
09 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On logical and extensional characterizations of attributed feature models

Published version:

DOI:10.1016/j.tcs.2022.01.016

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1857153 since 2023-01-19T13:28:38Z

On Logical and Extensional Characterizations
of Attributed Feature Models

Ferruccio Damiania, Michael Lienhardtb, Luca Paolinia,∗

aUniversity of Turin, Turin, Italy
bONERA, Palaiseau, France

Abstract

Software-intensive systems can have thousands of interdependent configuration
options across different subsystems. Feature models (FMs) allow designers
to organize the configuration space by describing configuration options using
interdependent features: a feature is a name representing some functionality
and each software variant is identified by a set of features. Attributed feature
models (AFMs) extend FMs to describe the, possibly constrained, choice of
a value from domains such as integers or strings: each attribute is associated
to one feature, and when the feature is selected then the attribute brings some
additional information relative to the selected features. Different representa-
tions of FMs and AFMs have been proposed in the literature. In this paper
we focus on the logical representation (which works well in practice) and the
extensional representation (which has been recently shown well suited for the-
oretical investigations). We provide an algebraic and a logical characterization
of operations and relations on FMs and AFMs, and we formalize the connection
between the two characterizations as monomorphisms from lattices of logical
FMs and AFMs to lattices of extensional FMs and AFMs, respectively. This
formalization sheds new light on the correspondence between the algebraic and
logical characterizations of operations and relations for FMs and AFMs. It
aims to foster the development of a formal framework for supporting practi-
cal exploitation of future theoretical developments on FMs, AFMs and multi
software product lines.

Keywords: Feature model, Attributed feature model, Boolean lattice,
Composition, Configurable software, Logic, Software product line

1. Introduction

Software-intensive systems can have thousands of interdependent configura-
tion options across different subsystems. In the resulting configuration space,

∗Corresponding author
Email addresses: ferruccio.damiani@unito.it (Ferruccio Damiani),

michael.lienhardt@onera.fr (Michael Lienhardt), luca.paolini@unito.it (Luca Paolini)

Preprint submitted to Elsevier May 3, 2022

different software variants can be obtained by selecting among these configura-
tion options and accordingly assembling the underlying subsystems. The inter-
dependencies between options are dictated by corresponding interdependencies
between the underlying subsystems [1].

Feature models (FMs) [2] allow developers to organize the configuration space
and facilitate the construction of software variants by describing configuration
options using interdependent features [3]: a feature is a name representing some
functionality, a set of features is called a configuration, and each configuration
that fulfills the interdependencies expressed by the FM, called a product, iden-
tifies a software variant.

Attributed feature models (AFMs) [4] extend FMs to describe the, possibly
constrained, choice of a value from domains such as integers or strings. Each
attribute is associated to one feature, and if the feature is selected then the
attribute brings some additional information relative to the product (identified
by selected features). For instance, an “SSD memory” feature may have a “ca-
pacity” attribute that should be set to a value greater than 512 GB whenever
the feature “pro” is selected.

Software-intensive systems can comprise thousands of features and several
subsystems [5, 6, 7, 8]. The design, development and maintenance of FMs with
thousands of features can be simplified by representing large FMs as sets of
smaller interdependent FMs [6, 9] that we call fragments. To this aim, several
representations of FMs have been proposed in the literature (see, e.g., Batory [2]
and Sect. 2.3 of Apel et al. [1]) and many approaches for composing FMs from
fragments have been investigated [10, 11, 12, 13, 14].

In this paper we focus on the logical representation (which works well in
practice [15, 16, 17]) and the extensional representation (which has been recently
shown well suited for theoretical investigations [18, 19]).

The starting point of this investigation is a novel partial order between FMs,
that we call the FM fragment relation. It is induced by a notion of FM compo-
sition that has been used to model industrial-size configuration spaces [18, 19],
such as the configuration space of the Gentoo source-based Linux distribu-
tion [20], that consists of many configurable packages (the March 1st 2019 ver-
sion of the Gentoo distribution comprises 671617 features spread across 36197
FMs). We exploit this partial order to provide an algebraic characterization
of operations and relations on FMs and AFMs. Then, we provide a logical
characterizations of them and formalize the connection between the two charac-
terizations as monomorphisms from lattices of logical FMs and AFMs to lattices
of extensional FMs and AFMs, respectively. This paper is an extended version
of prior work [21] which does not consider AFMs.

The remainder of this paper is organized as follows. In Section 2 we recollect
the necessary background and introduce the fragment relation for FMs and
AFMs. In Section 3 we present the algebraic characterization of operations and
relations on FMs and AFMs. In Section 4 we present the logical characterization
of the operations and relations on FMs together with a formal account of the
connection with the algebraic characterization, and in Section 5 we extend these
results to AFMs. We discuss related work in Section 6, and conclude the paper

2

in Section 7 by outlining planned future work.
The material about FMs and AFMs is presented in distinct sections, all

the sections about FMs or AFMs contain “FM” or “AFM” in the title, and the
sections about FMs do not depend on the sections about AFMs. So, a reader
may decide to first consider the material on FMs and then the extension to
AFMs.

2. Basic Notions

We first recall the logical and the extensional representations of FMs (in
Section 2.1) and AFMs (in Section 2.2) together with the composition operation
for FMs (in Section 2.3) and AFMs in Section 2.4). Moreover, Section 2.3 and
Section 2.4 include the formalization of a novel partial order relation on FMs
and AFMs, respectively.

2.1. FM Representations
In this section, we focus on the logical and on the extensional representations

of FMs (see, e.g., Batory [2] and Sect. 2.3 of Apel et al. [1] for a discussion about
other representations).

Definition 2.1 (FM, logical representation). A logical FM Φ is a pair (F , ϕ)
where F is a set of features and ϕ is a propositional formula whose variables x
are elements of F :

ϕ ::= x | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ¬ϕ | false | true .

We call products of Φ the sets of features p ⊆ F such that ϕ is satisfied by p,
i.e., ϕ is satisfied by assigning value true to the variables x in p and false to the
variables in F \ p.

Example 2.2 (A logical representation of the glibc FM). Gentoo pack-
ages can be configured by selecting features (called use flags in Gentoo), which
may trigger dependencies or conflicts between packages. Current versions of the
glibc library, that contains the core functionalities of most Linux systems, are
provided by the package sys-libs/glibc (abbreviated to glibc in the sequel). This
package has many dependencies, including (as expressed in Gentoo’s notation):

doc? (sys−apps/texinfo) vanilla?(!sys−libs/timezone−data)

This dependency expresses that glibc requires the texinfo documentation gen-
erator (provided by any version of the sys-apps/texinfo package) whenever the
feature doc is selected and if the feature vanilla is selected, then glibc conflicts
with any version of the time zone database (as stated with the !sys-libs/timezone-
data constraint). These dependencies can be expressed by a FM (Fglibc, ϕglibc)
where

Fglibc = {glibc, texinfo, tzdata, glibc:doc, glibc:v}
ϕglibc = glibc ∧ (glibc:doc → texinfo) ∧ (glibc:v → (¬tzdata))

3

Here, the feature glibc represents the glibc package; texinfo represents any sys-
apps/texinfo package; tzdata represents any version of the sys-libs/timezone-data
package; and glibc:doc (resp. glibc:v) represents the glibc’s doc (resp. vanilla)
use flag.

The logical representation of FMs works well in practice [15, 16, 17]. Re-
cently, Schröter et al. [18] pointed out that using an extensional representation
of FMs simplifies the presentation of FM concepts.

Definition 2.3 (FM, extensional representation). An extensional FM F
is a pair (F ,P) where F is a set of features and P ⊆ 2F a set of products.

Example 2.4 (An extensional representation of the glibc FM). The FM
of Example 2.2 can be given an extensional representation Fglibc = (Fglibc,Pglibc)
where Fglibc is the same as in Example 2.2 and

Pglibc ={{glibc}, {glibc, texinfo}, {glibc, tzdata}, {glibc, texinfo, tzdata}} ∪
{{glibc, glibc:doc, texinfo}, {glibc, glibc:doc, texinfo, tz-data}} ∪
{{glibc, glibc:v}, {glibc, glibc:v, texinfo}, {glibc, glibc:doc, glibc:v, texinfo}}.

In the description of Pglibc, the first line contains products with glibc but none of
its use flags are selected, so texinfo and tz-data can be freely installed; the second
line contains products with the use flag doc selected in glibc, so a package of
sys-apps/texinfo is always required; the third line contains products with the use
flag vanilla selected in glibc, so no package of sys-libs/timezone-data is allowed;
the last product in third line includes both glibc’s use flags selected, so sys-
apps/texinfo is mandatory and sys-libs/timezone-data forbidden.

The following definition introduces the extensional representation of the
empty FM and of two distinguished kinds of FMs.

Definition 2.5 (Empty, void and trivial FMs). The empty FM is F∅ =
(∅, {∅}) — it has no features and has just the empty product ∅. A FM is
void if it has no products, i.e., it is of the form void(F) = (F , ∅), for some set
of features F . A FM is trivial if it has all the possible products, i.e., it is of
the form trivial(F) = (F , 2F), for some set of features F (it is worth observing
that the empty FM is trivial).

Note that the logical representations of void(F) and trivial(F) are (F , false)
and (F , true), respectively.

2.2. AFM Representations
An AFM is an FM extended by adding to features some attributes. A

product of an AFM, called an attributed-product, is a product where each feature
is augmented by a suitable value for each of its attributes.

In order to improve readability, we start by introducing the notion of AFM
extensional representation which is simpler than that the logical one.

4

Definition 2.6 (AFM, extensional representation). An extensional AFM
A is a 6-tuple (F ,A, α,D, δ,V) where F is a set of features, A is the set of
attributes, α : A → F is a function mapping each attribute to a feature, D is
the set of domains on which attributes can range over, δ : A → D is a function
associating each attribute to a domain, and the set of the attributed-products
V contains pairs (p, v) such that p ⊆ F and v : α−1(p) → ∪D such that v ∝ δ
(i.e. v is a function associating to each attribute a in α−1(p) a value in δ(a)).
We write PV for the set {p | (p, v) ∈ V} of the attribute-free products of V.

Example 2.7 (An extensional representation of the glibc AFM). Gentoo
packages have two main attribute categories: a version local to each package,
and a keyword which states on which hardware that package can be installed.

To illustrate these attributes, let us integrate them in our extensional presen-
tation of the glibc FM, given in Example 2.4: we first add a new attribute glibcv
for the version of the glibc and link it to the glibc feature; and for the keyword,
we add a global mandatory feature hw to model the hardware configuration and
link the keyword attribute to it. Currently, the set of possible versions for glibc
are: dglibc = {2.32-r6, 2.32-r7, 2.32-r8, 2.33, 9999}. And the possible architec-
tures supported by Gentoo are: dhw = {amd64, x86, alpha, arm, arm64, hppa,
ia64, ppc, ppc64, sparc}. Thus, Aglibc = (F ′

glibc,Aglibc, αglibc,Dglibc, δglibc,Vglibc)
is the AFM for glibc, where:

F ′
glibc = Fglibc ∪ {hw}, Aglibc = {glibcv, keyword}, Dglibc = {dglibc, dhw},

αglibc = [glibcv 7→ glibc, keyword 7→ hw], δglibc = [glibcv 7→ dglibc, keyword 7→ dhw],

Vglibc = {(p ∪ {hw}, [keyword 7→ k, glibcv 7→ v]) | p ∈ Pglibc, k ∈ dhw, v ∈ dglibc}

with Fglibc and Pglibc as defined in Example 2.4.

The logical representation of AFM considers constraints over features and
attributes. In the literature [22, 23, 12, 24] such constraints have been expressed
in the language used for Constraint Satisfaction Problem (CSP) [25, 26]. A CSP
can be defined as a triple (A,D, C) where A is a finite set of variables, D is a
finite set of domains (one for each variable) and C is a set of constraints defined
on A. A solution to a CSP is an assignment of a value to every variable, which is
domains and constraints respecting. This language is a quantifier-free first-order
logic that can be formulated in a programming flavour [27, 23, 28].

To simplify the presentation (and without loss of generality), in this paper
we only consider domains involving integers. Namely, we consider:

• attribute-expression, namely e ::= n | a | e op e where constants n
are values in our domains, variables a are attributes, and operations op
range over {+,−, ∗, div, mod}; and

• attribute-constraints (i.e., constraints involving features and attributes)
extending the propositional formulas of Definition 2.1 with predicative-
propositions e1 rel e2, where rel is a predicate in {=, ̸=, <,≤, >,≥}.

5

As pointed out in the literature [12, 27, 24, 29, 30], in order to avoid semantic
issues “each attribute is treated like a variable that is always defined, even if the
feature that declares it is not part of the product” [12, p.1138]. Accordingly, for
each domain D in D, we assume a default value d(D) that is used as value of
the attributes of the deselected features when checking whether an attributed-
constraint is satisfied by a given attributed-product. It is natural to expect that
constraints are formulated to be invariant w.r.t. the choice of the default values.

In the examples, to improve readability, we name each attribute prefixing
the name of the feature to which is associated.

Example 2.8 (Constraints over features and attributes). Let f1, f2 be fea-
tures, let f1.a, f2.b be attributes of domain N10 (the set of the natural numbers
from 0 to 9) with d(N10) = 0. Then, the attribute-constraint f1∧¬f2∧ ((f1.a ≥
(f2.b + 1)) ∨ ¬(f1.a < 5)) describes the 9 attribute products (f1, {a 7→ i}) for
1 ≤ i ≤ 9. In fact, when f2 is deselected, the default value 0 is used for f2.b.

In order to support the formulation of some operations on AFMs, we con-
sider existentially quantified attributed-constraints of the form ∃a :D.ψ, where
D is a domain in D. It is worth observing that, whenever D finite, then ∃a :D.ψ
is logically equivalent to ψ[a := n1] ∨ · · · ∨ ψ[a := nk], where the ni (1 ≤ i ≤ k)
are the elements of D. Therefore, when all the domains in D are finite, the
existential quantification construct can be considered as syntactic sugar.

Accordingly, we formalize the logical representation of AFMs as follows.

Definition 2.9 (AFM, logical representation). A logical AFM Ψ is a 7-
tuple (F ,A, α,D, δ, d, ψ) where F is a set of features, A is the set of attributes,
α : A → F is a function mapping each attribute to a feature, D is the set
of (non-empty) domains on which attributes can range over, δ : A → D is a
function associating to each attribute a domain, d : D → ∪D is a function
associating to each domain D one of its values (the default value) such that
d ∝ δ (viz. d is a function associating to each domain D a value in D), and ψ
is an attribute-constraint formula generated from:

ψ ::= x | e rel e | ∃a :D.ψ | ψ ∧ ψ | ψ ∨ ψ | ψ → ψ | ¬ψ | false | true ,

where x ∈ F and D ∈ D and a is bound in the scope of ∃. The attributed-
products of Ψ are the pairs (p, v) where p ⊆ F , v : α−1(p) → ∪D satisfies
v ∝ δ, such that the formula ψ is satisfied by applying in order the next steps:
(i) assign true to the feature-variables x in p, and assign false to the feature-
variables in F \ p; (ii) assign v(a) to the attribute-variables a in α−1(p), and
assign d(δ(a)) to the others; and (iii) replace each occurrence of ∃a :D.ψ′ (where
ψ′ does not contain any further existential, until no occurrence of existentially
quantified formula remains) with true if there exists n in D such that ψ′[a := n]
is satisfied, and with false otherwise.

Example 2.10 (A logical representation of the glibc AFM). The exten-
sional representation of the glibc AFM given in Example 2.7 has a logical equiv-
alent Ψglibc = (Fglibc,Aglibc, αglibc,Dglibc, δglibc, dglibc, ψglibc) where Fglibc, Aglibc,

6

αglibc, Dglibc and δglibc are defined as in Example 2.7, where ψglibc is the formula
ϕglibc ∧ hw where ϕglibc is given in Example 2.2, and where:

dglibc = [dhw 7→ amd64, dglibc 7→ 2.33].

Here, we state as default the most common hardware architecture for personal
computers (i.e., a PC 64bits), and the current stable release of glibc.

