the probability of
the smaller shock value rises and this tends to lower prevalence giving rise to a contractionary
period of infection. Overall, periods of growing and shrinking prevalence may alternate one
another over time characterizing multiple epidemic waves. In the p’ < 0 case instead when
prevalence is low the probability of the larger shock value is low and this tends to decrease
prevalence giving rise to a contractionary period of infection, deterring the possibility of fast



infection growth. Overall, periods of shrinking (or growing) prevalence may tend to persist over
time characterizing monotonic epidemic dynamics. Note that if the probability of shocks were
constant (i.e., p’ = 0) such alternative outcomes would not be possible because the evolution
of infection would resemble a random walk.

Despite the simplicity of (5) in describing epidemic dynamics, we believe that its ability
to characterize endogenously the occurrence of periods characterized by monotonic epidemic
dynamics or by multiple epidemic waves makes it a good benchmark to understand the working
mechanisms of disease containment policies. Indeed, traditional mathematical epidemiological
models cannot account endogenously for such alternative outcomes, as they are generally char-
acterized by monotonic epidemic dynamics in which there is no room for multiple waves, and
in order to explain alternate periods of growing and shrinking infections they usually rely on
ad-hoc assumptions, such as the exogenous introduction of a periodic term to capture some
cyclicality in disease transmission (Grassly and Fraser, 2006; Jodar et al., 2008). Thus, the abil-
ity of our setup to describe within the same stylized framework monotonic epidemic dynamics
and multiple epidemic waves, whose alternative occurrence depends on the specific features of
the probability function, represents a novel approach to conceptualize disease spreading which
may help us to better understand the role of containment policies in limiting the spread of in-
fectious diseases. In particular we wish to clarify how the characteristics of the state dependent
probability function impacts epidemic dynamics and policymakers’ optimal policy response.

A central role in our analysis needs thus to be placed on the features of the state dependent
probabilities. In this context, note that as the number of infectives I; in each period ¢ must
lie in the interval [0, 1], also the state-dependent probabilities have the same domain, that is,
p:[0,1] — [0,1]. In order to analyze explicitly the role of state dependent probabilities, we
introduce the following hyperbolic forms for p(-), defined for I € [0, 1]:

p(_f):#+1 and 1—p(]):1—#+1, or (7)
(8)

a a
p () Brr+1 ™ r()=gp1

where 0 < a < 1 and B > 0 are parameters. Note that, because 0 < a < 1, p(/) and
1 —p(I) according to (7) actually have values in [BLH, a] € (0,1 and [1 —a,1— BLH] C[0,1)
respectively, while p (1) and 1 — p(I) according to (8) have values in [1 —a,1— BLH} C [0,1)
and [BLH,CL] C (0, 1] respectively. Moreover, p(I) in (7) is such that p’ (I) < 0, so that the
probability of the smaller shock value, r; (larger shock value, r5) is decreasing (increasing) in
the number of infectives; conversely, p (/) in (8) is such that p’ (I) > 0, so that the probability
of the smaller shock value, r (larger shock value, r5), is increasing (decreasing) in the number
of infectives. Therefore, (7) defines two (Lipschitz) continuous state-dependent probability
functions satisfying 0 < p(/) < land 0 < 1—p(I) < 1forall 0 < I < 1, and (8) defines
two (Lipschitz) continuous state-dependent probability functions satisfying 0 < p (/) < 1 and
0<1—p)<1forall 0 <I<1. We shall see in the following that the dynamics of I, will
always remain trapped in a proper sub-interval of [0, 1], so that the values of both p (I) and
1 — p(I) will always be bounded away from 0 and 1, as required by Theorem 4 and Corollary
1 to establish the existence and uniqueness of the invariant measure.
The dynamics in (5) can be rewritten in terms of the following IFSSDP:

riQ + 1y with probability p (1)
Ty = 9)

ol + 19 with probability 1 — p (1),

which can be analyzed through the tools described in the previous Section 2, which ensure the
existence of a unique stationary distribution g for such an IFSSDP supported on the interval

8



[I5%, I5'] C [0,1], where the endpoints are the steady states of the two affine maps in (9)

respectively:
st __ 71 st T2

1—]_—7”19 2—1—7”29.
In order to keep the dynamics of I; defined by IFSSDP (9) inside the interval [0, 1] and rule out
the trivial case r; = 0, the steady states of the above maps must satisfy the following parameter
condition:

and

(10)

0<rm <ry < . (11)
T T .
)

Note that (11) imposes an upper limit to the larger shock value, which turns out to be strictly
lower than unity because €2 > 0. Indeed, under both the larger and smaller shock values, the
diffusion of a new disease strain decreases the growth rate of infection, which in turn ensures
that the dynamics in (9) remains trapped in a subset of [0,1]. Note that, since the smaller
shock value needs to be strictly larger than zero, the steady states of the maps in (10), which
determines the left endpoint of the support of the invariant measure, do not include I = 0,
which suggests that full eradication will never be possible. Since the diffusion of new disease
strains affects additively epidemic dynamics, some new infectives will always be adding to the
existing stock of infectives precluding the possibility for full eradication.

It is also interesting to note that the characteristics of the probability function do not affect
the support of the invariant measure, but they may affect the distribution of disease prevalence
over its support. Unfortunately, characterizing this explicitly is not possible thus in the following
we shall present some numerical example to illustrate the implications of different shapes of
the probability function on the steady state distribution of disease prevalence. Specifically, we
shall numerically approximate the time evolution of a given probability density according to the
affine IFSSDP (9). To this purpose, we apply a Maple algorithm! that approximates successive
iterations of the Markov operator (2) associated with the IFSSDP which is based on Algorithm
1 in La Torre et al. (2019), in order to have a qualitative idea on what the limiting invariant
measure may look like. In the following numerical examples, we assume that the initial density
is uniform and given by po (1) = IQSTIIIS“ and we set the parameter values arbitrarily as follows:

1 r 1

Q:2, T2ZQ——|—1:§7 7"1:52:67 (12)
while we consider the two alternative values B = {3.571,14.286} in order to perform some
comparative dynamics and to allow comparability with what we will present later when we
determine the optimal disease containment policy. Indeed, as it will become clearer in section
5, our goal is to obtain a closed-form solution for a planning problem and for this to be possible
some parameter restrictions are required, and in particular the constant B needs to take on one
of the specific values we have considered in our parametrization. Figure 1 plots probabilities
p(I) (left panels) and 1 — p (1) (right panels) defined as in (7) for B = 3.571 (top panels) and
B = 14.286 (bottom panels): clearly, p (I) is decreasing in Figures 1(a) and 1(c) while 1 —p (1)
is increasing in Figures 1(b) and 1(d); the difference between the top and bottom figures is
related to the more pronounced steepness in the bottom panels.

Under the parametrization in (12), our IFSSDP (9) reads as follows:

1 1
Qrily+r = gft + g with probability p(I;)

5 1 (13)
Qroly + 19 = glf + 3 with probability 1 — p(1;),

It+1 =

IThe detailed code is available upon request.
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FIGURE 1: state-dependent probabilities, p (I) = ﬁﬂ (left) and 1 —p(I) =1 — ﬁ (
defined in (7), associated with schocks r; = % and 1o = % respectively, for B = 3.571 (top) and

B = 14.286 (bottom).

right) as

and it has [I$*, I5*] = [0.25, 1] as trapping interval (the fixed point of the upper map is 1 due
to our choice on the larger shock to be exactly its admissible upper bound: ry = QLH) As the
fixed point of the lower map, I§* = 0.25, is bounded away from 0, both p (I;) and 1 — p (I;) are
such that 0 < p(l;) <1land 0 <1 —p(l;) <1 for all I € [0.25,1]. Hence, the dynamics of I;
will always remain trapped in the proper sub-interval [0.25,1] C [0, 1].

We consider first the scenario in which p (I) is decreasing and specifically p(l;) takes the
form in (7). In this case, because the left endpoint of the trapping interval [0.25, 1]—recall that,
according to Corollary 1, [0.25,1] is the support of the invariant measure—is bounded away
from 0, the values of both p (/) and 1 — p(I) will always be bounded away from 0 and 1, as
required by Theorem 4 to establish existence and uniqueness of the invariant measure. Figure
2 shows the initial uniform density po (I) = ﬁ (left panels), the 1°¢ (mid panels) and 6%

(right panels) iterations of our Maple algorithm for the IFSSDP (13) whenever B = 3.571 (top
panels) or B = 14.286 (bottom panels). As convergence toward the unique invariant measure
is geometric, i.e. very fast, Figures 2(c) and 2(f) can be considered as good approximations
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of the invariant measure itself. As + +1 =1

sts=3= %%1 + %, the images of the two affine maps in
(13) almost do not overlap, having in common the only point % so that the invariant measure
has the full interval [0.25, 1] as support. In the case of a small B, Figure 2(b) shows that the
IFSSDP concentrates a large probability mass of the uniform density in Figure 2(a) close to
the lower fixed point I{* = 0.25, and this process is being reinforced after each iteration so
to obtain, after 6 iterations, Figures 2(c), in which the mass concentrated in the vicinity of
I5* has become predominant. In the case of a large B, Figure 2(e) shows that the IFSSDP
concentrates a large probability mass of the uniform density close to the higher fixed point
I5t = 1, such that after 6 iterations in Figures 2(f) larger mass is concentrated in the vicinity
of I§*. Therefore, whenever p(I;) is decreasing, in the medium-long run the epidemic dynamics
are characterized by a monotonic variation in infections. If B is small (large) such a monotonic
dynamic is associated with a reduction (increase) in infections which may increase only (also)
because of the additive shock induced by the diffusion of a new disease strain, such that the
level of disease prevalence tends to be concentrated to a large extent near the lower (upper)
extreme of the support of the invariant measure and the steady state outcome is represented
by an endemic state with low (high) prevalence.

; 31
1.2E : 200,
1 ]
0.8 21 1507
Ho 1 M1 He
0.6 ] 100
0.4 1
1 ] 50
0.2*:
1 ‘ ‘ ‘ ‘ 1 | ‘ ‘ ‘ M N l P ,
0 0.4 0.9 0.8 1 0 0.4 09 0.8 1 0 04 o.(} 0.8 1
(a) (b) (c)
1 1 10
1.2 2 :
] 8
1: 1.5 ]
0.8 ] 6
Ho 1 M1 1 He
B 14 1
0’65 ] 4
0.4 ] 1
05’ 2;

FIGURE 2: Initial uniform density over [0.25, 1] (left), 1°¢ (mid) and 6" (right) iterations of our
Algorithm to approximate the Markov operator (2) associated to the IFSSDP (13) whenever
p(I) = 57y with B =3.571 (top) or B = 14.286 (bottom).

We consider now the scenario in which p (1) is increasing and specifically p(I;) takes the form
in (8). Because the trapping interval is still [0.25, 1], again the values of both p (I) and 1 —p (1)
are bounded away from 0 and 1 and Theorem 4 applies. Figure 3 shows the initial uniform
density po (1) = ﬁ (left panels) and the 1°¢ (mid panels) and 6 (right panels) iterations

of our Maple algorithm for the IFSSDP (13) whenever B = 3.571 (top panels) or B = 14.286
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(bottom panels). In the case of a small B, Figure 3(b) shows that the IFSSDP concentrates
a large probability mass of the uniform density in Figure 3(a) around the interval [0.4,0.5],
Such a pattern, although scattered across all pre-fractals of the interval [0.25, 1] emerging after
each iteration, is clearly preserved in the medium-long term approximation of the probability
measure plotted in Figure 3(c). In the case of a large B, Figure 3(e) shows that the IFSSDP
concentrates a large probability mass of the uniform density in Figure 3(d) to the left of 0.5,
such that after 6 iterations in Figure 3(f) a larger mass is concentrated close to the lower fixed
point I$* = 0.25.Therefore, whenever p(I;) is increasing, in the medium-long run the epidemic
dynamics are characterized by fluctuations in the level of infections, giving rise to multiple
epidemic waves: the additive shocks combined with the higher incidence due to the diffusion
of a new disease strain lead the number of infectives to continually rise and fall. If B is small
(large) such fluctuations are associated on average with a larger (lower) number of infections,
such that the level of disease prevalence tends to be dispersed but more densely concentrated
toward to upper (lower) extreme of the support of the invariant measure and the steady state
outcome is represented by an endemic state with diffuse prevalence.