Definition 2.11 (Empty, void and trivial AFMs). The empty AFM is A∅ =
(∅, ∅, ⊥,D,⊥, {(∅,⊥)}) — it has no features and has just the empty attributed-
product (∅,⊥), where ⊥ is the function with the empty domain. An AFM is void
if it has no products, i.e., it is of the form void(F ,A, α,D, δ) = (F ,A, α,D, δ, ∅),
for some F , A, α, D and δ. An AFM is trivial if has all the possible products,
i.e., it is of the form trivial(F ,A, α,D, δ) = (F ,A, α,D, δ,all(F ,A, α,D, δ)),
where all(F ,A, α,D, δ) = {(p, v) ∈ 2F × α−1(p) → ∪D | v ∝ δ}. Note that A∅
is trivial.

The logical representations of void(F ,A, α,D, δ) is (F ,A, α,D, δ, d, false) for
all d. Likewise, trivial(F ,A, α,D, δ) is logically represented by (F ,A, α,D, δ, d, true).

2.3. FM Composition and Fragment Relation
Complex software systems, like the Gentoo source-based Linux distribu-

tion [20], often consist of many interdependent configurable packages [31, 8, 19].
The configuration options of each package can be represented by a FM. There-
fore, configuring two packages in such a way that they can be installed together
corresponds to finding a product in the composition of their associated FMs.
As pointed out by Lienhardt et al. [19], in the logical representation of FMs this
composition corresponds to conjunction: the composition of two FMs (F1, ϕ1)
and (F2, ϕ2) is the FM (F1 ∪ F2, ϕ1 ∧ ϕ2). Lienhardt et al. [19] also claimed
that in the extensional representation of FMs this composition corresponds to
the binary operator • of Schröter et al. [18], which combines the products sets
in way similar to the join operator from relational algebra [32].

Definition 2.12 (FM composition). The composition of two FMs F1 = (F1,P1)
and F2 = (F2,P2), denoted F1 • F2, is the FM (F1 ∪ F2, {p ∪ q | p ∈ P1, q ∈
P2, p ∩ F2 = q ∩ F1}).

As proved in [33, 34], the composition operator • is associative and commuta-
tive, with F∅ as identity element (i.e., F • F∅ = F). Note that (F1,P1) • (F2, ∅)
= (F1 ∪ F2, ∅).

Example 2.13 (Composing glibc and gnome-shell FMs). Let us consider
another important package of the Gentoo distribution: gnome-shell, a core com-
ponent of the Gnome Desktop environment. Current versions of gnome-shell are
provided by the package gnome-base/gnome-shell (abbreviated to g-shell in the
sequel), and its dependencies include the following statement:

7

networkmanager?(sys−libs/timezone−data)

This dependency expresses that g-shell requires any version of the time zone
database when the feature networkmanager (abbreviated to g-shell:nm in the
sequel) is selected.

The logical representation of this dependency can be captured by the FM
(Fg-shell, ϕg-shell), where

Fg-shell = {g-shell, tzdata, g-shell:nm} ϕg-shell = g-shell ∧ (g-shell:nm → tzdata)

The corresponding extensional representation of this FM is Fg-shell = (Fg-shell,
Pg-shell), where:

Pg-shell ={{g-shell}, {g-shell, tzdata}, {g-shell, tzdata, g-shell:nm}}

Here, the first two products do not includeg-shell:nm, thus tzdata can be freely
selected; in the last product the flag g-shell:nm is selected and tzdata becomes
mandatory.

The logical representation of the composition is the FM (Ffull, ϕfull), where

Ffull = Fglibc ∪ Fg-shell = {glibc, texinfo, tzdata, g-shell, glibc:doc, glibc:v, g-shell:nm}
ϕfull = ϕglibc ∧ ϕg-shell = (glibc ∧ ((glibc:doc → texinfo) ∧ (glibc:v → (¬tz-data)))

∧(g-shell ∧ (g-shell:nm → tzdata))

The extensional representation of the composition is the FM Ffull = Fglibc •
Fg-shell = (Ffull,Pfull) where

Pfull = {{glibc, g-shell} ∪ p | p ∈ 2{texinfo, tzdata}} ∪

{{glibc, glibc:doc, texinfo, g-shell} ∪ p | p ∈ 2{tzdata}} ∪

{{glibc, glibc:v, g-shell} ∪ p | p ∈ 2{texinfo}} ∪

{{glibc, g-shell, g-shell:nm, tzdata} ∪ p | p ∈ 2{texinfo}} ∪
{{glibc, glibc:doc, glibc:v, texinfo, g-shell}} ∪
{{glibc, glibc:doc, texinfo, g-shell, g-shell:nm, tzdata}}

Here, the first line contains the products where both glibc and g-shell are in-
stalled, but without use flags selected, so all optional package can be freely
selected; the second line contains the products with the glibc’s use flag doc
selected, so sys-apps/texinfo becomes mandatory; the third line contains the
products with the glibc’s use flag vanilla selected, so sys-libs/timezone-data is
forbidden; the fourth line contains the products with the g-shell’s use flag net-
workmanager, so sys-libs/timezone-data is mandatory; the fifth line contains the
product with glibc’s both use flags selected and the sixth line contains the prod-
uct with glibc’s use flag doc and g-shell’s use flag networkmanager are selected.

The notion of FM composition induces the definition of the notion of FM
fragment as a binary relation between FMs.

Definition 2.14 (FM fragment relation). A FM F0 is a fragment of a FM
F1, denoted as F0 ≤ F1, whenever there exists a FM F′ such that F0 • F′ = F1.

8

For instance, we have (by definition) that Fg-shell ≤ (Fg-shell • Fglibc). It is
worth observing that, as illustrated by the following example, some combination
of features that are allowed in the members of the composition might be no
longer available in the result of the composition.

Example 2.15 (Composing glibc and libical FMs). Consider for instance
the library libical in Gentoo. Its FM contains the following constraint (as ex-
pressed in Gentoo notation):

berkdb? (sys−libs/db) sys−libs/timezone−data

This dependency expresses that libical requires the db library whenever the
feature berkdb is selected and requires the package sys-libs/timezone-data to be
installed. These dependencies can be extensionally expressed by a FM Flibical =
(Flibical,Plibical) where

Flibical = {libical, berkdb, sys-libs/db, tzdata}
Plibical = {{libical, tzdata}, {libical, tzdata, berkdb, sys-libs/db}}

Composing the FM of glibc and libical gives the FM Fc = (Fc,Pc) where Fc =
Fglibc ∪ Flibical and:

Pc = {{glibc, libical, tzdata} ∪ p | p ∈ 2{texinfo, sys-libs/db}} ∪

{{glibc, glibc:doc, texinfo, libical, tzdata} ∪ p | p ∈ 2{sys-libs/db}} ∪

{{glibc, libical, berkdb, sys-libs/db, tzdata} ∪ p | p ∈ 2{texinfo}} ∪
{{glibc, glibc:doc, texinfo, libical, berkdb, sys-libs/db, tzdata}}

Here, the first line contains the products where both glibc and libical are in-
stalled, but without use flags selected, so only the annex package timezone-data
is mandatory; the second line contains the products with the glibc’s use flag
doc selected, so sys-apps/texinfo becomes mandatory; the contains the products
with the libical’s use flag berkdb, so sys-libs/db becomes mandatory; finally, the
fourth line contains the product with all optional features of both glibc and
libical selected.

It is easy to see from the constraint, and also from the extensional repre-
sentation, that combining glibc and libical makes the feature glibc:v dead (i.e.,
not selectable): when composed, the FMs interact and not all combinations of
products are available. Feature incompatibilities such as this are a normal oc-
currence in many product lines (such as the linux kernel) but have two negative
properties: first, it means that some features that are stated to be optional (i.e.,
can be freely selected or not by the user) actually are not optional in some cases,
depending on some other packages being selected or not; second, it means that
some packages cannot be installed at the same time because of their depen-
dencies: consider for instance a package that requires the feature glibc:v being
selected, that package is not compatible with libical.

2.4. AFM Composition and Fragment Relation
Notation 2.16. If v1, v2 are functions then we write v1 ≎ v2 to mean that they
coincide on their common domain, i.e., v1(x) = v2(x), for all x ∈ dom(v1) ∩

9

dom(v2). If v1 ≎ v2 then v1, v2 are compatible, so we can define v1 ⊕ v2 be the
function with domain dom(v1)∪ dom(v2) behaving as v1 on dom(v1) and v2 on
dom(v2).

Definition 2.17 (AFM compatibility and composition). Let Ai = (Fi,Ai, αi,Di, δi,Vi)
be AFM where i = 0, 1. If α0 ≎ α1, δ0 ≎ δ1 then A0,A1 are said compatible. If
A0,A1 are compatible then, we write A0 • A1 for their composition, namely the
AFM (F0 ∪ F1,A0 ∪ A1, α0 ⊕ α1,D0 ∪ D1, δ0 ⊕ δ1,V) such that

V = {(p0 ∪ p1, v0 ⊕ v1) | (pi, vi) ∈ Vi , p0 ∩ F1 = p1 ∩ F0 , v0 ≎ v1} .

In the following, we reason under the hypothesis that each attribute uniquely
identifies the feature to which it is associated (cf. Example 2.8), thus we fo-
cus on compatible AFMs. Whenever the compatibility holds, it follows that
• is associative and commutative also for AFM; following the proofs given
in [33, 34]. As for traditional FMs, each AFM A is idempotent w.r.t. the
composition, viz. A • A = A. Moreover, note that ((F1,P1),A1,D1, α1,V1) •
((F2, ∅),A2,D2, α2, ∅) = ((F1 ∪F2, ∅)A1 ∪A2,D1 ∪D2, α1 ⊕α2, ∅) and that A∅
is the identity for •.

Example 2.18 (Composing glibc and gnome-shell AFMs). Like for glibc,
the gnome-shell package has several versions and requirement on the hardware
architecture it can be installed on. To model these aspects, we extend the Fg-shell
FM into a AFM with: the feature for the hardware configuration hw the keyword
attribute and an attribute g-shellv for the version of the gnome-shell package.
This extension results into the AFM Ag-shell = (F ′

g-shell,Ag-shell, αg-shell,Dg-shell, δg-shell,Vg-shell)
where:

F ′
g-shell = Fg-shell ∪ {hw}, Ag-shell = {g-shellv, keyword}, Dg-shell = {dg-shell, dhw},

αg-shell = [g-shellv 7→ g-shell, keyword 7→ hw],
δg-shell = [g-shellv 7→ dg-shell, keyword 7→ dhw],

Vg-shell =

{
(p ∪ {hw}, [keyword 7→ k, g-shellv 7→ 3.36.7])

∣∣∣∣ p ∈ Pg-shell, g-shell ∈ p,
k ∈ dhw

}
∪
{
(p ∪ {hw}, [keyword 7→ k, g-shellv 7→ v])

∣∣∣∣ p ∈ Pg-shell, g-shell ∈ p,
k ∈ d2hw, v ∈ d1g-shell

}
with dg-shell = {3.36.7, 3.38.4, 3.38.4-r1}, dhw = {amd64, x86, arm, arm64, ia64,
ppc, ppc64}, d2hw = {amd64, x86, arm, arm64, ppc64}, d1g-shell = {3.38.4, 3.38.4-r1}.

Here, we can see that not all versions of gnome-shell can be installed on
every architecture: all versions can be installed on amd64, x86, arm, arm64 and
ppc64, and only version 3.36.7 can be additionally installed on the architectures
ia64 and ppc.

It is clear that Aglibc and Ag-shell are compatible: the only shared attribute is
keyword which is linked in Aglibc and Ag-shell to the same feature hw and the same
domain dhw. By Definition 2.17, we can thus construct the AFM Afull = Aglibc •
Ag-shell. By construction, we thus have Afull = (F ′

full,Afull, αfull,Dfull, δfull,Vfull)

10

where:

F ′
full = F ′

glibc ∪ F ′
g-shell = Ffull ∪ {hw}

Afull = Aglibc ∪ Ag-shell = {g-shellv, glibcv, keyword}
αfull = [glibcv 7→ glibc, g-shellv 7→ g-shell, keyword 7→ hw]
Dfull = Dglibc ∪ Dg-shell = {dglibc, dg-shell, dhw}
δfull = [glibcv 7→ dglibc, g-shellv 7→ dg-shell, keyword 7→ dhw]

Vfull =

p ∪ p′,

 keyword 7→ k,
glibcv 7→ v,
g-shellv 7→ 3.36.7

∣∣∣∣∣∣
p ∈ Pglibc, glibc ∈ p,
p′ ∈ Pg-shell, g-shell ∈ p′,
v ∈ dglibc, k ∈ dhw

⋃

p ∪ p′,
 keyword 7→ k,

glibcv 7→ v,
g-shellv 7→ v′

∣∣∣∣∣∣
p ∈ Pglibc, glibc ∈ p,
p′ ∈ Pg-shell, g-shell ∈ p′,
v ∈ dglibc, v

′ ∈ d1g-shell, k ∈ d2hw

Most of the elements defining Afull are simply the union of the elements of
Aglibc and Ag-shell. The interesting exception is Vfull: the first line includes all
the attributed-products with glibc and version 3.36.7 of the gnome-shell pack-
age; and the second line includes all the attributed-products with glibc and the
other versions of the gnome-shell package. We can see that all of the hardware
restrictions required by the different versions of the gnome-shell package are
also enforced in the attributed-products of Afull.

The notion of fragment relation can be straight adapted to AFM.

Definition 2.19 (AFM fragment relation). Let A0,A1 be compatible AFM.
A FM A0 is a fragment of a FM A1, denoted as A0 ≤ A1, whenever there exists
a FM A′ such that A0 • A′ = A1.

Let Ai = (Fi,Ai, αi,Di, δi,Vi) be two AFMs where i = 0, 1: if A0 ≤ A1

then (F0,PV0) ≤ (F1,PV1) holds.

Example 2.20 (Composing glibc, gnome-shell and libical AFMs). We al-
ready saw in Example 2.18 that even if keyword is allowed to take all of its
possible values in Aglibc when selecting glibc, when composing Aglibc with Ag-shell
and selecting g-shell, keyword can now only take the values in d2hw (or dhw when
version 3.36.7 of gnome-shell is selected). Hence the removal of feature combi-
nations due to composition also occur for the domains of attributes.

We can combine both effects by composing the AFM of glibc, gnome-shell
and libical together. Currently, the libical package has three available versions in
Gentoo, that are available on every architecture: we define the AFM of libical
as Alibical = (F ′

libical,Alibical, αlibical,Dlibical, δlibical,Vlibical) where:

F ′
libical = Flibical ∪ {hw}

Alibical = {libicalv, keyword}
αlibical = [libicalv 7→ libical, keyword 7→ hw]
Dlibical = {dlibical, dhw}
δlibical = [libicalv 7→ dlibical, keyword 7→ dhw]
Vlibical = {(p ∪ {hw}, [keyword 7→ k, libicalv 7→ v]) | p ∈ Plibical, libical ∈ p, k ∈ dhw}

11

with dlibical = {3.0.8, 3.0.9, 3.0.10}.
Composing Afull with Alibical will thus result in an AFM in which, when g-shell
and libical are selected, keyword being restricted to the values in d2hw (or dhw
depending on the version of g-shell), and where the feature tzdata is mandatory.
We thus define Aall = Afull • Alibical = (Fall,Aall, αall,Dall, δall,Vall) where:

Fall = F ′
full ∪ Flibical

Aall = Afull ∪ Alibical = {glibcv, g-shellv, libicalv, keyword}
αall = [glibcv 7→ glibc, g-shellv 7→ g-shell, libicalv 7→ libical, keyword 7→ hw]
Dall = {dglibc, dg-shell, dlibical, dhw}
δall = [glibcv 7→ dglibc, g-shellv 7→ dg-shell, libicalv 7→ dlibical, keyword 7→ dhw]
Vall = {(p ∪ p′, v ∪ [libicalv 7→ v′]) | (p, v) ∈ Vfull, p

′ ∈ Plibical, libical ∈ p′, v′ ∈ dlibical}.

3. Algebraic Characterization of FMs and AFMs

In Section 3.1, we recall some relevant algebraic notions. In Section 3.2, we
show that the FM fragment relation induces a lattice of FMs where the join
operation is FM composition, and in Section 3.3 we extend the result to AFMs.
Then, in Section 3.4, we show that the FM fragment relation generalizes the
FM interface relation [18] and we provide some more algebraic properties, and
in Section 3.5 we extend these results to AFMs.

3.1. A Recollection of Algebraic Notions
In this section we briefly recall the notions of lattice, bounded lattice and

Boolean algebra (see, e.g., Davey and Priestley [35] for a detailed presentation).
An ordered lattice is a partially ordered set (P,⊑) such that, for every x, y ∈ P ,
both the least upper bound (lub) of {x, y}, denoted sup{x, y} = min{a | x, y ⊑
a}, and the greatest lower bound (glb) of {x, y}, denoted inf{x, y} = max{a |
a ⊑ x, y}, are always defined.