121 3 2
1- ] 104
0.8 2 83
0.6 K 16 6
0.4 i 4
0.2 ] 2-
0" 04 06 0.8 1 0 04 06 08 1 0" 04 06 0.8 1
I I I
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127 07
17: 37 20%
0.8 ] 30-
M00.6é /L12’: He
] ] 20
0.4*: 1;
0.2- ] \ 107 L L
1 ‘ ‘ ‘ ‘ 1 ‘ ‘ ] 1 s, Iy AM

FIGURE 3: Initial uniform density over [0.25, 1] (left), 1°¢ (mid) and 6" (right) iterations of our
Algorithm to approximate the Markov operator (2) associated to the IFSSDP (13) whenever
p(I) =1 — g with B = 3.571 (top) or B = 14.286 (bottom).

By comparing Figures 2 and 3, we can observe that, despite the fact that the support
of the invariant measure does not change with the characteristics of the probability function,
the properties of the state-dependent probability (both in terms of the sign and size of its
first derivative) critically determine the distribution of disease prevalence over its support.
The sign of the derivative of the probability function determines the shape of the invariant
distribution, and in particular whether this tends to be skewed or more symmetric over its
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support. Whenever p’ < 0 the distribution tends to be more skewed toward one of the two
extremes of the support (Figure 2), while whenever p’ > 0 it tends to be more symmetric and
evenly distributed (Figure 3). The size of the derivative of the probability function (i.e., the
magnitude of B) instead determines where most of the mass is concentrated, and in particular
whether the probability of low prevalence levels is higher or lower. However, the size of the
derivative and its sign jointly contribute to determine such a feature of the invariant probability.
When p’ < 0 a high B leads the distribution to be more concentrated toward the upper extreme
of the support (Figures 2), while when p’ > 0 a high B leads it to be more concentrated toward
the lower extreme (Figure 3).

We can conclude that the monotonicy (increasingness vs decreasingness) and the steepness
(low vs high steepness) properties of the state-dependent probability function jointly contribute
to determine a wide variety of possible outcomes. There may be situations in which it is fair to
expect that the steady state outcome will be associated with positive but low levels of disease
prevalence, and as the spread of the invariant distribution is particularly small in the stochastic
steady state it is almost possible to deterministically determine the arising prevalence level
(p’ < 0 and B small — see Figure 2, top panels). Alternatively, it may happen that the spread
of the invariant distribution is as large as its support such that in the stochastic steady state
it is almost impossible to forecast the arising prevalence level (p’ < 0 and B large — see Figure
2, bottom panels). But is may also happen that, despite the more limited spread, disease
prevalence is evenly spread across the support such that we cannot really understand whether
prevalence will tend to be characterized by low or high values (p' > 0, both with small and
large B — see Figure 3).

Our results surprisingly suggest that behavioral changes aiming at reducing individuals’ ex-
posure to the disease (p’ > 0) may not always be that desirable in improving the long run health
outcome, since people’s behavioral response to changes in disease prevalence combined with the
random diffusion of new disease strains may result in perpetual epidemic waves characterized
by eventually high prevalence. But also the absence of behavioral changes to minimize disease
exposure (p’ < 0) may not be more desirable as in this case this may generate monotonic epi-
demic dynamics giving rise to high prevalence. Therefore, whenever the probability of epidemic
shocks is state dependent it may be more important than ever to rely on public intervention
to improve the long run health outcomes. We thus now investigate the role of public disease
containment policies in shaping the invariant distribution of prevalence under state-dependent
probabilities.

4 The Economic Model

We now introduce our economic framework by analyzing how a social planner decides the
intensity of the policy measure to reduce the spread of a communicable disease, whose evolution
is characterized as in the previous section, in order to minimize the social cost associated
with the epidemic management program. As in epidemic periods the control of the spread
of the communicable disease becomes the main priority for policymakers, we assume that the
resources available to contain the epidemic are unconstrained, that is policymakers may always
rely on international borrowing to finance their mitigation expenditure needs. For the sake of
simplicity we do not model international borrowing, but we simply assume that the resources
available for public health policy are exogenously given and large enough to meet policymakers’
expenditure needs. The disease dynamics is characterized as in the previous section by the
following equation: I, = Qz.1; + z, — X;, where the last term, X; > 0, captures the effects of
treatment measures which, by favoring recovery, reduces the number of infectives. The social
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cost is the discounted sum (0 < < 1 is the discount factor) of the one-period losses associated
with the epidemic management program. The one-period loss function depends on the level of
disease incidence, z;1;, the potential infections associated with the diffusion of a new strain of
the disease, 2,5; and the intensity of policy intervention, and is assumed to take the following
additively separable quadratic form: ((I;, Sy, z;) = y1221 + 79225% + X?, where v, > 0 and
~v9 > 0 measure the relative weight of incidence and potential infection with respect to economic
policy, respectively. Note that the potential infections due to a new disease strain depend on the
share of susceptibles, since only susceptible individuals may be subject to infection (infectives
are already exposed to the disease, thus the diffusion of a new strain may affect the economy
only up to the extent that its population is susceptible). The random shock term z; directly
affects the instantaneous losses since the diffusion of a new strain determines disease incidence
and potential infections. By recalling that S; = 1 — I, and denoting with Eq the expectation
operator at time ¢ = 0, the social planner’s problem can be summarized by the following
stochastic dynamic programming model:

V ({o, 20) = ?)l(iI}IEO Z BY [z I + ez (1 — L) + X7 (14)
! =0

Tivr = Qady + 20 — X,
s.t. OS[tgl,XtZOVtZO,
0<Iy<1and z € {ry,r} are given,

where {z},~, is the Bernoulli process (6) taking positive values 71,72 such that r; < ry with
state-dependent probabilities p (I;) and 1 — p(I;) discussed in the previous section, and where
the probability function is alternatively specified as in (7) or (8).

As by assumption X; > 0 must hold for allt > 0, I, 1 = Qz [, +2,— X; < Qzl;+2z < 1 holds
for all t > 0, where the last inequality is a consequence of condition (11), 0 < 71 < ry < Q+r1’
discussed in Section 3. Moreover, the value I, = Qz 1 + 2, — Xy = 0 is always feasible for
any [; value and shock realization z; because X; can be taken large enough. Hence, we can
substitute X; = Qz [, + 2, — I;;1 from the dynamic constraint into the one-period objective
function so that the reduced problem associated with (14) can be stated as follows:

V (1o, 20) = I{T}il}{l]Eo Z Bzt +vezy (1= 1) + (Qzdy + 2 — Ti41)?] (15)
¢ t=0

st 0 S It_|_1 S QZtIt + 2ty \V/t 2 0,
o 0<Iy<1and 2 € {ry,r} are given,

where the constraint 0 < I; < 1 for all £ > 0 is guaranteed by condition (11). Note that the
probability p (I;) determines the occurrence of the random shock z; at the same time ¢ in which
the actual number of infectives is I;; hence, such a probability, through the realization of one
of the two shocks z; € {ry,ry}, affects both the instantaneous losses in the objective function
at time ¢ and the number of infectives in the next period t 4 1 through the dynamic constraint.

Because the zi-sections of the graph G = {(Iy, [;11,2¢) : Iry1 € I' (13, 21)} of the optimal
correspondence I (ky, z;) = {I;41: 0 < ;11 < Qz Iy + 2} are convex sets and the one-period
objective function is quadratic, (15) is clearly a convezr problem defined over the state space
[0, 1].
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5 The Optimal Policy and Dynamics

In order to explicitly determine the optimal policy in our economic-epidemiological model, we
need to solve in closed-form the Bellman equation associated with (15), which reads as follows:
_ : 2712 2 7\2 RY /
V(l,z)= 0L (1221 4 22" (1= 1)" + (Qz] + 2 — y)” + BE,V (y,2)],

where [E, denotes the expectation operator that depends on the probabilities of both realizations
of the random variable 2’ occurring in the next period, themselves depending on the choice ,
which corresponds to the number of infectives in the next period; that is, Pr(2' =) =p(y) =
g and Pr(2'=r2) = 1 —p(y) = 1 — 5357 if probabilities are taken according to (7),
or Pr(z'=r) =py) =1-gagand Pr(z'=ry) =1-p(y) = 523
taken according to (8) (recall that, for given y, the random variable 2’ is independent of past
realizations). In order to solve the above Bellman equation we consider separately the two cases
in which the state-dependent probabilities have either the form in (7) or in (8).

if probabilities are

5.1 The p’ <0 Case

By assuming that the probabilities are given by (7) the expectation E, can be directly evaluated
and the Bellman equation can be rewritten in the following form:

V(I,z)= min {712212—1—72,22(1—I)2+(Qz[+z—y)2

0<y<Qzl+z

+0p () V (y,m1) + B[ —p )]V (y,72)}
= min [y’ P+ (1 - )P+ (Qzl 4+ 2 —y)°

0<y<Qzl+z
Ba a
P 1_
+By2+1v(y,7"1)+5 BTl V (y,rs)
= ogyrgggm (N2 + 2% (1= 1)+ (Qz] + 2 — y)°
Ba
ByQ +1 [V <y7rl) -V (y, ’I“Q)] —+ BV (y’TZ) .

In order to search for a closed-form solution of our optimization problem, we guess the
following form for the value function in the Bellman equation:

V(I,z)=Az*(BI*+1) +C,

where A, B and C' are constants to be determined; specifically, B is the same constant in the
denominator of the state-dependent probability p (I) = 572 —7- For such a quadratic guess the
Bellman equation becomes:

A2 (BT _ - 272 21 _ 1\2 N2
V(I,z)=A2(BI +1)+O_og£é§1+z{%21 + Y2 (1 —=1)"+ (2l + 2z —y)

+—Byfi (A (BY? 1) — Ard (By? + 1)) + B3 (By? 1) + ﬁC}
_ : 272 201 _ 12 2 2 2
= o min (12217 + 72" (1= I)" + (Qz] + 2 — y)” + BABr3y (16)

+BaA (1] —r3) + BAr; + 5C] .

The following result characterizes the closed-form solution for the Bellman equation (16)
under some conditions on the model’s parameters.
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Proposition 1 Assume that 0 < < 1,0 < a <1, v > 0, Q > 0 and the shocks’ values
satisfy the feasibility condition (11), 0 <13 < ry < If, moreover, vo < 0 and parameter
Y1 18 given by

1
Q+1°
1
B(Q—2)73
then, the solution of the Bellman equation (16) is the function:

y = —(Q+1)| 7, (17)

V(I,z)=Az2*(BI’+1)+C

where:
Q41
A= 18
Q Y2, ( )
Q41
B:’71+( +1) 7 7 (19)
(Q4+1)7
o SO+ (-0 o0
(1-p)%
The optimal policy for the number of infectives is affine in I} and has the following form:
* * Q-
Ly = h(I2) = (@=0) alf + =L, (21)
while the corresponding optimal policy parameter is given by:
1
X = vz + Q’y_fi*zt = <It* + 5) 2. (22)

The proof is in Appendix A, where it is shown that the expression of 7 in (28) is strictly
positive. Clearly, as the constants A and B in (18) and (19) are strictly positive, the RHS of the
Bellman equation (16) is strictly convex in y, so that the solution characterized in Proposition
1, including the optimal policy (21), is unique. As vy < €, clearly the optimal policy in (21)
satisfies 0 < I}, | < Qz I + z < 1 for all ¢ > 0; similarly, the optimal policy parameter in (22)
satisfies 0 < X | < Qzlf +2 < 1forallt>0.

The affine optimal policy in (21) can be rewritten in terms of the following IFSSDP:
Q— a

0 1 with probablhty P (It) = m
Q-

q with probability 1 —p (I;) =1 —

T1 (Q—’)@) It+

Iy = (23)

ro (2 — ) I,

2 ( 72) t + B]—tQ + 1’
where the constant B corresponds to the value in (19). Similar to what discussed in Section 3,
it is possible to prove the existence of a unique stationary distribution p for such an IFSSDP
supported on the interval [I5*, I5'] C [0, 1], where the endpoints are the steady states of the two
affine maps in (23) respectively:

(2 —72)
9[1—7’1(9—’}/2)]

(2 =272
Q[l—?‘g(ﬂ—’)@)]

I' = and Il =

(24)

It is straightforward to show that the steady states of the maps above are strictly lower than
those in the absence of policy intervention—see (10). This suggests that containment policy is
effective as it moves leftward the support of the invariant distribution, meaning that the steady
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state disease prevalence will tend to be characterized by lower values than what we would
observe without any containment effort. Moreover, as both expressions in (24) are increasing
in Q and decreasing in 7,, the smaller 2 and/or the larger ~,, the larger the leftward shift of
the support.