An algebraic lattice is an algebraic structure (L,⊔,⊓) where L is non-empty
set equipped with two binary operations ⊔ (called join) and ⊓ (called meet)
which satisfy the following.

• Associative laws: x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z, x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z.

• Commutative laws: x ⊔ y = y ⊔ x, x ⊓ y = y ⊓ x.

• Absorption laws: x ⊔ (x ⊓ y) = x, x ⊓ (x ⊔ y) = x.

• Idempotency laws: x ⊔ x = x, x ⊔ x = x.

As known, the two notions of lattice are equivalent (Theorem 2.9 and 2.10
of [35]). In particular, given an ordered lattice (P,⊑) with the operations x⊔y =
sup{x, y} and x ⊓ y = inf{x, y}, the following three statements are equivalent
(Theorem 2.8 of [35]):

x ⊑ y, x ⊔ y = y, x ⊓ y = x.

12

A bounded lattice is a lattice that contains two elements ⊥ (the lattice’s
bottom) and ⊤ (the lattice’s top) which satisfy the following law: ⊥ ⊑ x ⊑ ⊤.
Let L be a bounded lattice, y ∈ L is a complement of x ∈ L if x ⊓ y = ⊥ and
x ⊔ y = ⊤. If x has a unique complement, we denote this complement by x∁.

A distributive lattice is a lattice which satisfies the following distributive law:
x⊓ (y ⊔ z) = (x⊓ y)⊔ (x⊓ z). In a bounded distributive lattice the complement
(whenever it exists) is unique (see [35, Section 4.13]).

A Boolean lattice (a.k.a. Boolean algebra) L is a bounded distributive lattice
such that each x ∈ L has a (necessarily unique) complement x∁ ∈ L.

3.2. Lattices of FMs
Although (to the best of our knowledge) only finite FMs are relevant in prac-

tice, in our theoretical development (in order to enable a better understanding
of the relation between the extensional and the logical representations) we
consider also FMs with infinitely many features and products. The following
definition introduces a notation for three different sets of extensional FMs (see
Definition 2.3) over a given set of features.

Definition 3.1 (Sets of extensional FMs over a set of features). Let X
be a set of features. We denote:

• E(X) the set of the extensional FMs (F ,P) such that F ⊆ X;

• Efin(X) the set of (F ,P) ∈ E(X) such that F ⊆fin X; and

• Eeql(X) the set of (F ,P) ∈ E(X) such that F = X.

Note that, ifX has infinitely many elements then Efin(X) has infinitely many
elements too. Instead, if X is finite then E(X) and Efin(X) coincide and have a
finite number of elements.

The FMs used in practice are finite, i.e., they belong to Efin(X). However,
as we will see, Efin(X) is algebraically more poor that the other two sets of FMs.
In particular, Eeql(X) is the algebraically richer structure.

Notation 3.2. Let F be a set of feature. If X ⊆ F and Y ⊆ 2F then, we write
Y |X to denote {y ∩X | y ∈ Y }.

Lemma 3.3 (Two criteria for the FM fragment relation). For all F1 =
(F1,P1) ∈ E(X) and F2 = (F2,P2) ∈ E(X), the following statements are equiv-
alent:

i) F1 ≤ F2;

ii) F1 • F2 = F2;

iii) F1 ⊆ F2 and P1 ⊇ P2|F1 .

13

Proof. i) ⇒ ii). It is straightforward to check that F • F = F, for all F. Then,
by definition of ≤ (Definition 2.14) there is F′ ∈ E(X) such that F2 = F1 • F′.
Thus, F1 • F2 = F1 • (F1 • F′) = (F1 • F1) • F′ = F1 • F′ = F2.
ii) ⇒ iii). By definition of • (Definition 2.12), it is clear from the hypothesis
that F1 ⊆ F2. Moreover, P2 = {p ∪ q | p ∈ P1, q ∈ P2, p ∩ F2 = q ∩ F1}
immediately implies that P2 = {q | p ∈ P1, q ∈ P2, p = q ∩ F1}, which in turn
implies P2|F1 ⊆ P1.
iii) ⇒ i). By using the hypothesis, we have (F1 ∪ F2, {p ∪ q | p ∈ P1, q ∈
P2, p ∩ F2 = q ∩ F1}) = (F2,P2), i.e. F1 • F2 = F2. This implies, by definition
of ≤, that F1 ≤ F2. □

It is worth observing that, if F1 ≤ F2, then P1 can contain products that are
not subsets of products in P2. Clearly, Lemma 3.3 applies to Efin(X),Eeql(X)
too.

Lemma 3.4 (The operator • on Eeql(X)). Let F1 = (F1,P1),F2 = (F2,P2)
be FMs in Eeql(X), we have that: F1 • F2 = (X,P1 ∩ P2).

Proof. According to the definition of • we have:
F1 • F2 = (X, {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 = p2}) = (X,P1 ∩ P2). □

Definition 3.5 (Meet for FMs). Let F1 = (F1,P1),F2 = (F2,P2) be in
E(X), we define: F1 ⋆ F2 = (F1 ∩ F2, P1|F2

∪ P2|F1
).

Lemma 3.6 (The operator ⋆ on Eeql(X)). Let F1 = (F1,P1),F2 = (F2,P2)
in Eeql(X), we have that: F1 ⋆ F2 = (X,P1 ∪ P2).

Proof. According to the definition of ⋆ we have:
F1 ⋆ F2 = (X ∩X, P1|X ∪ P2|X) = (X,P1 ∪ P2). □

The following definition introduces an operator that plays the role of com-
plement in the structure Eeql(X). Namely, F††† is the FM which has as products
the configurations of the FM F that are not products of F.

Definition 3.7 (Complement on Eeql(X)). Let F = (F ,P) be in E(X), we
define: F††† = (F , 2F \ P).

Theorem 3.8 (Lattices of FMs over a set of features).

1. (E(X),≤) is a bounded lattice with join •, meet ⋆, bottom trivial(∅) =
(∅, {∅}) and top void(X) = (X, ∅).

2. If X is an infinite set then Efin(X) is a sublattice of E(X) with the same
bottom and no top.

3. Eeql(X) is a sublattice of E(X) and it is a Boolean lattice with bottom
trivial(X) = (X, 2X), same top of E(X), and complement (·)†††.

14

Proof. Let F1 = (F1,P1) and F2 = (F2,P2) be FMs. First prove that ≤ is a
partial order. Let F1 ≤ F2 ≤ F3.

• Reflexivity. The proof for E(X) and Efin(X) follows because F1 • F∅ = F1.
In the case Eeql(X), it follows because F1 • (X, 2X) = F1. Clearly, F∅
belongs to Eeql(X) only when X = ∅ (in this case, (X, 2X) is F∅).

• Antisymmetry. The proof is the same for E(X), Efin(X), Eeql(X). Suppose
F2 ≤ F1 and F1 ≤ F2, so by hypothesis there are F,F′ such that F1 =
F2 • F and F2 = F1 • F′. Clearly, by associativity, commutativity and
idempotency

F1 = F2 • F = (F1 • F′) • F = ((F2 • F) • F′) • F
= F2 • (F • F) • F′ = (F2 • F) • F′ = F1 • F′ = F2 .

• Transitivity. The proof is the same for E(X), Efin(X), Eeql(X). Let F,F′

such that F3 = F2 • F and F2 = F1 • F′. Clearly, F3 = F2 • F = (F1 •
F′) • F = F1 • (F′ • F) which ensures that F1 ≤ F3.

Part 1: (E(X),≤) is a bounded lattice with join •, meet ⋆, bottom
F∅ = (∅, {∅}) and top (X, ∅). Let ↑ F be the set of upper bounds of F w.r.t.
≤, i.e. {F′ | F ≤ F′}; and, let ↓ F be the set of lower bounds of F w.r.t. ≤, i.e.
{F′ | F′ ≤ F}.

• Fi ≤ F1 • F2 (i = 1, 2), by definition of ≤; so F1 • F2 ∈ (↑ F1) ∩ (↑ F2).
Moreover, for all common upper bounds F ∈ (↑ F1) ∩ (↑ F2), we have,
by Lemma 3.3, F = F1 • F = F1 • (F2 • F) = (F1 • F2) • F. Thus, we
conclude that F1 • F2 is the join.

• Let F = (F ,P) = (F1 ∩F2,P1|F2
∪P2|F1

). We have {p∩F | p ∈ Pi} ⊆ P
and F ⊆ Fi for i ∈ {1, 2}: we thus have F ∈ (↓ F1)∩ (↓ F2). Moreover, for
all (F ′,P ′) ∈ (↓ F1) ∩ (↓ F2), it is easy to see that F ′ ⊆ F1 ∩F2 ⊆ F and
P|F ′ ⊆ P ′ by Lemma 3.3. And so, again by Lemma 3.3, F is the meet.

• For all F ∈ E(X), we have F • F∅ = F which implies by definition that
F∅ ≤ F. Similarily, it is easy to see that for all F ∈ E(X), we have
F • (X, ∅) = (X, ∅) which implies by definition that F ≤ (X, ∅).

Part 2: If X is an infinite set then Efin(X) is a sublattice of E(X) with
the same bottom and no top. It is clear that for every F1 ∈ Efin(X) and
F2 ∈ E(X) such that F2 ≤ F1, we have that F2 ∈ Efin(X). It follows that
Efin(X) is a sublattice of E(X) with F∅ as bottom. Moreover, if follows from
the definition of • that if Efin(X) with X infinite would have a top (F ,P), we
would have S ⊆ F for all S ⊆fin X. This means that F should be equal to X,
which is not possible.
Part 3: Eeql(X) is a sublattice of E(X) and it is a Boolean lattice
with bottom (X, 2X), same top of E(X), and complement (·)†††. It is
clear that for every F1,F2 ∈ Eeql(X) we have that F1 • F2 ∈ Eeql(X) and

15

F1 ⋆ F2 ∈ Eeql(X). It follows that Eeql(X) is a sublattice of E(X) with (X, ∅)
as top. Moreover, it is easy to see that (X, 2X) ∈ Eeql(X) and that for all
F1 ∈ Eeql(X), we have (X, 2X) • F = F. We prove the distributive law by using
Lemmas 3.4 and 3.6: let F1 = (X,P1),F2 = (X,P2),F3 = (X,P3) ∈ Eeql(X),
so

F1 ⋆ (F2 • F3) = (X,P1 ∪ (P2 ∩ P3))
= (X, (P1 ∪ P2) ∩ (P1 ∪ P3)) = (F1 ⋆ F2) • (F1 ⋆ F3)

Finally, F1 ⋆ F1
††† = (X, 2X) and F1 • F1

††† = (X, ∅) follow by Lemmas 3.4, 3.6. □

3.3. Lattices of AFMs
Notation 3.9. If v is a function and X ⊆ dom(v) then v|X is the restriction of
the function to the domain X.

Definition 3.10 (Sets of extensional AFMs). Let X be a set of features,
let Y a set of attributes, let D be a set of domains, let α̈ be a function of Y → X
and let δ̈ be a function of Y → D. We denote:

• A(X,Y, α̈,D, δ̈) the set of all extensional AFMs (F ,A, α,D, δ,V) such that
F ⊆ X, A ⊆ α̈−1(F), α = α̈|A and δ = δ̈|A (i.e. α, δ are the restrictions
of α̈ and δ̈ to A, respectively);

• Afin(X,Y, α̈,D, δ̈) the set of AFMs (F ,A, α,D, δ,V) ∈ A(X,Y, α̈,D, δ̈) such
that F ⊆fin X and A ⊆fin α̈

−1(F); and

• Aeql(X,Y, α̈,D, δ̈) is the set of AFMs (F ,A, α,D, δ,V) ∈ A(X,Y, α̈,D, δ̈)
such that F = X, A = Y , α = α̈ and δ = δ̈.

Clearly, Afin(X,Y, α̈,D, δ̈) and Aeql(X,Y, α̈,D, δ̈) are subsets of A(X,Y, α̈,D, δ̈).
A further interesting set of extensional AFMs is Aeql(X,Y, α̈,D, δ̈) where X,Y,D
are finite sets: luckily, its main properties are that of the general case. It is
worth to note that the AFMs in the above families are always compatible being
restrictions of the same pattern.

Lemma 3.11 (Two criteria for the AFM fragment relation). Let Ai be
two AFMs (i = 1, 2) in A(X,Y, α̈,D, δ̈). If Ai = (Fi,Ai, αi,D, δi,Vi) then the
following statements are equivalent:

i) A1 ≤ A2;

ii) A1 • A2 = A2;

iii) F1 ⊆ F2, A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2
and V1 ⊇ {(p2|F1

, v2|A1
) | (p2, v2) ∈ V2}.

16

Proof. i) ⇒ ii). It is straightforward to check that A • A = A, for all A.
Then, by definition of ≤ (Definition 2.19) there is A′ ∈ A(X,Y, α̈,D, δ̈) such that
A1 • A′ = A2. So, A1 • A2 = A1 • (A1 • A′) = (A1 • A1) • A′ = A1 • A′ = A2.

ii) ⇒ iii). Since the hypothesis A1 • A2 = A2 and Definition 2.17, we have
F1 ⊆ F2 A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2 and V2 must be equal to

{(p1 ∪ p2, v1 ⊕ v2) | (pi, vi) ∈ Vi and p1 ∩ F2 = p2 ∩ F1 and v1 ≎ v2}

which ensures that: for all (p2, v2) ∈ V2 there is (p1, v1) such that p1 = p2 ∩ F1

and v1 ⊆ v2. More compactly, {(p2|F1 , v2|A1) | (p2, v2) ∈ V2} ⊆ V1 must hold.
iii) ⇒ i). By hypothesis, it is clear that

(F1 ∪ F2,A1 ∪ A2, α1 ⊕ α2,D, δ1 ⊕ δ2,V) = (F2,A2, α2,D, δ2,V2)

where V = {(p1 ∪ p2, v1 ⊕ v2) | (pi, vi) ∈ Vi, p1 ∩ F2 = p2 ∩ F1 and v1 ≎ v2}),
i.e. A1 • A2 = A2. This implies, by definition of ≤, that A1 ≤ A2. □

Lemma 3.12 (The operator • on Aeql(X,Y, α̈,D, δ̈)). Let Ai ∈ Aeql(X,Y, α̈,D, δ̈)
be two AFMs (i = 1, 2). If Ai = (X,Y, α̈,D, δ̈,Vi) then

A1 • A2 = (X,Y, α̈,D, δ̈,V1 ∩ V2).

Proof. {(p1 ∪ p2, v1 ⊕ v2) | (pi, vi) ∈ Vi, p1 ∩X = p2 ∩X and v1 ≎ v2} is the
set of AFM-products of A1 • A2 in accord with Definition 2.17. Moreover, if
(pi, vi) ∈ Vi then then dom(vi) = α̈−1(pi), by Definition 2.6; hence, (p1, v1) ∈
V1, (p2, v2) ∈ V2 and p1 = p2 imply dom(v1) = α̈−1(p1) = α̈−1(p2) = dom(v2).
Therefore, v1 ≎ v2 means v1 = v2 and the proof is done. □

If γ1, γ2 are functions such that γ1 ≎ γ2 then, we denote γ1 ⊖ γ2 is the
restriction of the two functions to the common domain.

Definition 3.13 (Meet for AFMs). Let Ai be two AFMs in A(X,Y, α̈,D, δ̈)
such that Ai = (Fi,Ai, αi,D, δi,Vi) where i = 1, 2. We define A1 ⋆ A2 =
(F1 ∩ F2,A1 ∩ A2, α1 ⊖ α2,D, δ1 ⊖ δ2,V) where V = {(p1|F2

, v1|A2
) | (p1, v1) ∈

V1} ∪ {(p2|F1 , v2|A1) | (p2, v2) ∈ V2}.

Lemma 3.14 (The operator ⋆ on Aeql(X,Y, α̈,D, δ̈)). Let Ai ∈ Aeql(X,Y, α̈,D, δ̈)
be two AFMs (i = 1, 2). If Ai = (X,Y, α̈,D, δ̈,Vi) then

A1 ⋆ A2 = (X,Y, α̈,D, δ̈,V1 ∪ V2).