We now present a numerical example to clarify how optimal behavior by a social planner
may affect the characteristics of the invariant distribution with respect to that approximated in
Figure 2(c) of Section 3 for the same epidemiological parameter values as in (12), and setting
the remaining economic parameters as follows:

=096, =025, (25)
which from expressions (17), (18), (19) and (20) in Proposition 1 imply that
71 = 0.589, A =0.375, B = 3.571, C =0.25.

Note that the value of the parameter B is exactly the same we have used in Section 3 for the
first case characterized by p’ < 0, i.e., when p (I;) and 1 — p(I;) are defined according to (7);
this allows us to compare the steady state outcome arising in the same setting with and without
mitigation policy.

According to (21) the optimal policy is represented by the following IFSSDP:

. o7 1
0.292], +0.146  with probability p (I,) = 35712 1
Iy = ! (26)

0.5831; + 0.292 with probability 1 —p(I;) =1 — m,

which has [I}, I5*] = [0.206,0.7] as trapping interval. As the fixed point of the lower map,
I5* = 0.206, is bounded away from 0, clearly both p (1;) and 1—p (I;) are such that 0 < p ([;) < 1
and 0 < 1 —p(l;) < 1 for all I € [0.206,0.7]. Figure 4 shows the initial uniform density
po (I) = ﬁ and the 1°¢ and 6 iterations of our Maple algorithm for the IFSSDP (26),
where the last plot can be considered as a good approximation of the invariant measure in this
case. Note that, as 0.29275" + 0.146 = 0.35 < 0.412 = 0.583I;" + 0.292, the images of the two
affine maps in (26) do not overlap, so that the invariant measure is singular as it is supported
on a Cantor-like set.
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FIGURE 4: a) initial uniform density over [0.206,0.7], b) 1% and c) 6" iterations of our Algorithm to
approximate the Markov operator (2) associated to the IFSSDP (26).

By comparing Figure 2 (top panels) with Figure 4, exactly as we have discussed before, we
can observe that the support of the invariant probability measure in the latter is characterized
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by lower extremes than those in the absence of containment policy of the former. Moreover,
we can see that the effects of the optimal mitigation policy consist of concentrating the value
of disease prevalence more closely toward to the lower extreme of the support, I$* = 0.206,
as it becomes apparent by comparing directly Figures 2(c) and 4(c); in fact, the latter plot
exhibits a much higher spike close to I than that in the former figure. Thus, containment
policy not only reduces on average the possible steady state values of disease prevalence, but it
also increases the likelihood that prevalence will be associated with its possible lowest values.

Note that the Bellman equation (16) is specifically defined for the p’ < 0 case, therefore
Proposition 1 cannot be applied for the p’ > 0 case when B = 3.571. That is, we have
no comparison between the optimal dynamics determined by containment policies and the
dynamics described in Figure 3 (top panels). To compare the dynamics with and without
containment policies when p’ > 0 we must resort to the result in the next Proposition 2
specifically designed for the increasing p (I) and B = 14.286 case.

5.2 The p’ > 0 Case

By assuming that the probabilities are given by (8) the Bellman equation becomes:
_ : 2 72 201 _ 12 2
V(I,z2)= oc D, {221+ 72 (1= 1)+ (Qz] + 2z — y)

Ba

+W[V(%T2)—V(y,ﬁ)]}'

We guess the same form for the value function in the Bellman equation as before: V' (1, z) =
Az*(BI* +1) + C, where A, B and C are constants to be determined; specifically, B is the
same constant in the denominator of the state-dependent probability p(I) = 1 — 57 —7- For
such a quadratic guess the Bellman equation becomes:

V(I,z)=A2"(BI’+1)+C=_min [yz’]>+72*(1 - D+ (Qzl +2—1y)°  (27)

0<y<Qzl+z
+BABTfy2 + ﬁAr% + BC + BaA (r% - T%)} .

The following result is very similar to Proposition 1 and characterizes the closed-form solu-
tion for the Bellman equation (27) under the same conditions on the parameters of the model,
except for ;. It yields the same results as in Proposition 1 except for the values of the constants

B and C.

Proposition 2 Assume that 0 < f < 1,0 < a < 1, v > 0, Q2 > 0 and the shocks’ values

satisfy the feasibility condition (11), 0 < ry < 1y < 2. If, moreover, vo < Q and parameter

Q+1°
Y1 18 given by

+6V (y7 Tl)

m = (Q+1)| 7, (28)

then, the solution of the Bellman equation (27) is the function:
V(I,z)=Az*(BI’+1)+C

N =

where:
_ n+H(Q+ 1)y
P avys (30)
o B[ -y +ard]y o

(1-p)0
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The optimal policy for the number of infectives is affine in I} and has the following form:

0—
T = (I 2) = (@ =) 2l + =g, (32)
while the corresponding optimal policy parameter is given by:
Xt = ’)/gzt[t + Q_[;‘Zt = Y2 <It + 5) Zt. (33)

The proof is in Appendix A and the same comments after Proposition 1 apply also to
Proposition 2. Thus, it turns out then that the affine optimal policy in (32) is the same as
that of Proposition 1 in the previous subsection, when state-dependent probabilities are given
by (8) instead of (7):

0 —
r (Q—y) L + e T with probability p (;) =1 — +
L Q BI? +1 (34
t+1 — O — a
T2 (Q — ’72) .[t + QIYZ T2 with probablhty 1-— P (It) = m,

where the constant B corresponds to the new value in (30). Also in this case it is possible to
prove the existence of a unique stationary distribution p for such an IFSSDP supported on the
interval [I5*, I5'] C [0, 1], where the endpoints are the steady states of the two affine maps in
(34) respectively:

(Q—y)r
QL =7 (=)

(=) 7y
QL =71 (2 —72)]

It = and  IJ' = (35)

Since the steady state of the maps above perfectly coincide with those earlier found in the p’ < 0
case, exactly the same comments apply: containment policy is effective as it results in a leftward
shift of the support of the invariant distribution, meaning that steady state disease prevalence
will be characterized on average by lower values than in the absence of policy intervention.
Moreover, the smaller Q2 and/or the larger vo, the larger the leftward shift of the support.