Proof. We have A1 ⋆ A2 = (F1 ∩ F2,A1 ∩ A2, α1 ⊖ α2,D, δ1 ⊖ δ2,V) where
V = {(p1|X , v1|Y) | (p1, v1) ∈ V1} ∪ {(p2|X , v2|Y) | (p2, v2) ∈ V2} according to
the definition of ⋆. The proof is easy, since V = V1 ∪ V2. □

Definition 3.15 (Complement on Aeql(X,Y, α̈,D, δ̈)). Let A be an AFM in
A(X,Y, α̈,D, δ̈) such that A = (F ,A, α,D, δ,V). We define:
A††† = (F ,A, α,D, δ,all(F ,A, α,D, δ) \ V).

17

Theorem 3.16 (Lattices of AFMs over a set of features).

1. (A(X,Y, α̈,D, δ̈),≤) is a bounded lattice with join •, meet ⋆, with bottom
trivial(∅, ∅,⊥,D,⊥) = (∅, ∅,⊥,D,⊥, {(∅,⊥)}) and top void(X,Y, α̈,D, δ̈) =
(X,Y, α̈,D, δ̈, ∅).

2. If X is an infinite set then Afin(X,Y, α̈,D, δ̈) is a sublattice of A(X,Y, α̈,D, δ̈)
with the same bottom and no top.

3. Aeql(X,Y, α̈,D, δ̈) is a sublattice of A(X,Y, α̈,D, δ̈) with the same top; and,
it forms a Boolean lattice with complement (·)††† and bottom trivial((X,Y, α̈,D, δ̈) =
(X,Y, α̈,D, δ̈,all(X,Y, α̈,D, δ̈)).

Proof. Let A1 ≤ A2 ≤ A3. The proof follows the same pattern of of Theo-
rem 3.8. Let first prove that ≤ is a partial order.

• Reflexivity. In A(X) and Afin(X) holds, because by Definition 2.17,

(F ,A, α,D, δ,V) • (∅, ∅,⊥,D,⊥, {(∅, ∅)}) = (F ,A, α,D, δ,V)

because, for all (p, v) ∈ V we have p ∩ ∅ = ∅ ∩ F and ⊥ ≎ v. In Aeql(X),
we have that each AFM has shape ((X,P), Y, α̈,D, δ̈,V), thus

((X,P), Y, α̈,D, δ̈,V) • ((X, 2X), Y, α̈,D, δ̈,V) = ((X,P), Y, α̈,D, δ̈,V)

where V is the set of all possible AFM-products, by using Lemma 5.10.

• Antisymmetry. The proof is the same for A(X), Afin(X), Aeql(X): it
follows by associativity, commutativity and idempotency of • for AFMs.
If A2 ≤ A1 and A1 ≤ A2 then, by hypothesis there are A,A′ such that
A1 = A2 • A and A2 = A1 • A′; therefore,

A1 = A2 • A = (A1 • A) • A = ((A2 • A) • A′) • A
= A2 • (A • A) • A′ = (A2 • A) • A′ = A1 • A′ = A2 .

• Transitivity. The proof is the same for A(X), Afin(X), Aeql(X). Let A,A′

such that A3 = A2 • A and A2 = A1 • A′. Clearly, A3 = A2 • A = (A1 •
A′) • A = A1 • (A′ • A) which ensures that A1 ≤ A3.

Part 1: (A(X,Y, α̈,D, δ̈),≤) is a bounded lattice with join •, meet ⋆,
whit bottom (∅, ∅,⊥,D,⊥, {(∅, ∅)}) and top (X,Y, α̈,D, δ̈, ∅). Let ↑ A be the
set of upper bounds of A w.r.t. ≤, viz. {A′ | A ≤ A′}; and, let ↓ A be the set of
lower bounds of A w.r.t. ≤, viz. {A′ | A′ ≤ A}.

• Ai ≤ A1 • A2 (i = 1, 2) by definition of ≤; so, A1 • A2 ∈ (↑ A1) ∩ (↑ A2).
Moreover, for all common upper bounds A ∈ (↑ A1)∩ (↑ A2), we have, by
Lemma 3.11, A = A1 • A = A1 • (A2 • A) = (A1 • A2) • A. Thus, we
conclude that A1 • A2 is the join.

18

• Let us assume A = (F1 ∩ F2,A1 ∩ A2, α1 ∩ α2,D, δ1 ∩ δ2,V) where V =
{(p1|F2 , v1|A2) | (p, v) ∈ V1}∪{(p2|F1 , v2|A1) | (p, v) ∈ V2}. By Lemma 3.11,
it follows that A ∈ (↓ A1)∩ (↓ A2). Moreover, for all A′ ∈ (↓ A1)∩ (↓ A2),
it is easy to check that A′ ≤ A by Lemma 3.11. Thus, ⋆ play the role of
meet.

• Let A⊥ = (∅, ∅,⊥,D,⊥, {(∅, ∅)}). For all A ∈ A(X,Y, α̈,D, δ̈),≤), we have
A • A⊥ = A (c.f. reflexivity) which means A⊥ ≤ A by ≤-definition, viz.
we found the bottom. Let A ∈ A(X,Y, α̈,D, δ̈) be (F ,A, α,D, δ,V) then

(F ,A, α,D, δ,V) • (X,Y, α̈,D, δ̈, ∅) = (X,Y, α̈,D, δ̈, ∅)

which means A ≤ ((X, ∅), Y, α̈,D, δ̈, ∅), for all A, viz. we found the top.

Part 2: If X is an infinite set then Afin(X,Y, α̈,D, δ̈) is a sublattice of
A(X,Y, α̈,D, δ̈) with the same bottom and no top. It is clear that for every
A1 ∈ Afin(X) and A2 ∈ A(X) such that A2 ≤ A1, we have that A2 ∈ Afin(X).
It follows that Afin(X) is a sublattice of A(X) with A⊥ as bottom. Moreover, if
follows from the definition of • that if Afin(X) with X infinite would have a top
(F⊤,A⊤, α⊤,D, δ⊤,V⊤). But, for all AFMs with S as set of feature, we would
that S ⊆ F⊤ and, thence, S ⊆fin X. This means that F should be equal to X,
which is not possible. (Similar reasoning holds for Y or D infinite).
Part 3: Aeql(X,Y, α̈,D, δ̈) is a sublattice of A(X,Y, α̈,D, δ̈) with the same
top; and, it forms a Boolean lattice with complement (·)††† and bot-
tom (X,Y, α̈,D, δ̈,all(X,Y, α̈,D, δ̈)). Clearly, if A1,A2 ∈ Aeql(X,Y, α̈,D, δ̈)
then also ((X, ∅), Y, α̈,D, δ̈, ∅), A1 • A2,A1 ⋆ A2 ∈ Aeql(X,Y, α̈,D, δ̈). Therefore
Aeql(X,Y, α̈,D, δ̈) is a sublattice of A(X,Y, α̈,D, δ̈) with ((X, ∅), Y, α̈,D, δ̈, ∅) as
top. Furthermore, if A = (X,Y, α̈,D, δ̈,V) ∈ Aeql(X,Y, α̈,D, δ̈) then
(X,Y, α̈,D, δ̈,all(X,Y, α̈,D, δ̈)) • A = A by Lemma 5.10. We prove the dis-
tributive law by using Lemmas 5.10 and 3.14: let (X,Y, α̈,D, δ̈,Vi) ∈ Eeql(X)
where i = 1, 2, 3, we have:

A1 ⋆ (A2 • A3) = (X,Y, α̈,D, δ̈,P1 ∪ (P2 ∩ P3))

= (X,Y, α̈,D, δ̈, (P1 ∪ P2) ∩ (P1 ∪ P3)) = (A1 ⋆ A2) • (A1 ⋆ A3)

Finally, it is easy to check that A1 ⋆ A1
††† = (X,Y, α̈,D, δ̈,all(X,Y, α̈,D, δ̈)) and

A1 • A1
††† = (X,Y, α̈,D, δ̈, ∅) by using Lemmas 5.10, 3.14. □

3.4. On FM Fragments and Interfaces
FM slices were defined by Acher et al. [36] as a unary operator ΠY that

restricts a FM to the set Y of features.

Definition 3.17 (FM slice operator). Let F = (F ,P) be a FM. The slice
operator ΠY on FMs, where Y is a set of features, is defined by: ΠY (F) =
(F ∩ Y,P|Y).

19

More recently, Schröter et al. [18] introduced the following notion of FM inter-
face.

Definition 3.18 (FM interface relation). A feature model F1 = (F1, P1) is
an interface of FM F2 = (F2,P2), denoted as F1 ⪯ F2, whenever both F1 ⊆ F2

and P1 = P2|F1
hold.

Remark 3.19 (On FM interfaces and slices). As pointed out in [18], FM
slices and interfaces are closely related. Namely: F1 ⪯ F2 holds if and only if
there exists a set of features Y such that F1 = ΠY (F2).

Example 3.20 (A slice of the glibc FM). Applying the operator Π{glibc, glibc:v}
to the FM Fglibc of Example 2.4 yields the FM

F = {glibc, glibc:v} P = {∅, {glibc}, {glibc, glibc:v}},

which (according to Remark 3.19) is an interface for Fglibc.

The following theorem points out the relationship between the FM interface
relation (designed to abstract away a set of features from a FM) and the FM
fragment relation (designed to support FM decomposition).

Theorem 3.21 (Interfaces are fragments). If F1 ⪯ F2 then F1 ≤ F2.

Proof. Immediate by Definition 3.18 and Lemma 3.3. □

We conclude this section by providing some algebraic properties that relate
the slice operator and the interface an fragment relations.

Lemma 3.22 (Monotonocity properties of the FM slice operator). For
all F ,F1,F2 ⊆ X and F,F1,F2 ∈ E(X)

1. If F1 ⊆ F2 then ΠF1(F) ⪯ ΠF2(F).

2. If F1 ⊆ F2 then ΠF1
(F) ≤ ΠF2

(F).

3. If F1 ⪯ F2 then ΠF (F1) ⪯ ΠF (F2).

4. If F1 ≤ F2 then ΠF (F1) ≤ ΠF (F2).

Proof. 1. Let F = (F ,P). Since F1 ⊆ F2, we have F1 ∩ F ⊆ F2 ∩ F and
P|F1

= P|F1∩F2
= P|F2

|F1
, so we conclude by Definition 3.18.

2. Immediate by Lemma 3.22.1 and Theorem 3.21.

3. By Definition 3.18, we have that F1 ⊆ F2 and P1 = P2|F1
. Consequently,

for all F ⊆ X, we have (F1 ∩F) ⊆ (F2 ∩F) and P1|F = P2|F1 |F . Hence,
ΠF (F1) ⪯ ΠF (F2) by Definition 3.18.

4. By Lemma 3.3, we have that F1 ⊆ F2 and P1 ⊇ P2|F1
. Consequently, for

all F ⊆ X, we have (F1 ∩ F) ⊆ (F2 ∩ F) and P1|F ⊇ P2|F1
|F . Hence,

ΠF (F1) ≤ ΠF (F2) by Lemma 3.3.

20

We remark that Lemma 3.22.3 and Theorem 3.21 do not imply Lemma 3.22.4.

Theorem 3.23 (Algebraic properties of the FM slice operator). For all
F1,F2,F3 ∈ E(X) and F4,F5 ⊆ X, we have

≤-Monotonicity. If F1 ≤ F2 and F4 ⊆ F5, then ΠF4
(F1) ≤ ΠF5

(F2).

⪯-Monotonicity. If F1 ⪯ F2 and F4 ⊆ F5, then ΠF4
(F1) ⪯ ΠF5

(F2).

Commutativity. ΠF4
(ΠF5

(F3)) = ΠF5
(ΠF4

(F3)).

Proof. ≤-Monotonicity. Straightforward by Lemma 3.22.2 and Lemma 3.22.4.

⪯-Monotonicity. Straightforward by Lemma 3.22.1 and Lemma 3.22.3.

Commutativity. In accordance with Definition 3.18, it is sufficient to observe
that ΠF4

(ΠF5
(F3)) = ΠF4∪F5

(F3) = ΠF5
(ΠF4

(F3)) holds. □

3.5. On AFM Fragments and Interfaces
We propose to extend the FM slice operator (cf. Definition 3.17) to AFMs

by considering also the set of attributes that should be kept by the slicing.

Definition 3.24 (AFM slice operator). Let A = (F ,A, α,D, δ,V) be an
AFM in A(X,Y, α̈,D, δ̈), F ′ ⊆ X and A′ ⊆ Y . The slice operator ΠF ′,A′

on AFMs is defined by: ΠF ′,A′(A) = (F ∩ F ′,A ∩ AR, α|AR
,D, δ|AR

,V|F ′,A′)
such that V|F ′,A′ = {(p|F ′ , v|AR

) | (p, v) ∈ V} where AR = α−1(F ′) ∩ A′.

Note that if A = (F ,A, α,D, δ,V) is an AFM then α−1(F) = A by Defini-
tion 2.6. Therefore, in the the above definition, it is natural to expect that
A′ ⊆ α−1(F ′), albeit we do not ask it. We also extend the notion of FM
interfaces (cf. Definition 3.18) to AFMs.

Definition 3.25 (AFM interface relation). Let Ai = (Fi,Ai, αi,D, δi,V)
be two AFMs where i = 1, 2. A1 is an interface of A2 denoted as A1 ⪯ A2, when-
ever F1 ⊆ F2, A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2, V1 = {(p2|F1

, v2|A1
) | (p2, v2) ∈ V2}.

AFM slices and interfaces are closely related: A1 ⪯ A2 holds if and only if
F1 = ΠF1,A1

(F2) holds.

Theorem 3.26 (AFM interfaces are AFM fragments). Let Ai be two AFMs
where i = 1, 2. If A1 ⪯ A2 then A1 ≤ A2.

Proof. Immediate by Definition 3.25 and Lemma 3.11. □

In what follows we present some algebraic properties that relate slices and
fragments.

Lemma 3.27 (Monotonocity properties of AFM slice operator). Let us
assume A,A1,A2 ∈ A(X,Y, α̈,D, δ̈), F ,F1,F2 ⊆ X and A,A1,A2 ⊆ Y .

1. If F1 ⊆ F2 and A1 ⊆ A2 then ΠF1,A1
(A) ⪯ ΠF2,A2

(A).

21

2. If F1 ⊆ F2 and A1 ⊆ A2 then ΠF1,A1(A) ≤ ΠF2,A2(A).

3. If A1 ⪯ A2 then ΠF,A(A1) ⪯ ΠF,A(A2).

4. If A1 ≤ A2 then ΠF,A(A1) ≤ ΠF,A(A2).

Proof. 1. Let A = (F ,A, α,D, δ,V). In accord with Definition 3.24,
ΠFi,Ai

(A) = (F∩Fi,A∩ARi
, α|ARi

,D, δ|ARi
,V|Fi,Ai

) such that V|Fi,Ai
=

{(p|Fi
, v|ARi

) | (p, v) ∈ V} where ARi
= α−1(Fi) ∩ Ai (i = 1, 2). Since

F1 ⊆ F2 and A1 ⊆ A2, we have F ∩F1 ⊆ F ∩F2, AR1 ⊆ AR1 , A∩AR1 ⊆
A∩AR2 , α|AR1

⊆ α|AR2
and V|F1,A1 = V|F1∩F2,A1∩A2 = (V|F2,A2)|F1,A1 .

Thus the proof follows by Definition 3.25.

2. Immediate by Lemma 3.27.1 and Theorem 3.26.

3. Let Ai = (Fi,Ai, αi,D, δi,Vi) where i = 1, 2. By Definition 3.25, we have
that F1 ⊆ F2, A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2, V1 = {(p2|F1 , v2|A1) | (p2, v2) ∈
V2}. Therefore, if A1

R = A1 ∩ A and A2
R = A2 ∩ A then A2

R ⊆ A2
R,

F1 ∩ F ⊆ F2 ∩ F , A1 ∩ A1
R ⊆ A2 ∩ A1

R, α1|A1
R
⊆ α2|A2

R
, δ1|A1

R
⊆ δ2|A1

R

and {(p1|F , v1|AR
1
) | (p1, v1) ∈ V1} = {(p2|F |F1 , v2|A2

R
|A1

R
) | (p2, v2) ∈ V2}.

Thus the proof is done, by Definition 3.25.