We continue to illustrate numerically how optimal behavior by a social planner may affect
the characteristics of the invariant distribution with respect to that approximated in Figure 3(f)
of Section 3 for the same epidemiological parameter’ values as in (12) and (25). Expressions
(28), (29), (30) and (31) in Proposition 2 imply that:

v =4.607, A=0375, B=14286, C=1.

Note that also in this case the value of the parameter B is exactly the same of that used in

Section 3 for the second case characterized by p’ > 0; this allows us to compare the steady

state outcome arising in the same setting with and without mitigation policy. Note that now

the constant B has a much larger value than in the p’ < 0 case, itself triggered by a much

larger value of v, provided by (28); this feature translates into much steeper state-dependent

probabilities. According to (32) the optimal policy is represented by the following IFSSDP:
0.2927; + 0.146 with probability p ([;) =1 — m

Iy = 1 (36)

: t
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which has the same interval, [I;*, I5*] = [0.206,0.7], as the IFSSDP (26) as trapping interval.
Figure 5, as usual, shows the initial uniform density po (1) = IQ?IW and the 1°* and 6™
iterations of our Maple algorithm for the IFSSDP (36). As the affine maps are the same as in
(26), again their images do not overlap and the invariant measure is singular as it is supported
on a Cantor-like set.

2 6-
] 801

1.5 1
4] 60

o 1] I 16

] 40

2
0.5 201

0 03 04 Io.‘5 06 07 0 03 04 1015 0.6 0.7 0 0.3 04 ;05 06 07

(a) (b) ()

FIGURE 5: a) initial uniform density over [0.206,0.7], b) 1% and c) 6! iterations of our Algorithm to
approximate the Markov operator (2) associated to the IFSSDP (36).

By comparing Figure 3 (bottom panels) with Figure 5, exactly as in the p’ < 0 case, we
can observe that the support of the distribution is characterized by lower extremes than in the
absence of containment policy, and that the optimal mitigation policy results in concentrating
the value of disease prevalence more closely toward to the lower extreme of the support, as it
becomes apparent by comparing directly Figures 3(f) and 5(c); in fact, the latter plot exhibits
higher spikes close to I;* than those in the former figure, although in a less pronounced fashion
than in our earlier comparison between Figures 2(c) and 4(c). Thus, once more, containment
policy not only reduces on average the possible steady state values of disease prevalence, but it
also increases the likelihood that prevalence will be associated with its possible lowest values.

Also in this case a comparison between the dynamics under optimal containment policies
for the p’ < 0 case when B = 14.286 and the dynamics without policies described by Figure
3 is not available, as the Bellman equation (27) is specifically defined for the p’ > 0 case, and
thus also Proposition 2 can be applied only for this case.

6 Singularity versus Absolute Continuity

One important question, especially from a policy perspective, regarding the nature of the in-
variant distribution v is related to its properties in terms of absolutely continuity or singularity.
Specifically, if it is absolutely continuous then it will be represented by a density and so it could
be estimated in terms of a few parameters, while if it is singular then there will be no convenient
way to represent it and we will have to list the value of the function for every point in its domain.
Clearly, absolutely continuous measures are easier to work with and more well-behaved than
singular measures as they allow for a more precise forecasting of future dynamics, and so it is
valuable to know conditions under which the invariant measure may be absolutely continuous.
There is also a long history of works in this area and it is still a very active area of theoretical
research. The strongest results are when the contraction factors are all the same (so-called
equi-contractive IFS). Our situation with unequal scaling factors is more delicate and so we are
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only able to give an incomplete characterization. In the constant probability case, recent work
in Saglietti et. al (2018) shows that for each fixed choice of probability the invariant measure
is absolutely continuous for almost every («, ) in the so-called “super-critical region”. Our
situation with state-dependent probabilities is quite a bit more intricate so our result is less
comprehensive. The description of the region © is complicated and can be found in Ngai and
Wang (2005).

Theorem 5 Tuake the two-map IFS on R given by {ax + 11, fx + 1o}, with o, B € [0,1) along
with the two probability functions py (x) = p (z) and pe () = 1 —p(x). Assume that § < p(z) <
1 =9 for all x and some § > 0 and also that p is Holder continuous. Let ji, g be the invariant
measure of this state-dependent IFS.

1. If 0 < a4+ B < 1 then pap is singular with respect to Lebesgue measure.

2. If ao+ 8 =1 then pqp is either singular with respect to Lebesgue measure or is equal to

the (normalized) Lebesgue measure on the closed interval with endpoints ;- and 725 and

p(z) =a.
3. For each oo+ 3 > 1, let hy p be defined by

oy == [ (o) alp(a)) + [1 = p(a)] nlt = p(o)] o)

and

Yaus = —log(B) + [log(8) — log(a) / p(2) dptop(z).

Then ji, 5 1s singular for every o, 8 with hag < Xa,8-

Furthermore, there is an open subset © C {(a,8) € (0,1)* : a+ 8 > 1} so that pap is
absolutely continuous with respect to Lebesgue measure for Lebesgque almost every (o, B) €
© such that ho g > Xap-

Theorem 5 states that the singularity vs absolute continuity properties of the invariant
measure depend ultimately on the contraction factors, which in our IFSSDPs is given by the
() — 79, and thus it depends on the relative magnitude of the net infectivity rate and the weight
attached to potential infections in the objective function. While it is straightforward to check
whether one of the first two cases of the theorem applies, the third case is quite a bit more
delicate and deserves some further clarification. In fact, the condition h, g > Xa 5 is generally
difficult to check since it involves integrals with respect to u. Moreover, unfortunately for any
specific choice of parameters it is not a simple task to determine if ;4 is absolutely continuous
even if this condition holds. All we would know is that u is absolutely continuous for almost all
choices of the parameters in some open subset. Even in the case of equal contraction factors it
would be difficult to know if a specific choice of parameters results in an absolutely continuous
invariant measure. We would do know, however, that the invariant distribution is a (weakly)
continuous function of the parameters.