4. Let Ai = (Fi,Ai, αi,D, δi,Vi) where i = 1, 2. By Lemma 3.11, we have
that F1 ⊆ F2, A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2, V1 ⊇ {(p2|F1

, v2|A1
) | (p2, v2) ∈

V2}. Therefore, if A1
R = A1 ∩ A and A2

R = A2 ∩ A then A2
R ⊆ A2

R,
F1 ∩ F ⊆ F2 ∩ F , A1 ∩ A1

R ⊆ A2 ∩ A1
R, α1|A1

R
⊆ α2|A2

R
, δ1|A1

R
⊆ δ2|A1

R

and {(p1|F , v1|AR
1
) | (p1, v1) ∈ V1} ⊇ {(p2|F |F1

, v2|A2
R
|A1

R
) | (p2, v2) ∈ V2}.

Thus the proof is done, by Lemma 3.11.

We remark that Lemma 3.27.3 and Theorem 3.26 do not imply Lemma 3.27.4.

Theorem 3.28 (Algebraic properties of the AFM slice operator). Let us
assume Ai ∈ A(X,Y, α̈,D, δ̈) where i = 1, 2, 3, F4,F5 ⊆ X and A6,A7 ⊆ Y .

≤-Monotonicity. If A1 ≤ A2, F4 ⊆ F5, A5 ⊆ A6 then ΠF4,A6
(A1) ≤ ΠF5,A7

(A2).

⪯-Monotonicity. If A1 ≤ A2, F4 ⊆ F5, A5 ⊆ A6 then ΠF4,A6(A1) ⪯ ΠF5,A7(A2).

Commutativity. ΠF4,A6
(ΠF5A7

(A3)) = ΠF5,A7
(ΠF4,A6

(A3)).

Proof. ≤-Monotonicity. Straightforward by Lemma 3.27.2 and Lemma 3.27.4.

⪯-Monotonicity. Straightforward by Lemma 3.27.1 and Lemma 3.27.3.

Commutativity. In accordance with Definition 3.25, it is sufficient to observe
that ΠF4,A6(ΠF5,A7(A3)) = ΠF4∩F5,A5∩A7(A3) = ΠF5,A7(ΠF4,A6(A3)). □

22

4. Logical Characterization of FM Operations and Relations

In Section 4.1 we introduce a mapping that associates each logical FM to its
corresponding extensional representation (cf. Sect. 2.1). Then, in Section 4.2,
we provide a logical characterization for the fragment relation (≤), for the com-
position (•) and the meet (⋆) operations; for the the bottom of the Boolean
lattice Eeql(X) (the FM trivial(X) = (X, 2X)), for the bottom of the bounded
lattice E(X) (the FM trivial(∅) = (∅, {∅})) and for the top of the bounded
lattice E(X)) (the FM void(X) = (X, ∅)); and for the complement operation
((·)†††). Finally, in Section 4.3, we provide a logical characterization for the slice
operator (ΠY) and for the interface relation (⪯).

4.1. Relating Extensional and Logical FMs
As stated at the beginning of Sect. 3.2, in our theoretical development we

consider also FMs with infinitely many features and products, where each prod-
uct may have infinitely many features. The following definition introduces a
notion for three different sets of logical FMs (see Definition 2.9) over a set of
features (cf. Definition 3.10).

Definition 4.1 (Sets of logical FMs over a set of features).
Let X be a set of features. We denote:

• P(X) the set of the logical FMs (F , ϕ) such that F ⊆ X;

• Pfin(X) the subset of the finite elements of P(X), i.e., (F , ϕ) such that
F ⊆fin X; and

• Peql(X) the subset of elements of P(X) that have exactly the features X,
i.e., (F , ϕ) such that F = X.

We denote by ftrs(ϕ) the (finite) set of features occurring in a propositional
formula ϕ, and as usual we say that ϕ is ground whenever ftrs(ϕ) is empty.
We recall that an interpretation (a.k.a. truth assignment or valuation) I is a
function which maps propositional variables to true or false [1, 37].

Definition 4.2 (Interpretation for propositions). Let (F ,P) be an exten-
sional FM and p ∈ P. The interpretation that represents the product p is
the function IF

p : F → {true, false} such that: IF
p (x) = true if x ∈ p, and

IF
p (x) = false if x ∈ F \ p.

As usual, dom(I) denotes the domain of an interpretation I and we write
I |= ϕ to mean that the propositional formula ϕ is true under the interpretation
I (i.e., ftrs(ϕ) ⊆ dom(I) and the ground formula obtained from ϕ by replacing
each feature x occurring in ϕ by I (x) evaluates to true). We write |= ϕ to mean
that ϕ is valid (i.e., it evaluates to true under all the interpretations I such that
ftrs(ϕ) ⊆ dom(I)). We write ϕ1 |= ϕ2 to mean that ϕ2 is a logical consequence of
ϕ1 (i.e., for all interpretations I with ftrs(ϕ1)∪ftrs(ϕ2) ⊆ dom(I), if I |= ϕ1 then

23

I |= ϕ2), and we write ϕ1 ≡ ϕ2 to mean that ϕ1 and ϕ2 are logically equivalent
(i.e., they are satisfied by exactly the same interpretations with domain including
ftrs(ϕ1) ∪ ftrs(ϕ2)). We recall that: (i) I1 is included in I2, denoted I1 ⊆ I2,
whenever dom(I1) ⊆ dom(I2) and I1(x) = I2(x), for all x ∈ dom(I1); (ii) I1
and I2 are compatible whenever I1(x) = I2(x), for all x ∈ dom(I1) ∩ dom(I2);
and (iii) if I1 |= ϕ then its restriction I0 to ftrs(ϕ) is such that I0 |= ϕ and, for
all interpretations I2 such that I0 ⊆ I2, it holds that I2 |= ϕ.

The following definition gives a name to the mapping that associates each
logical FM to its corresponding extensional representation.

Definition 4.3 (The ext mapping). Let (F , ϕ) be a FM in P(X). We de-
note by ext((F , ϕ)) (or ext(F , ϕ), for short) the extensional FM (F ,P) ∈ E(X)
such that P = {p | p ⊆ F and IF

p |= ϕ}. In particular, ext maps Pfin(X) to
Efin(X), and maps Peql(X) to Eeql(X).

We denote by ≡ the equivalence relation over FMs defined by: (F1, ϕ1) ≡
(F2, ϕ2) if and only if both F1 = F2 and ϕ1 ≡ ϕ2. We write [P(X)], [Pfin(X)]
and [Peql(X)] as short for the quotient sets P(X)/≡, Pfin(X)/≡ and Peql(X)/≡,
respectively.

Note that, if X has infinitely many elements and (F , ϕ) ∈ P(X), then F may
contain infinitely many features, while the propositional formula ϕ is syntacti-
cally finite (cf. Definition 2.1). Moreover, Pfin(X) has infinitely many elements
(even when X is finite). It is also worth observing that, if X is finite, then P(X)
and Pfin(X) coincide and the quotient set [Pfin(X)] is finite. Moreover, for all
Φ1,Φ2 ∈ P(X), we have that: ext(Φ1) = ext(Φ2) if and only if Φ1 ≡ Φ2.

All the finite FMs have a logical representation.

Theorem 4.4 (Completeness of logical representation for finite FMs).
For each (F ,P) ∈ Efin(X) there exists (F , ϕ) ∈ Pfin(X) such that ext(F , ϕ) =
(F ,P).

Proof. Take, for instance, disjunctive normal form ϕ =
∨
p∈P

(
(∧f∈pf) ∧

(∧f∈F\p¬f)
)
.

Given [Φ] ∈ [P(X)], we define (with an abuse of notation) ext([Φ]) = ext(Φ).
Then, we have that ext is an injection from [P(X)] to E(X), an injection from
[Peql(X)] to Eeql(X), and a bijection from [Pfin(X)] to Efin(X).

As shown by the following example, if X has infinitely many elements, then
there are FMs in E(X) \ Efin(X) that have no logical representation.

Example 4.5 (FMs without a logical representation). Consider the set
of features FN = {f1 | i ∈ N}. Then the extensional FMs (FN, {{f3}}),
(FN, {{fn | n is even}}) (which has a single product with infinitely many fea-
tures) and (FN, {{fn} | n is even}) (which has infinitely many products with
one feature each) have no logical representation.

24

Remark 4.6 (On Pfin(X) and P(X)). It is worth observing that, since ext(F , ϕ)
= ext(ftrs(ϕ), ϕ) • (F \ ftrs(ϕ), 2F\ftrs(ϕ)) and the set ftrs(ϕ) is finite, then any
infinite logical feature model (i.e., in P(X) \Pfin(X) with X infinite) is decom-
posable into a finite one (i.e., in Pfin(X)) and a “free” one (i.e., one where all
the features are optional). Therefore, if X has infinitely many elements, then
there are infinitely many elements of E(X) \ Efin(X) that do not have a logical
representation.

4.2. Logical Characterization of the Lattices of FMs
The following theorem states that the FM fragment relation ≤ corresponds

to (the converse of) logical consequence.

Theorem 4.7 (Logical characterization of ≤ on FMs). Given Φ1 = (F1, ϕ1)
and Φ2 = (F2, ϕ2) in P(X), we write Φ1 ≤ Φ2 to mean that both F1 ⊆ F2 and
ϕ2 |= ϕ1 hold. Then: ext(Φ1) ≤ ext(Φ2) holds if and only if Φ1 ≤ Φ2 holds.

Proof. Let ext(Fi, ϕi) = (Fi,Pi) s.t. Pi = {pi | pi ⊆ Fi and IFi
pi |= ϕi} for

i = 1, 2. We have:
ext(Φ1) ≤ ext(Φ2)
iff F1 ⊆ F2 and P1 ⊇ P2|F1

(by Lemma 3.3)
iff F1 ⊆ F2 and {p1 ⊆ F1 | IF1

p1 |= ϕ1} ⊇ {p2 ∩ F1 | pi ⊆ Fi and IF2
p2 |= ϕ2}

iff F1 ⊆ F2 and, for all p ∈ P2, IF2
p |= ϕ2 implies IF2

p |= ϕ1
iff F1 ⊆ F2 and ϕ2 |= ϕ1
iff Φ1 ≤ Φ2. □

The following theorem shows that the FM composition operator • corre-
sponds to logic conjunction (cf. Sect. 2.3).

Theorem 4.8 (Logical characterization of • on FMs). Given Φ1 = (F1, ϕ1)
and Φ2 = (F2, ϕ2) in P(X).
We define: Φ1 • Φ2 = (F1∪F2, ϕ1∧ϕ2). So, ext(Φ1) • ext(Φ2) = ext(Φ1 • Φ2).

Proof. Let ext(Fi, ϕi) = (Fi,Pi) s.t. Pi = {pi | pi ⊆ Fi and IFi
pi |= ϕi} for

i = 1, 2.
ext(Φ1) • ext(Φ2) = (F3,P3)
iff F3 = F1 ∪ F2 and P3 = {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 ∩ F2 = p2 ∩ F1}
iff F3 = F1 ∪ F2 and P3 = {p1 ∪ p2 | IF1

p1 |= ϕ1, IF2
p2 |= ϕ1, p1 ∩ F2 = p2 ∩ F1}

iff F3 = F1 ∪ F2 and P3 = {p | p1 ∪ p2 ⊆ p and IF3
p |= ϕ1, IF3

p |= ϕ2}
iff F3 = F1 ∪ F2 and P3 = {p | IF3

p |= ϕ1 ∧ ϕ2}
iff (F3,P3) = ext(Φ1 • Φ2). □

In order to provide a logical characterization of the meet operator ⋆ (c.f.
Definition 3.5), we introduce an auxiliary notation expressing a logical encoding
of the existentially quantified formula ∃x1. · · · ∃xn.ϕ, where ϕ is a propositional
formula. Given Y = {x1, ..., xn}, we define:

j

Y

(
ϕ
)
=

{
ϕ if Y = ∅,b
Y−{x}

(
(ϕ[x := true]) ∨ (ϕ[x := false])

)
otherwise.

25

Theorem 4.9 (Logical characterization ⋆ on FMs). Given Φ1 = (F1, ϕ1)
and Φ2 = (F2, ϕ2) in P(X), we define:

Φ1 ⋆ Φ2 =
(
F1 ∩ F2,

j

ftrs(ϕ1)\F2

(
ϕ1
)
∨

j

ftrs(ϕ2)\F1

(
ϕ2
))
.

Then: ext(Φ1) ⋆ ext(Φ2) = ext(Φ1 ⋆ Φ2).

Proof. Let ext(Fi, ϕi) = (Fi,Pi) for i = 1, 2.
Since ext(F1, ϕ1) ⋆ ext(F2, ϕ2) = (F1 ∩ F2,P1|F2

∪ P2|F1
), we have that:

ext(Φ1) ⋆ ext(Φ2) = (F3,P3)
iff F3 = F1 ∩ F2 and P3 = {p1 ∩ F2 | IF1

p1 |= ϕ1} ∪ {p2 ∩ F1 | IF2
p2 |= ϕ2}

iff F3 = F1 ∩ F2 and P3 = {p1 ∩ F3 | IF1
p1 |= ϕ1} ∪ {p2 ∩ F3 | IF2

p2 |= ϕ2}
iff F3 = F1 ∩ F2 and P3 = P1|F3

∪ P2|F3

iff F3 = F1 ∩ F2 and, p ∈ P3 implies
either ∃p1 s.t. p = p1 ∩ F3 and IF1

p1 |= ϕ1 or ∃p2 s.t. p = p2 ∩ F3 and IF2
p2 |= ϕ2

iff F3 = F1 ∩ F2 and, p ∈ P3 implies
either IF3

p |=
b

ftrs(ϕ1)\F2

(
ϕ1
)

or IF3
p |=

b
ftrs(ϕ2)\F1

(
ϕ2
)

iff F3 = F1 ∩ F2 and, p ∈ P3 implies IF3
p |=

b
ftrs(ϕ1)\F2

(
ϕ1
)
∨

b
ftrs(ϕ2)\F1

(
ϕ2
)

iff (F3,P3) = ext(Φ1 ⋆ Φ2). □

The following theorem states that the trivial FM trivial(F) = (F , 2F) and
the void FM void(F) = (F , ∅) correspond to true and false, respectively—recall
that (see Theorem 3.8) trivial(∅) is the bottom of the lattices (E(X),≤) and
(Efin(X),≤), while trivial(X) is the bottom of the Boolean lattice (Eeql(X),≤),
and void(X) is the top of the lattice (E(X),≤) and of the Boolean lattice
(Eeql(X),≤) and, if X is finite, of the lattice (Efin(X),≤).

Theorem 4.10 (Logical characterization of trivial and void FMs). Let (F , ϕ) ∈
P(X).

1. ext(F , ϕ) = trivial(F) = (F , 2F) if and only if ϕ ≡ true.

2. ext(F , ϕ) = void(F) = (F , ∅) if and only if ϕ ≡ false.

Proof. 1. Immediate, because true is satisfied by all interpretations. 2. Im-
mediate, because no interpretation satisfies false. □

The following theorem shows that the FM complement operator (·)††† (intro-
duced in Definition 3.7) corresponds to logical negation.

Theorem 4.11 (Logical characterization of (·)††† on FMs). Given Φ = (F , ϕ)
in P(X), we define: Φ = (F ,¬ϕ). Then ext(Φ) = ext(Φ).

Proof. Straightforward. □

Lemma 4.12 below provides a representation of logical disjunction in terms of
a novel FM operator, that we denote by +. Then, Lemma 4.13 sheds some light
on the Boolean lattice Eeql(X), by showing that on Eeql(X) the meet operator
⋆ and the operator + coincide.

26

Lemma 4.12 (The operator + and its logical characterization). Let Y,Z
be two sets, we define: Y ⋓ Z = {y ∪ z | y ∈ Y, z ∈ Z}. Given two FMs
F1 = (F1,P1) and F2 = (F2,P2) in E(X), we define: F1 +F2 = (F1 ∪F2, (P1 ⋓
2(F2\F1))∪(P2⋓2(F1\F2))). Given Φ1 = (F1, ϕ1) and Φ2 = (F2, ϕ2) in P(X), we
define: Φ1+Φ2 = (F1∪F2, ϕ1∨ϕ2). Then: ext(Φ1)+ext(Φ2) = ext(Φ1+Φ2).

Proof. Let ext(Fi, ϕi) = (Fi,Pi) for i = 1, 2. We have that
ext(Φ1) + ext(Φ2) = (F3,P3) where P3 = F1 ∪ F2

iff P3 = {p1 ⋓ 2(F2\F1)) | IF1
p1 |= ϕ1} ∪ {p2 ⋓ 2(F1\F2) | IF2

p2 |= ϕ2}
iff P3 = F1 ∪ F2 and, p ∈ P3 implies

either p ∈ {p1 ⋓ 2(F2\F1)) | IF1
p1 |= ϕ1} or p ∈ {p2 ⋓ 2(F1\F2) | IF2

p2 |= ϕ2}
iff P3 = F1 ∪ F2 and, p ∈ P3 implies either IF3

p |= ϕ1 or IF3
p |= ϕ2

iff P3 = F1 ∪ F2 and, p ∈ P3 implies IF3

p∩F1
|= ϕ1 ∨ ϕ2

iff (F3,P3) = ext(Φ1 +Φ2). □

Lemma 4.13 (The operators ⋆ and + on Eeql(X)). Given two FMs F1 =
(X,P1) and F2 = (X,P2) in Eeql(X), we have that: F1 ⋆ F2 = F1 + F2 =
(X,P1 ∪ P2).

Proof. Straightforward from the definitions of ⋆ and +. □

Given [Φ1], [Φ2] ∈ [P(X)], we define (with an abuse of notation): [Φ1] ≤ [Φ2]
as Φ1 ≤ Φ2, [Φ1] • [Φ2] = [Φ1 • Φ2], [Φ1] ⋆ [Φ2] = [Φ1 ⋆ Φ2], [Φ1]+ [Φ2] = [Φ1+
Φ2], and [Φ1] = [Φ1]. Recall that a homomorphism is a structure-preserving map
between two algebraic structures of the same type (e.g., between two lattices), a
monomorphism is an injective homomorphism, and an isomorphism is a bijective
homomorphism.

Theorem 4.14 (ext is a lattice monomorphism). Given a set X of fea-
tures:

1. ([P(X)],≤) is a bounded lattice with join •, meet ⋆, bottom [(∅, true)] and
top [(X, false)]. Moreover, ext is a bounded lattice monomorphism from
([P(X)],≤) to (E(X),≤).

2. If X has infinitely many elements, then [Pfin(X)] is a sublattice of [P(X)]
with the same bottom and no top. Moreover, ext is a lattice isomorphism
from [Pfin(X)] to Efin(X).

3. [Peql(X)] is a sublattice of [P(X)] and it is a Boolean lattice with bot-
tom [(X, true)], same top of [P(X)], complement (·)†††, and where the meet
behaves like +. Moreover, ext is a Boolean lattice monomorphism from
[Peql(X)] to Eeql(X) and it is an isomorphism whenever X is finite.

Proof. Straightforward from Theorems 3.8, 4.7-4.11 and Lemmas 3.4, 4.12
and 4.13. □

27

4.3. Logical Characterization of Slices and Interfaces
The following theorem provides a logical characterization of the slice oper-

ator.

Theorem 4.15 (Logical characterization of the operator ΠY).
Let Φ = (F , ϕ) be in P(X). We define: ΠY (Φ) = (Y ∩F ,

b
ftrs(ϕ)\Y

(
ϕ
)
). Then:

ΠY (ext(Φ)) = ext(ΠY (Φ)).

Proof. We have: ΠY (ext(Φ)) = (F0,P0)
iff F0 = F ∩ Y and P0 = {p | IF

p |= ϕ}|Y
iff F0 = F ∩ Y and P0 = {p ∩ Y | IF

p |= ϕ}
iff F0 = F ∩ Y and P0 = {p ∩ Y | IF∩Y

p |= ϕ}
iff F0 = F ∩ Y and, p0 ∈ P0 implies IF∩Y

p0 |=
b

ftrs(ϕ)\Y
(
ϕ
)

iff (F0,P0) = ext(ΠY (Φ)). □

The following corollary provides a logical characterization of the interface
relation F1 ⪯ F2 which is the same as the interpretation of the slice operator
F1 = ΠY (F2) when Y are the features of F1 (cf. Theorem 4.15 and Remark 3.19).

Corollary 4.16 (Logical characterization of the relation ⪯). Given Φ1 =
(F1, ϕ1) and Φ2 = (F2, ϕ2) in P(X), we write Φ1 ⪯ Φ2 to mean that both
F1 ⊆ F2 and ϕ1 ≡

b
ftrs(ϕ2)\F1

(
ϕ2
)

hold. Then: ext(Φ1) ⪯ ext(Φ2) holds if
and only Φ1 ⪯ Φ2 holds.

Proof. We have:
(F1,P1) = ext(Φ1) ⪯ ext(Φ2) = (F2,P2)
iff F1 ⊆ F2 and P1 = P2|F1

(by Definition 3.18)
iff F1 ⊆ F2 and {p1 | IF1

p1 |= ϕ1} = {p2 ∩ F1 | IF2
p2 |= ϕ2}

iff F1 ⊆ F2 and, for all p ∈ P2, both ϕ2 |= ϕ1 and ϕ1 |=
b

ftrs(ϕ2)\F1

(
ϕ2
)

iff F1 ⊆ F2 and ϕ1 ≡
b

ftrs(ϕ2)\F1

(
ϕ2
)

iff Φ1 ⪯ Φ2. □

5. Logical Characterization of AFM Operations and Relations

In this section we follow a similar pattern to that of Section 4. In Section 5.1
we introduce the ingredients useful to relate logical and extensional AFM. In
Section 5.2 we provide logical characterizations of extensional operations for
AFMs. In Section 5.3, we provide logical characterization of AFM slices and
interfaces.

5.1. Relating Extensional and Logical AFMs
The following definition introduces a notion for three different sets of logical

AFMs (see Definition 2.9) over sets of features, attributes and domains (cf.
Definition 3.1).

28

Definition 5.1 (Sets of logical AFMs). Let X be a set of features, let Y a
set of attributes, let D be a set of domains, let α̈ be a function of Y → X, let
δ̈ be a function of Y → D and let d is a function of D → ∪D such that d ∝ δ̈.
We denote:

• L(X,Y, α̈,D, δ̈, d) the set of the logical AFMs (F ,A, α,D, δ, d, ψ) such that
F ⊆ X, A ⊆ α̈−1(F), α = α̈|A and δ = δ̈|A (clearly, ψ is a constraint over
F and A);

• Lfin(X,Y, α̈,D, δ̈, d) the subset of the finite elements of L(X,Y, α̈,D, δ̈, d),
namely the set of AFMs (F ,A, α,D, δ, ψ) ∈ L(X,Y, α̈,D, δ̈) such that
F ⊆fin X and A ⊆fin α̈

−1(F); and

• Leql(X,Y, α̈,D, δ̈, d) is the subset of L(X,Y, α̈,D, δ̈, d) including the AFMs
(F ,A, α,D, δ, d, ψ) such that F = X, A = Y , α = α̈ and δ = δ̈.

We abuse the notation, by denoting ftrs(ψ) the set of features occurring in
the constraint ψ and we denote attr(ψ) the set of attributes occurring in the
constraint ψ. We recall that the interpretation of constraints in AFMs has been
introduced in Definition 2.9.

Definition 5.2 (Interpretation for attributed-products). Let A = (F ,A,
α,D, δ,V) be an extensional AFM and (p, v) ∈ V. The interpretation IF,A,α,D,δ,d

(p,v)

that represents the product (p, v) w.r.t the default-function d (i.e. a function of
D → ∪D such that d ∝ δ) is the function such that: IF,A,α,D,δ,d

(p,v) (x) = true

if x ∈ p; IF,A,α,D,δ,d
(p,v) (x) = false if x ∈ F \ p; and, if a ∈ dom(v) then

IF,A,α,D,δ,d
(p,v) (a) = v(a) otherwise IF,A,α,D,δ,d

(p,v) (a) = d(δ(a)). For the sake of

readability, we write IA,d
(p,v) to abbreviate IF,A,α,D,δ,d

(p,v) .

It is worth to remark that it is natural to expect that the truth of constraints
is invariant w.r.t the choice of default values, in accord to the discussion done
in Section 2.2. We abuse the notation, by denoting dom(I) the set of features
and attributes subject of I . Let A = (F ,A, α,D, δ,V) be an extensional AFM
and d a default-function such that d ∝ δ. We write that I ∝A d whenever, if
a ∈ dom(I) and I (α(a)) = false then I (a) = d(δ(a))). We write I |=A

d ψ
to mean that the formula ψ is true under the interpretation I (i.e., I ∝A
d, ftrs(ψ) ∪ attr(ψ) ⊆ dom(I) and, the formula obtained from ψ evaluates
true, after the following replacing: each feature x occurring in ψ by I (x), each
attribute a by I (a)). We write ψ1 |=A

d ψ2 to mean that ψ2 is is a logical
consequence of ψ1 (i.e., for all interpretations I , if I |=A

d ψ1 then I |=A
d ψ2).

We write ψ1 ≡A
d ψ2 to mean that ψ1 and ψ2 are logically equivalent (i.e., they

are satisfied by the same interpretations with suitable domain).
The mapping associating a logical AFM to its corresponding extensional

representation follows.

Definition 5.3 (The ext mapping for AFM). Let Ψ = (F ,A, α,D, δ, d, ψ)
be logical AFM in L(X,Y, α̈,D, δ̈, d). For sake of readability, we write IΨ

(p,v) to

29

abbreviate IF,A,α,D,δ,d
(p,v) (cf. the similar abbreviation introduced at the end of Def-

inition 5.2). We write A = ext((F ,A, α,D, δ, d, ψ)) (or ext(F ,A, α,D, δ, d, ψ)
for short) to denote (F ,A, α,D, δ,V) ∈ A(X,Y, α̈,D, δ̈) such that V = {(p, v) ∈
2F × 2α

−1(p)→∪D | v ∝ δ and IΨ
(p,v) |=d ψ}. It is straightforward that ext maps

Lfin(X,Y, α̈,D, δ̈, d), Leql(X,Y, α̈,D, δ̈, d) onto Afin(X,Y, α̈,D, δ̈), Aeql(X,Y, α̈,D, δ̈)
respectively.

Let Ψi = (Fi,Ai, αi,D, δi, d, ψi) be a logical AFM in L(X,Y, α̈,D, δ̈, d)
i = 1, 2). We extend the logical equivalence on constraints to AFMs: we
denote by ≡d the equivalence relation over AFMs defined by: Ψ1 ≡d Ψ2 if
and only if F1 = F2, A1 = A2, α1 = α2, δ1 = δ2 and ψ1 ≡d ψ2. We write
[L(X,Y, α̈,D, δ̈, d)], [Lfin(X,Y, α̈,D, δ̈, d)] and [Leql(X,Y, α̈,D, δ̈, d)] as short for
L(X,Y, α̈,D, δ̈, d)/ ≡d, Lfin(X,Y, α̈,D, δ̈, d)/ ≡d and Leql(X,Y, α̈,D, δ̈, d)/ ≡d,
respectively.

By construction, it is straightforward to see that each logical AFM identifies
an extensional AFM. The following theorem shows that each finite extensional
AFM has a logical representation.

Theorem 5.4 (Completeness of logical representation for finite AFMs).
For each A = (F ,A, α,D, δ,V) ∈ Afin(X,Y, α̈,D, δ̈) there exists a logical AFM
Ψ = (F ,A, α,D, δ, d, ψ) having the same attributed-products of A.

Proof. For each p ∈ PV we let ψp be the conjunctive clause
(
(
∧
f∈p f) ∧

(
∧
f∈F\p ¬f). (If p = ∅ then ψp = true.) For each (p, v) ∈ V, let ψvp be∧
a∈dom(v)

(
a = v(a)

)
. (If dom(v) = ∅ then ψvp is true). Let ψ =

∨
(p,v)∈V

(
ψp ∧

ψvp
)
. It is worth to note that the formula ψ is such that, for each (p, v)

the values assigned to attributes in A \ dom(v) do not change its truth value.
Therefore, it does not depend on d and the proof follows straightforwardly. □

5.2. Logical Characterization of the Lattices of AFMs
Theorem 5.5 (Logical characterization of ≤ on AFMs). Let Ψi where i =
1, 2 be the AFMs (Fi,Ai, αi,D, δi, d, ψi) ∈ L(X,Y, α̈,D, δ̈, d). We write Ψ1 ≤ Ψ2

to mean that F1 ⊆ F2, A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2 and ψ2 |=d ψ1. Then:
ext(Ψ1) ≤ ext(Ψ2) holds if and only Ψ1 ≤ Ψ2 holds.

Proof. Let ext(Ψi) = (Fi,Ai, αi,D, δi,Vi) where i = 1, 2 such that
Vi = {(pi, vi) ∈ 2Fi × 2α

−1
i (pi)→∪D | vi ∝ δi and IΨi

(pi,vi)
|=d ψi}.

30

We have: ext(Ψ1) ≤ ext(Ψ2)

iff
(

F1 ⊆ F2,A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2,
V1 ⊇ {(p2|F1

, v2|A1
) | (p2, v2) ∈ V2}

)
by Lemma 3.11,

iff
(F1 ⊆ F2,A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2

{(p1, v1) | IΨ1

(p1,v1)
|=d ψ1} ⊇ {(p2|F1

, v2|A1
) | IΨ2

(p2,v2)
|=d ψ2}

)
iff

(
F1 ⊆ F2,A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2,

IΨ2

(p2,v2)
|=d ψ2 implies IΨ1

(p2|F1
,v2|A1

) |=d ψ1

)
because

(
ftrs(ψ1) ⊆ F1 ⊆ F2 , attr(ψ1) ⊆ A1 ⊆ A2

and, in particular, α−1
1 (F1) ⊆ α−1

2 (F2)

)
iff F1 ⊆ F2,A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2, and ψ2 |=d ψ1

iff Ψ1 ≤ Ψ2. □

Theorem 5.6 (Logical characterization of • on AFMs). Let us assume Ψi
where i = 1, 2 be the AFMs (Fi,Ai, αi,D, δi, d, ψi) ∈ L(X,Y, α̈,D, δ̈, d). We
define Ψ1 • Ψ2 = (F1 ∪ F2,A1 ∪ A2, α1 ⊕ α2,D, δ1 ⊕ δ2, d, ψ1 ∧ ψ2). Then:
ext(Ψ1) • ext(Ψ2) = ext(Ψ1 • Ψ2).

Proof. Let ext(Ψi) = (Fi,Ai, αi,D, δi,Vi) where i = 1, 2 such that
Vi = {(pi, vi) ∈ 2Fi × 2α

−1
i (pi)→∪D | dom(vi)=α

−1
i (pi) , vi∝δi , IΨi

(pi,vi)
|=d ψi}.

ext(Ψ1) • ext(Ψ2) = (F3,A3, α3,D, δ3,V3)

iff
(

F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2,
V3 = {(p1 ∪ p2, v1 ⊕ v2) | (pi, vi) ∈ Vi , p1 ∩ F2 = p2 ∩ F1 , v1 ≎ v2}

)
iff

 F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2,

and V3 =

{
(p1 ∪ p2, v1 ⊕ v2)

∣∣∣∣ p1 ∩ F2 = p2 ∩ F1, v1 ≎ v2
vi ∝ δi , IΨi

(pi,vi)
|=d ψi

}
iff

(
F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2,

and V3 = {(p, v) | α−1
3 (p) = dom(v), v ∝ δ3, IΨi

(p|Fi
,v|Ai

) |=d ψi}

)

iff

(
F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2, and
V3 = {(p, v) | α−1

3 (p) = dom(v) , v ∝ δ3 , IF3,A3,α3,D,δ3,d
(p,v) |=d ψ1 ∧ ψ2}

)

iff

F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2,

V3 =

{
(p, v) ∈ 2F3 × 2α

−1
3 (p)→∪D

∣∣∣∣∣ v ∝ δ3 and
IF3,A3,α3,D,δ3,d
(p,v) |=d ψ1 ∧ ψ2

}
iff F3 = ext(Ψ1 • Ψ2). □

In order to provide a logical characterization of the meet operator ⋆ for
AFMs (c.f. Definition 3.13), we need to adapt the encoding for the existentially
quantified features introduced for traditional feature. Let (F ,A, α,D, δ, d, ψ) be
a logical AFM in L(X,Y, α̈,D, δ̈, d). If Y = {x1, ..., xn} is a set of features then
we define:

j

Y

(
ψ
)
=

{
ψ if Y = ∅,
b
Y−{x}

(
ψ
[x]
true ∨ ψ

[x]
false

)
otherwise;

where {a1, . . . , an} = α−1(x) ∩ attr(ψ), Di = δ(ai), so

ψ
[x]
true =

(−−−−→
∃ai :Di.ψ

)
[x := true] and ψ

[x]
false = ψ[

−−−−−−−−→
ai := d(Di), x := false] .