Returning to our epidemiological framework, all the IFSSDPs that have analyzed, both in
the case of presence and absence of optimal disease containment policies, fit into the scheme
of Theorem 5 since the IFS maps are all one-dimensional and affine and the probabilities are
smooth functions. The IFSSDPs with optimal policy given in (26) and (36) are both in the first
case of the theorem (where v+ 3 < 1) and thus their invariant measures are singular, and this
is true no matter the form of the probability function p(x). The IFSSDP without mitigation
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policy given in (13) is in the second case where o + [ = 1. However, since the probability
functions are not constant (and equal in value to the corresponding contraction ratios), the
invariant measure is singular also in this case. While none of our specific parametrizations have
resulted in a IFSSDP fitting the third case where 1 < a+ 3 < 2, this could be true in principle
for any of our IFSSDPs, both without optimal policy — given in (9) — and with optimal policy
— given in (23) and (34) for the scenario p’ < 0 and p’ > 0, respectively.

7 Conclusion

The ongoing COVID-19 pandemic has brought to light the need to understand the working
mechanisms of disease containment policies in order to effectively save human lives and pre-
serve economic conditions. A huge number of works in literature has analyzed from different
points of view how the optimal policy should be determined in deterministic settings, but very
few have been the attempt to relate containment policies and stochastic epidemiological dy-
namics. In this context all the works have assumed that the probability with which shocks
affect epidemic dynamics are constant and thus unrelated to disease prevalence. In this paper
we contribute to this literature by analyzing the implications of state-dependent probabili-
ties, that is probabilities depending on disease prevalence, for optimal policymaking. We have
developed a stylized economic-epidemiological stochastic framework in which random shocks
determine the diffusion of a new strain of the disease and the social planner needs to choose
the intensity of treatment in order to minimize the social cost of the epidemic management
program, accounting for the state-dependency of probabilities. Our results show that in the
stochastic steady state complete eradication is never a possible long run outcome where instead
disease will always be endemic. Moreover, independently of the features of the state-dependent
probabilities, treatment allows to shift leftward the support of the invariant measure, reducing
the possible endemic prevalence levels associated with the steady state outcome. However, the
features of the state-dependent probabilities are not irrelevant as they affect the shape and
spread of disease prevalence over its support, allowing for a steady state outcome characterized
by a distribution either highly concentrated over low prevalence levels or more spread out over
a larger range of prevalence (possibly higher) levels. Moreover, we characterize the properties
of the invariant self-similar measure in terms of singularity and absolutely continuity with re-
spect to the Lebesgue measure, showing that this is ultimately related to the magnitude of the
relative magnitude of the net infectivity rate and the weight attached to potential infections in
the objective function.

To the best of our knowledge, ours is the first attempt to introduce state-dependent proba-
bilities in the analysis of the optimal policy in economic-epidemiological frameworks. Therefore,
in order to allow for the analytical tractability needed to clarify the main arguments underlying
our analysis we have relied on simplifying assumptions limiting the nature of our conclusions.
In particular, the abstraction of the epidemic dynamics from the social interactions between
infectives and susceptibles has brought us to depart substantially from standard epidemiologi-
cal models making the comparison of our results with those traditionally discussed in literature
particularly complicated. Moreover, we have focused on containment policies taking the form
of treatment without exploring how results may change under different types of policies, such
as preventive or social distancing measures. Extending our analysis along these directions is
currently a priority in our research agenda.

22



Acknowledgments

Simone Marsiglio acknowledges financial support from the University of Pisa under the “PRA
— Progetti di Ricerca di Ateneo” (Institutional Research Grants) — Project No. PRA_2020_79
“Sustainable development: economic, environmental and social issues”. The research of FM is
partially supported by NSERC 2019:05237. The usual disclaimer applies.

A Proofs of Propositions 1 and 2

As the RHS in (16) is strictly convex in y whenever the values of constraints A and B are
positive, to guarantee interiority of the minimum value of y we check the sign of the the
derivative with respect to y is negative on the left endpoint of the constraint 0 <y < Qzl + 2
and is positive on its right endpoint; in fact, this is the case provided that AB > 0:

(% (RHS) = —2(QzI + 2 —y) + 2BABryy = {

—2(Qzl+2) <0 ify=0
20ABr3 (Qzl+2) >0 ify=Qzl+ 2.

The FOC with respect to y yields the unique solution

1

— QI +1 ith = ——.

(37)

Substituting y* as in (37) into the RHS of (16) after some algebra yields

V(I,z)=A2(BI’+1) 4+ C = AB2"I* + Az* + C
=22 22 (1= 1) + [Qzl + 2 — ¢z (U + 1))° + BABr2¢?2? (01 + 1)
+ BA [ar; + (1 —a)r3] 4+ BC
= (v +72 + Q) 221 +2(VQ — 7)) 21 + (72 + V) 2° + BA [ar] + (1 — a) r3] + BC,

where in the fourth equality we have set ¥ = (1 — ¢)* + BABr2¢?.

By equating all similar terms in both sides and setting the coefficient of 2?1 equal to 0 we
find that a solution of the Bellman equation (16) is given by the constants A, B and C' that
satisfy

AB:")/1+’}/2+\IJQQ

v — Y2 = 0

A=7+V

C =pAJar?+ (1 —a)ri]+ BC.

From the second equation we get ¥ = &, so that, after substituting this in the third equation,
we easily find the value of A as in (18), while, after substituting both values of ¥ and A into
the first equation, one has

Q+1
AB = Q ’)/QB:71+’YQ+’YQQ:’}/1+(Q+1)’}/2, (38)
which implies that
O
B=—"—+10Q,
(24+1) 7

which is equivalent to the expression in (19). Finally, after substituting the value of A as in
(18) into the fourth equation one immediately gets the value of C' as in (20).
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Recalling that U = (1 — ¢)* + BABri¢? and, from (37), ¢ =

implies that v, is related to all other parameters according to

1 .
TTAABT the second equation

1 )2 BABr2
(

B _ 2 2,2 — _ L a2
Yo =UQ = [(1-¢)" + BABr;¢*] Q [(1 1 + BABr? 1+ BABr3)

_ _Bm+ Q@+l
LB+ (24 1)) r%Q’ (39)

where in the last equality we used (38). Note that the last expression requires that 0 < v, < Q
must hold.
By further algebraic manipulation, from (39) we easily get the value of 71 as in (17):

1
5(9—72)7"3

Note that v; > 0 because the term in square brackets of the last expression is always strictly
positive; in fact, condition (11) implies that % > (Q + 1)%, so that
2

_ Bl + (Q41) ] r3
14+ 8m+ (Q+1)y]r3

V2

— 71:[ —(Q+1)}72.

L 2--(Q+1)>—@iﬁ2——<9+1)—- Q+1Y4.@+U,

B(Q =) 7] T B2 =) [6(9—72

and the last expression is strictly positive because, recalling that (2 —~2) > 0,

QO+1
B2 —2)

By rewriting (39) as

>1 <= ([(1-0)Q+1+pbv%>0.

Bln+ (Q+1)7]r3 2 Y2

T 14 B+ (2 1) )12 = 2T B+ Q@+ D] (Q—)

and replacing the value 73 just obtained into (37) together with the value of the product AB
as in (38) easily yields the optimal policy as in (21):

V2

o - Cz(QI+1) z(QI+1)
y _h(f,z)_¢z(91+1)—HBABT%-H Bl + (Q+1) 7]
Blm+ (Q+1) 7] (2— )
29;272;;((2[4—1).

Finally, as for each z € {ry,7m}, the value function V (-, 2) is defined over the compact
interval [0,1] and continuous, V (I,2) = AB2%*I* + Az? + C is bounded over [0,1]; this is
enough to apply the standard verification principle and establishes that, in fact, V' (I, z) is the
value function.

The proof of Proposition 2 is very similar to that of Proposition 1 just described; the key
differences lie in the terms BABriy and SA [ar? 4+ (1 — a) r3] appearing in the Bellman equation
(16) that become SABriy and SA[(1 — a)rf + arj] respectively in the Bellman equation (27);
we omit the details.
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B Proof of Theorem 5

First we reduce to the case where the IFS is {ax, Sz + 1 — 8} acting on [0, 1]. This is possible
because for any values of a, 3, 71, 72, the closed interval with endpoints ;- and ;%; is invariant
under the IFS and thus contains the support of 1, 5. A simple affine change of variables then
gives the IFS {az, Sz + 1 — 8} on [0, 1].

1) The first conclusion is clear since whenever o + 5 < 1 the measure y, s is supported on
a Cantor set with zero Lebesgue measure.

3) By the results in Ngai and Wang (2005) the IFS {az, fx + 1 — B} satisfies the transver-
sality condition for all («, 8) € € and then the conclusion follows by Theorem 1.1 in Bérdny
(2015).

2) Since we have «, § fixed, we use p rather than pu, 3 to avoid extraneous clutter on our
notation. With no loss of generality we assume that 0 < a < f=1—-a < 1.

Recall that the “Markov operator” is given by

My (8)= 3 / IRACIAREDY /S pi (w0 (@) dv (w7 (2)

and that p satisfies u(S) = (Mp)(S). Suppose that u is absolutely continuous with density
function f (x). Then we obtain the equation

[iwa=3 [ nw e
= l T/« hiyyey T l x_1+6
= [ amtarersennata) + 5m—

where x4 () is the characteristic function of the set A. For this to be true for all Borel sets S
we must have that, for almost every x, the two equations

)f(x —~ ;—i_ /B)X[l—ﬁ,l} (x) dz,

[ (@) = Zple/e)f(afa), 0w

and . . )
R e IES i e BUET S
Doing a simple change of variable these become for 0 <y <1
1 _af(ay)
flay) = —mW)fly) = my) = W) (40)
and ) )
fBy+1-p)= Epz(y)f(y) = pa(y) = Bf(ﬁyf(—y) +h) (41)

Then the condition that p; (y) + p2 (y) = 1 implies that

fly) =af(ay) +B8f(B+1-7) (42)

for Lebesgue almost every y € [0,1]. Thus f (z) is the fixed point of the operator

T(g9)(x) = aglay) + Bg(By + 1 —y).
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We show that the only fixed point of T" which is a density function is the constant function
g(xz) = 1. Tt is easy to see that Tg is a density if g is a density. Suppose that g € C'[0,1].
Then (Tg) (z) = o?¢'(ay) + B2¢'(By + 1 — B) and so (since t* + (1 — ) < max(t,1 — t) for
0<t<1)wehave |[(T9)||l < 5||¢'||cc- By induction this means that

[(T"9)'||o < B" 119l - (43)

Next, suppose that we have a density function g € C' [0, 1] with |¢' (z)| < m for all = € [0, 1].
Then for all € [0, 1] we have

9(0) —ma < g(x) < g(0)+maz
and thus, integrating over [0, 1], we have
9(0) =m/2<1<g(0)+m/2=[g(0) — 1] <m/2

and so 3 3
9(0) ~ 1] Smz+m/2 < Sm= g~ 1|, < m. (14

Next for two functions f,g € L' [0, 1], integrating the inequality

T(N) () = T(9) (@) < alf(ax) — glax)| + Blf(Br + 1 = B) — g(Bz + 1 = B)|

over [0, 1] we get

[ rn@-1w @l
Sa/o |f(ax)—g(aw)|d:c+6/0 F(Br+1— ) — g(Bo+1- )| da

= [ 1@ -giaes [ 17 @-gldi= [ 1 @ gl

and thus |7 (f) =T (9)|l; < ||lf —gll;- Let f be a density function and let e > 0 be given.
Then there is some density function g € C* [0, 1] so that || f — g||; < €/2. Then we have

177 (F) = Al < 177 (F) =T ()l + 1T (9) = 1],
<7 (f) =T (9l + 1T (9) — 1o

3 (m

<|1f =gl +5 (T
38"

< =gl + 2 N < e

for sufficiently large n. Thus T"f — 1 in L'[0, 1] for any density f and so the only density
function which satisfies (42) is f (z) = 1.
From (40) we get p;(z) = « as claimed.
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