31

Theorem 5.7 (Logical characterization ⋆ on AFMs). Let us assume Ψi
be two AFMs (Fi,Ai, αi,D, δi, d, ψi) ∈ L(X,Y, α̈,D, δ̈, d) where i = 1, 2 . We de-
fine Ψ1 ⋆ Ψ2 = (F1∩F2,A1∩A2, α1⊖α2,D, δ1⊖δ2,

b
F1\F2

(
ψ1

)
∨

b
F2\F1

(
ψ2

)
).

Then: ext(Ψ1) ⋆ ext(Ψ2) = ext(Ψ1 ⋆ Ψ2).

Proof. Let ext(Ψi) = (Fi,Ai, αi,D, δi,Vi) where i = 1, 2 such that
Vi = {(pi, vi) ∈ 2Fi × 2α

−1
i (p)→∪D | vi ∝ δi and IΨi

(pi,vi)
|=d ψi}.

ext(Ψ1) ⋆ ext(Ψ2) = (F3,A3, α3,D, δ3,V3)

iff
(

F3 = F1 ∩ F2,A3 = A1 ∩ A2, α3 = α1 ⊖ α2, δ3 = δ1 ⊖ δ2 and
V3 = {(p1|F2

, v1|A2
) | (p1, v1) ∈ V1} ∪ {(p2|F1

, v2|A1
) | (p2, v2) ∈ V2}

)
iff
(

F3 = F1 ∩ F2,A3 = A1 ∩ A2, α3 = α1 ⊖ α2, δ3 = δ1 ⊖ δ2 and
V3 =

⋃
i=0,1

{
(pi|F3 , vi|A3) | (pi, vi) ∈ Vi

})
iff

(
F3 = F1 ∩ F2,A3 = A1 ∩ A2, α3 = α1 ⊖ α2, δ3 = δ1 ⊖ δ2 and
V3 =

⋃
i=0,1

{
(pi|F3

, vi|A3
) | vi ∝ δi and IFi,Ai,αi,D,δi,d

(pi,vi)
|=d ψi

})

iff

(
F3 = F1 ∩ F2,A3 = A1 ∩ A2, α3 = α1 ⊖ α2, δ3 = δ1 ⊖ δ2 and
V3 =

⋃
i=0,1

{
(pi|F3

, vi|A3
) | vi ∝ δi and IFi,Ai,αi,D,δi,d

(pi,vi)
|=d ψi

})

iff

 F3 = F1 ∩ F2,A3 = A1 ∩ A2, α3 = α1 ⊖ α2, δ3 = δ1 ⊖ δ2 and
(p3, v3) ∈ V3 implies either IF3,A3,α3,D,δ3,d

(p3,v3)
|=d

b
ftrs(ψ1)\F2

(
ψ1

)
,

or IF3,A3,α3,D,δ3,d
(p3,v3)

|=d

b
ftrs(ψ2)\F1

(
ψ2

)

iff

 F3 = F1 ∩ F2,A3 = A1 ∩ A2, α3 = α1 ⊖ α2, δ3 = δ1 ⊖ δ2 and
(p3, v3) ∈ V3 implies

IF3,A3,α3,D,δ3,d
(p3,v3)

|=d

(b
ftrs(ϕ1)\F2

(
ψ1

)
∨

b
ftrs(ϕ1)\F2

(
ψ2

))

iff (F3,A3, α3,D, δ3,V3) = ext(Ψ1 ⋆ Ψ2). □

The following theorem states that the trivial AFMs trivial(F ,A, α,D, δ) =
(F ,A, α,D, δ,all(F ,A, α,D, δ)) and the void AFMs void(F ,A, α,D, δ) = (F ,A, α,D, δ, ∅)
correspond to true and false, respectively—recall that (see Theorem 3.16) trivial(X,Y, α̈,D, δ̈, ∅)
is the bottom of the lattices (E(X,Y, α̈,D, δ̈),≤) and (Efin(X,Y, α̈,D, δ̈),≤),
while trivial(X,Y, α̈,D, δ̈) is the bottom of the Boolean lattice (Eeql(X,Y, α̈,D, δ̈),≤
), and void(X,Y, α̈,D, δ̈) is the top of the lattice (E(X,Y, α̈,D, δ̈),≤) and of
the Boolean lattice (Eeql(X,Y, α̈,D, δ̈),≤) and, if X is finite, of the lattice
(Efin(X),≤).

Theorem 5.8 (Logical characterization of trivial and void AFM). Let us
assume (F ,A, α,D, δ, d, ψ) ∈ L(X,Y, α̈,D, δ̈, d).

1. ext(F ,A, α,D, δ, d, ψ) = (F ,A, α,D, δ,all(F ,A, α,D, δ)) iff ψ ≡d true.

2. ext(F ,A, α,D, δ, d, ψ) = (F ,A, α,D, δ, ∅) if and only if ψ ≡d false.

Proof. 1. Immediate, because true is satisfied by all interpretations. 2. Im-
mediate, because no interpretation satisfies false. □

The following theorem shows that the AFM complement operator (·)††† (in-
troduced in Definition 3.15) corresponds to logical negation.

32

Theorem 5.9 (Logical characterization of (·)††† on AFMs).
Let Ψ = (X,Y, α̈,D, δ̈, d, ψ) ∈ L(X,Y, α̈,D, δ̈, d).
If Ψ††† = (X,Y, α̈,D, δ̈,¬ψ) then ext(Ψ)

†††
= ext(Ψ†††).

Proof. Traditional semantics of classical logic is bivalent, meaning that all
formulas are interpreted in true or false. More precisely, each interpretation
makes true a formula and false its negation. Straightforwardly, this fact holds for
our interpretations too, namely ext(Ψ) ∪ ext(Ψ)

†††
= all(F ,A, α,D, δ). We just

note that all(F ,A, α,D, δ) does not include all possible classical interpretations,
but only interpretations that satisfy some constraints on attributes relative to
selected features. □

Lemma 5.10 characterizes the logical disjunction in terms of a the operator
+. Then, Lemma 5.11 sheds some light on the Boolean lattice , by showing that
on Leql(X,Y, α̈,D, δ̈, d) the meet operator ⋆ and the operator + coincide.

Lemma 5.10 (The operator + on AFMs and its logical characterization).
Let Ai be two AFMs (Fi,Ai, αi,D, δi,Vi) ∈ A(X,Y, α̈,D, δ̈) where i = 1, 2, we
define A1+A2 = (F1∪F2,A1∪A2, α1⊕α2,D, δ1⊕δ2,V⊞

1 ∪V⊞
2) where i• = 3− i

and V⊞
i = {(pi ∪ q, vi ∪ u) | (pi, vi) ∈ Vi and (q, u) ∈ all(Fi• ,Ai• , αi• ,D, δi•)}.

Let Ψi be logical AFMs (Fi,Ai, αi,D, δi, d, ψi) ∈ L(X,Y, α̈,D, δ̈, d) where i =
1, 2, we define Ψ1+Ψ2 = (F1 ∪F2,A1 ∪A2, α1⊕α2,D, δ1⊕ δ2, ψ1 ∨ψ2). Then:
ext(Ψ1) + ext(Ψ2) = ext(Ψ1 +Ψ2).

Proof. Let ext(Ψi) = (Fi,Ai, αi,D, δi,Vi) where i = 1, 2 such that
Vi = {(pi, vi) ∈ 2Fi × 2α

−1
i (pi)→∪D | vi ∝ δi and IΨi

(pi,vi)
|=d ψi}.

ext(Ψ1) + ext(Ψ2) = (F3,A3, α3,D, δ3,V3) where V3 = V⊞
1 ∪ V⊞

2

iff
(

F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2, and
V⊞
i = {(pi ∪ q, vi ∪ u) | (pi, vi) ∈ Vi and (q, u) ∈ all(Fi• ,Ai• , αi• ,D, δi•)}

)

iff

 F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2, and

V⊞
i =

{
(pi ∪ q, vi ∪ u)

∣∣∣∣∣ vi ∝ δi , IFi,Ai,αi,D,δi,d
(pi,vi)

|=d ψi and
(q, u) ∈ all(Fi• ,Ai• , αi• ,D, δi•)

}
iff

 F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2, and
(p3, v3) ∈ V3 implies, either IF3,A3,α3,D,δ3,d

(p3,v3)
|=d ψ1

or IF3,A3,α3,D,δ3,d
(p3,v3)

|=d ψ2

iff

(
F3 = F1 ∪ F2,A3 = A1 ∪ A2, α3 = α1 ⊕ α2, δ3 = δ1 ⊕ δ2, and
(p3, v3) ∈ V3 implies, either IF3,A3,α3,D,δ3,d

(p3,v3)
|=d ψ1 ∨ ψ2

)
iff F3 = ext(Ψ1 +Ψ2). □

Note that, the next lemma can be reformulated for the logical version of
the involved operators, namely for Leql(X,Y, α̈,D, δ̈, d). Anyway, this result is
formalized in the Theorem 5.12.3.

33

Lemma 5.11 (The operators ⋆ and + on Aeql(X,Y, α̈,D, δ̈)). Let assume Ai
be two AFMs (X,Y, α̈,D, δ̈,Vi) ∈ Aeql(X,Y, α̈,D, δ̈) where i = 1, 2, we have that:
A1 ⋆ A2 = A1 + A2 = (X,Y, α̈,D, δ̈,V1 ∪ V2).

Proof. Straightforward from the definitions of ⋆ and +. □

Given [Ψ1], [Ψ2] ∈ [Leql(X,Y, α̈,D, δ̈, d)], we define (with an abuse of nota-
tion): [Ψ1] ≤ [Ψ2] as Ψ1 ≤ Ψ2, [Ψ1] • [Ψ2] = [Φ1 • Ψ2], [Ψ1] ⋆ [Ψ2] = [Ψ1 ⋆ Ψ2],
[Ψ1] + [Ψ2] = [Ψ1 +Ψ2], and [Ψ1]

†††
= [Ψ1

†††].

Theorem 5.12 (ext is a lattice monomorphism). Let X be a set of fea-
tures, let Y a set of attributes, let D be a set of domains, let α̈ be a function of
Y → X, let δ̈ be a function of Y → D and let d is a function of D → ∪D such
that d ∝ δ̈.

1. ([L(X,Y, α̈,D, δ̈, d)],≤) is a bounded lattice with join •, meet ⋆, bottom
[(∅, ∅,⊥,D,⊥, d, true)] and top [(X,Y, α̈,D, δ̈, d, false)]. Moreover, the map-
ping ext is a bounded lattice monomorphism from ([L(X,Y, α̈,D, δ̈, d)],≤)
to (A(X,Y, α̈,D, δ̈),≤).

2. If X has infinitely many elements, then [Lfin(X,Y, α̈,D, δ̈, d)] is a sublat-
tice of [L(X,Y, α̈,D, δ̈, d)] with the same bottom and no top. Moreover, ext
is a lattice isomorphism from [Lfin(X,Y, α̈,D, δ̈, d)] to Afin(X,Y, α̈,D, δ̈).

3. [Leql(X,Y, α̈,D, δ̈, d)] is a sublattice of [L(X,Y, α̈,D, δ̈, d)] and it is a Boolean
lattice with bottom [(X,Y, α̈,D, δ̈, d, true)], same top of [L(X,Y, α̈,D, δ̈, d)],
complement †††, and where the meet behaves like +. Moreover, the map-
ping ext is a Boolean lattice monomorphism from [Leql(X,Y, α̈,D, δ̈, d)]
to Aeql(X,Y, α̈,D, δ̈) and it is an isomorphism whenever X is finite.

Proof. Straightforward from Theorems 3.16, 5.5-5.9 and Lemmas 3.12, 3.14, 5.10, 5.11.
□

5.3. Logical Characterization of Slices and Interfaces for AFM
The following theorem provides a logical characterization of the slice operator

for AFM.

Theorem 5.13 (Logical characterization of the operator ΠY). Let us as-
sume Ψ = (F ,A, α,D, δ, d, ψ) ∈ L(X,Y, α̈,D, δ̈, d), F ′ ⊆ X and A′ ⊆ Y . We
define: ΠF ′,A′(Ψ) =

(
F ∩F ′,A∩AR, α|AR

,D, δ|AR
,
b

ftrs(ψ†)\F ′

(
ψ†)) such that

AR = α−1(F ′)∩A′ and ψ† denotes (
−−−−→
∃ai :Di.ψ) where attr(ψ)∩A′ = {a1, . . . , an}

and Di = δ(ai). Then: ΠF ′,A′(ext(Ψ)) = ext(ΠF ′,A′(Ψ)).

34

Proof. Let ext(Ψ) = (F ,A, α,D, δ,V) where V = {(p, v) ∈ 2F × 2α
−1(p)→∪D |

v ∝ δ and IΨ
(p,v) |=d ψ}. We have:

ΠF ′,A′(ext(Ψ)) = (F3,A3, α3,D, δ3,V3)

iff
(

F3 = F ∩ F ′,A3 = A ∩AR, α3 = α|AR
, δ3 = δ|AR

,
and V3 = {(p|F ′ , v|AR

) | (p, v) ∈ V}

)
iff
(

F3 = F ∩ F ′,A3 = A ∩AR, α3 = α|AR
, δ3 = δ|AR

and
V3 = {(p|F ′ , v|AR

) | dom(v|AR
) = α−1

3 (p|F ′) , v ∝ δ and IΨ
(p,v) |=d ψ}

)

iff

 F3 = F ∩ F ′,A3 = A ∩AR, α3 = α|AR
, δ3 = δ|AR

and

V3 =

{
(p|F ′ , v|α−1(p))|A′)

∣∣∣∣∣ dom(v|α−1(p)) =
(
α|A′

)−1
(p|F ′) ,

v ∝ δ and IΨ
(p,v|A′)

|=d

−−−−−→
∃ai :Di.ψ

}
iff

 F3 = F ∩ F ′,A3 = A ∩AR, α3 = α|AR
, δ3 = δ|AR

and

V3 =

{
(p, v)

∣∣∣∣∣ dom(v) = α−1(p) , v ∝ δ and
IF3,A3,α3,D,δ3,d
(p,v) |=d

b
ftrs(ψ†)\F ′

(−−−−−→
∃ai :Di.ψ

) }

iff ext(ΠF ′,A′(Ψ)) = (F3,A3, α3,D, δ3,V3). □

The following corollary provides a logical characterization of the interface
relation A1 ⪯ A2 which is the same as the interpretation of the slice operator
A1 = ΠF ′,A′(F2) when F ′ and A′ are the features and the attributes of A1

respectively (cf. Theorem 5.13).

Corollary 5.14 (Logical characterization of the relation ⪯). Let assume
us Ψi be two AFMs (Fi,Ai, αi,D, δi, di, ψi) ∈ L(X,Y, α̈,D, δ̈, d) where i = 1, 2.
We write Ψ1 ⪯ Ψ2 to mean that F1 ⊆ F2, A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2
and ψ1 ≡d

b
ftrs(ψ†)\F1

(
ψ†) where ψ† denotes (

−−−−→
∃ai :Di.ψ2) where {a1, . . . , an} =

(A2 \ A1) ∩ attr(ψ2) and Di = δ2(ai). Then: ext(Ψ1) ⪯ ext(Ψ2) holds if and
only Ψ1 ⪯ Ψ2 holds.

Proof. Let ext(Ψi) = (Fi,Ai, αi,D, δi,Vi) where i = 1, 2 such that
Vi = {(pi, vi) ∈ 2Fi × 2α

−1
i (pi)→∪D | vi ∝ δi and IΨi

(pi,vi)
|=d ψi}.

We have: ext(Ψ1) ⪯ ext(Ψ2)

iff
(

F1 ⊆ F2,A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2,
V1 = {(p2|F1

, v2|A1
) | (p2, v2) ∈ V2}

)
by Definition 3.25 ,

iff
(F1 ⊆ F2,A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2

{(p1, v1) | IΨ1

(p1,v1)
|=d ψ1} = {(p2|F1 , v2|A1) | I

Ψ2

(p2,v2)
|=d ψ2}

)
iff

(
F1 ⊆ F2,A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2,

IΨ1

(p2|F1
,v2|A1

) |=d ψ1 iff IΨ1

(p2|F1
,v2|A1

) |=d

b
ftrs(ψ†)\F1

(
ψ†))

iff F1 ⊆ F2,A1 ⊆ A2, α1 ⊆ α2, δ1 ⊆ δ2, and ψ1 ≡d

b
ftrs(ψ†)\F1

(
ψ†)

iff Ψ1 ≤ Ψ2. □

6. Related Work

Although, in the literature, the logical representation of both FMs (see, e.g.,
Sect. 2.3 of Apel et al. [1]) and AFMs [22, 23, 12, 24] are well known, we are not

35

aware of any work that (as done in the present paper) provides a formal account
of the correspondence between the algebraic and the logical characterizations
operators and relations for FMs and AFMs.

The investigation presented in this paper started from the FM composition
operator • and the induced fragment partial order relation ≤. In the following
we briefly discuss relevant related work on FM composition operators and on
FM relations.

Composition operators for FMs and AFMs are often investigated in connec-
tion with multi software product lines, which are sets of interdependent product
lines [38]. Eichelberger and Schmid [39] present an overview of textual-modeling
languages which support variability-model composition for FMs (like FAMIL-
IAR [40]) and AFMs (like VELVET [9], TVL [12], VSL [41]) and discuss their
support for composition, modularity, and evolution. Acher et al. [11] consider
different FM composition operators together with possible implementations and
discuss advantages and drawbacks.

The FM fragment relation introduced in this paper generalizes the FM in-
terface relation introduced by Schröter et al. [18], which (see Remark 3.19) is
closely related to the FM slice opeator introduced by Acher et al. [36]. The work
of Acher et al. [36] focuses on FM decomposition. In subsequent work [42],
Acher et al. use the slice operator in combination with a merge operator to
address evolutionary changes for extracted variability models, focusing on de-
tecting differences between feature-model versions during evolution. Analyzing
fragmented feature models usually requires to compose the fragments in order to
apply existing techniques [17, 43]. Schröter et al. [18] proposed feature model in-
terfaces to support evolution of large FMs composed by several FMs fragments.
Namely, they propose to analyze a fragmented FM where some fragments have
been replaced by carefully chosen FM interface to obtain results that hold for
the original FM and for all its evolution where the evolved version of the frag-
ments replaced by the interfaces are still compatible with the interfaces. More
recently, Lienhardt et al. [19] strengthen FM interfaces to support efficient auto-
mated product discovery in fragmented FMs. We are not aware of other works
investigating similar order relations between AFMs.

7. Conclusion and Future Work

The formalization presented in this paper sheds new light on the corre-
spondence between the algebraic and logical characterizations of operations and
relations for FMs and AFMs. Namely, it connects the two characterizations by
monomorphisms from lattices of logical FMs and AFMs to lattices of extensional
FMs and AFMs, respectively. It aims to foster the development of a formal
framework for supporting practical exploitation of future theoretical develop-
ments on FMs, AFMs and (multi) software product lines. For instance, recent
works [18, 19] which introduced novel FM relations by relying on the extensional
representation for theory and on the logical representation for experiments, do
not show the logical representation of the relations.

36

In future work we would like to extend this picture by considering other
FM and AFM representations [2, 1], operators [11] and relations [19]. We are
also planning to adapt out formalization to cardinality-based FMs [44]. More-
over, we want to investigate how the fragment relation could be exploited, in
real use cases, to decompose large FMs and AFMs in manageable parts. Re-
cently [34], we have introduced the notion of software product line signature in
order to express dependencies between different product lines, and we have lifted
to software product lines the notions of FM composition and interface. In future
work we would like to lift to software product lines other FM operations and
relations and to provide a formal account of the connection between different
software product line implementation approaches [45, 17, 1]. This formaliza-
tion would enable formal reasoning on multi software product lines comprising
software product lines implemented according to different approaches. Some
delta-oriented programming languages for software product lines of Java-like
programs, like ABS [46] and Parametric DeltaJ [29], support propagating fea-
ture attributes to the deltas (and therefore to the generated variants). The
aforementioned notion of software product line signature [34], which has been
introduced to provide a formal foundation for delta-oriented multi software prod-
uct lines of Java-like programs, does not consider feature attributes. In future
work we would like to extend it to consider feature attributes.

Acknowledgments. We thank the anonymous ICTAC 2020 and TCS reviewers
for their comments and suggestions.

References

[1] S. Apel, D. S. Batory, C. Kästner, G. Saake, Feature-Oriented Soft-
ware Product Lines: Concepts and Implementation, Springer, 2013.
doi:10.1007/978-3-642-37521-7.

[2] D. Batory, Feature models, grammars, and propositional formulas, in: Pro-
ceedings of International Software Product Line Conference (SPLC), Vol.
3714 of LNCS, Springer, 2005, pp. 7–20. doi:10.1007/11554844_3.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peter-
son, Feature-Oriented Domain Analysis (FODA) Feasibility Study, Tech.
Rep. CMU/SEI-90-TR-21, Carnegie Mellon Software Engineering Institute
(1990).

[4] K. Czarnecki, T. Bednasch, P. Unger, U. Eisenecker, Generative program-
ming for embedded software: An industrial experience report, in: D. Ba-
tory, C. Consel, W. Taha (Eds.), Generative Programming and Component
Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 156–
172.

[5] T. Berger, S. She, R. Lotufo, A. Wąsowski, K. Czarnecki, Variability mod-
eling in the real: a perspective from the operating systems domain, in:

37

Proc. 25th International Conference on Automated Software Engineering
(ASE 2010), ACM Press, 2010, pp. 73–82. doi:0.1145/1858996.1859010.

[6] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
A. Wąsowski, A survey of variability modeling in industrial practice, in:
Proc. 7th International Workshop on Variability Modelling of Software-
Intensive Systems, ACM Press, 2013, pp. 7:1–7:8.

[7] R. Tartler, D. Lohmann, J. Sincero, W. Schröder-Preikschat, Fea-
ture consistency in compile-time-configurable system software: facing
the linux 10,000 feature problem, in: Proc. 6th European Conference
on Computer systems (EuroSys 2011), ACM Press, 2011, pp. 47–60.
doi:10.1145/1966445.1966451.

[8] M. Lienhardt, F. Damiani, S. Donetti, L. Paolini, Multi software product
lines in the wild, in: Proc. 12th International Workshop on Variability
Modelling of Software-Intensive Systems, VAMOS 2018, ACM, 2018, pp.
89–96. doi:10.1145/3168365.3170425.

[9] M. Rosenmüller, N. Siegmund, T. Thüm, G. Saake, Multi-dimensional
variability modeling, in: Proc. 5th International Workshop on Variabil-
ity Modelling of Software-Intensive Systems, ACM Press, 2011, pp. 11–20.
doi:10.1145/1944892.1944894.

[10] M. Acher, P. Collet, P. Lahire, R. B. France, Comparing approaches to im-
plement feature model composition, in: Proc. 6th European Conference on
Modelling Foundations and Applications (ECMFA 2010), Springer, 2010,
pp. 3–19.

[11] M. Acher, B. Combemale, P. Collet, O. Barais, P. Lahire, R. B. France,
Composing your compositions of variability models, in: Proc. 16th Inter-
national Conference on Model-Driven Engineering Languages and Systems
(MODELS 2013), Springer, 2013, pp. 352–369. doi:10.1007/978-3-642-
41533-3_22.

[12] A. Classen, Q. Boucher, P. Heymans, A text-based approach to feature
modelling: Syntax and semantics of TVL, Science of Computer Program-
ming 76 (12) (2011) 1130 – 1143. doi:10.1016/j.scico.2010.10.005.

[13] M. Rosenmüller, N. Siegmund, C. Kästner, S. S. U. Rahman, Modeling de-
pendent software product lines, in: Proc. Workshop on Modularization,
Composition and Generative Techniques for Product Line Engineering,
2008, pp. 13–18.

[14] R. Schröter, T. Thüm, N. Siegmund, G. Saake, Automated analysis of de-
pendent feature models, in: Proc. 7th International Workshop on Variabil-
ity Modelling of Software-Intensive Systems, ACM Press, 2013, pp. 9:1–9:5.
doi:10.1145/2430502.2430515.

38

[15] M. Mendonca, A. Wasowski, K. Czarnecki, SAT-based analysis of fea-
ture models is easy, in: D. Muthig, J. D. McGregor (Eds.), Proceedings
of the 13th International Software Product Line Conference, Vol. 446 of
ACM International Conference Proceeding Series, ACM, 2009, pp. 231–
240. doi:10.5555/1753235.1753267.

[16] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature
models 20 years later: A literature review, Information Systems 35 (6)
(2010) 615–636. doi:10.1016/j.is.2010.01.001.

[17] T. Thüm, S. Apel, C. Kästner, I. Schaefer, G. Saake, A classification and
survey of analysis strategies for software product lines, ACM Comput. Surv.
47 (1) (2014) 6:1–6:45. doi:10.1145/2580950.

[18] R. Schröter, S. Krieter, T. Thüm, F. Benduhn, G. Saake, Feature-
model interfaces: The highway to compositional analyses of highly-
configurable systems, in: Proceedings of the 38th International Con-
ference on Software Engineering, ICSE ’16, ACM, 2016, pp. 667–678.
doi:10.1145/2884781.2884823.

[19] M. Lienhardt, F. Damiani, E. B. Johnsen, J. Mauro, Lazy product dis-
covery in huge configuration spaces, in: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ICSE ’20, Associ-
ation for Computing Machinery, New York, NY, USA, 2020, p. 1509–1521.
doi:10.1145/3377811.3380372.

[20] G. Foundation, Gentoo linux, last visited, 2019-08-20 (2019).
URL https://gentoo.org

[21] F. Damiani, M. Lienhardt, L. Paolini, On two characterizations of fea-
ture models, in: 17th International Colloquium on Theoretical Aspects of
Computing (ICTAC), Vol. 12545 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, 2020, pp. 1–21. doi:10.1007/978-3-030-64276-
1_6.

[22] D. Benavides, P. Trinidad, A. Ruiz-Cortés, Automated reasoning on feature
models, in: O. Pastor, J. Falcão e Cunha (Eds.), Advanced Information
Systems Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005,
pp. 491–503.

[23] A. S. Karataş, H. Oğuztüzün, A. Doğru, From extended feature models to
constraint logic programming, Science of Computer Programming 78 (12)
(2013) 2295–2312, special Section on International Software Product Line
Conference 2010 and Fundamentals of Software Engineering (selected pa-
pers of FSEN 2011). doi:https://doi.org/10.1016/j.scico.2012.06.004.

[24] U. Lesta, I. Schaefer, T. Winkelmann, Detecting and explaining conflicts
in attributed feature models, in: J. M. Atlee, S. Gnesi (Eds.), Proceed-
ings 6th Workshop on Formal Methods and Analysis in SPL Engineering,

39

FMSPLE@ETAPS 2015, London, UK, 11 April 2015, Vol. 182 of EPTCS,
2015, pp. 31–43. doi:10.4204/EPTCS.182.3.

[25] E. P. K. Tsang, Foundations of constraint satisfaction., Computation in
cognitive science, Academic Press, 1993.

[26] J. Petke, Bridging Constraint Satisfaction and Boolean Satisfiability, Arti-
ficial Intelligence: Foundations, Theory, and Algorithms, Springer, 2015.

[27] G. Bécan, R. Behjati, A. Gotlieb, M. Acher, Synthesis of attributed
feature models from product descriptions, in: Proceedings of the 19th
International Conference on Software Product Line, SPLC ’15, Associ-
ation for Computing Machinery, New York, NY, USA, 2015, p. 1–10.
doi:10.1145/2791060.2791068.

[28] A. S. Karataş, H. Oğuztüzün, Attribute-based variability in feature models,
Requir. Eng. 21 (2) (2016) 185–208. doi:10.1007/s00766-014-0216-9.

[29] T. Winkelmann, J. Koscielny, C. Seidl, S. Schuster, F. Damiani, I. Schaefer,
Parametric deltaj 1.5: Propagating feature attributes into implementation
artifacts, in: Gemeinsamer Tagungsband der Workshops der Tagung Soft-
ware Engineering 2016 (SE 2016), Wien, 23.-26. Februar 2016, Vol. 1559 of
CEUR Workshop Proceedings, CEUR-WS.org, 2016, pp. 40–54.
URL http://ceur-ws.org/Vol-1559/paper04.pdf

[30] F. Roos-Frantz, D. Benavides, A. R. Cortés, A. Heuer, K. Lauenroth,
Quality-aware analysis in product line engineering with the orthogonal vari-
ability model, Softw. Qual. J. 20 (3-4) (2012) 519–565. doi:10.1007/s11219-
011-9156-5.

[31] R. Lotufo, S. She, T. Berger, K. Czarnecki, A. Wąsowski, Evolution of
the linux kernel variability model, in: Proceedings of the 14th Interna-
tional Conference on Software Product Lines: Going Beyond, SPLC’10,
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 136–150. doi:10.1007/978-3-
642-15579-6_10.

[32] E. F. Codd, A relational model of data for large shared data banks, Com-
mun. ACM 13 (6) (1970) 377–387. doi:10.1145/362384.362685.

[33] F. Damiani, M. Lienhardt, L. Paolini, A formal model for multi SPLs,
in: 7th International Conference on Fundamentals of Software Engineering
(FSEN), Vol. 10522 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, 2017, pp. 67–83. doi:10.1007/978-3-319-68972-2_5.

[34] F. Damiani, M. Lienhardt, L. Paolini, A formal model for multi software
product lines, Science of Computer Programming 172 (2019) 203 – 231.
doi:10.1016/j.scico.2018.11.005.

[35] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, 2nd Edi-
tion, Cambridge University Press, 2002. doi:10.1017/CBO9780511809088.

40

[36] M. Acher, P. Collet, P. Lahire, R. B. France, Slicing feature models, in: 26th
IEEE/ACM International Conference on Automated Software Engineering,
(ASE), 2011, 2011, pp. 424–427. doi:10.1109/ASE.2011.6100089.

[37] M. Ben-Ari, Mathematical Logic for Computer Science, 3rd Edition,
Springer Publishing Company, Incorporated, 2012.

[38] G. Holl, P. Grünbacher, R. Rabiser, A systematic review and an expert sur-
vey on capabilities supporting multi product lines, Information & Software
Technology 54 (8) (2012) 828–852. doi:10.1016/j.infsof.2012.02.002.

[39] H. Eichelberger, K. Schmid, A systematic analysis of textual variabil-
ity modeling languages, in: Proc. 17th International Software Prod-
uct Line Conference (SPLC 2013), ACM Press, 2013, pp. 12–21.
doi:10.1145/2491627.2491652.

[40] M. Acher, P. Collet, P. Lahire, R. B. France, Familiar: A domain-specific
language for large scale management of feature models, Science of Com-
puter Programming 78 (6) (2013) 657–681. doi:10.1016/j.scico.2012.12.004.

[41] A. Abele, Y. Papadopoulos, D. Servat, M. Törngren, M. Weber, The CVM
framework - A prototype tool for compositional variability management,
in: Proc. 4th International Workshop on Variability Modelling of Software-
Intensive Systems, Vol. 37 of ICB-Research Report, Universität Duisburg-
Essen, 2010, pp. 101–105.

[42] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, P. Lahire, Ex-
traction and evolution of architectural variability models in plugin-
based systems, Software and Systems Modeling 13 (4) (2014) 1367–1394.
doi:10.1007/s10270-013-0364-2.

[43] J. A. Galindo, D. Benavides, P. Trinidad, A. M. Gutiérrez-Fernández,
A. Ruiz-Cortés, Automated analysis of feature models: Quo vadis?, Com-
puting 101 (5) (2019) 387–433. doi:10.1007/s00607-018-0646-1.

[44] K. Czarnecki, S. Helsen, U. Eisenecker, Formalizing cardinality-based fea-
ture models and their specialization, Software Process: Improvement and
Practice 10 (1) (2005) 7–29. doi:10.1002/spip.213.

[45] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botter-
weck, A. Pathak, S. Trujillo, K. Villela, Software diversity: state of the art
and perspectives, International Journal on Software Tools for Technology
Transfer 14 (5) (2012) 477–495. doi:10.1007/s10009-012-0253-y.

[46] D. Clarke, R. Muschevici, J. Proença, I. Schaefer, R. Schlatte, Variability
modelling in the ABS language, in: B. K. Aichernig, F. S. de Boer, M. M.
Bonsangue (Eds.), Formal Methods for Components and Objects, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 204–224. doi:10.1007/978-
3-642-25271-6_11.

41

