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Abstract	28 

The	 aim	 of	 this	 work	 is	 to	 reconstruct	 the	 periods	 of	 growth	 and	 decline	 of	 human	29 

populations	in	Morocco	and	their	potential	impacts	on	the	landscape	over	the	last	10,000	years.	30 

In	order	to	estimate	trends	in	human	population	size	between	10,000	and	3,000	years	ago	we	31 

used	 a	 Summed	 Probability	 Distribution	 (SPD)	 of	 radiocarbon	 dates	 from	 a	 wide	 range	 of	32 

archaeological	 sites	 throughout	Morocco.	Landscape	changes	were	 identified	and	quantified	33 

from	 a	 data	 set	 of	 fossil	 pollen	 records.	 Different	 anthropogenic	 pollen	markers,	 as	well	 as	34 

natural	 vegetation	 groups	 and	 taxonomic	 richness	 were	 used	 to	 analyze	 the	 relationship	35 

between	long-term	trends	in	human	population	expansion	or	regression	and	type	of	impact	on	36 

the	landscape. 37 

Sub-regions	 of	 Morocco	 have	 different	 topographies	 and	 climates,	 which	 have	 either	38 

favored	 or	 prevented	 the	 establishment	 and/or	 spread	 of	 human	 populations.	 In	 order	 to	39 

identify	areas	most	significantly	impacted	by	humans	and	the	timing	of	such	impacts	we	have	40 

reconstructed	and	compared	the	same	past	anthropogenic	and	landscape	proxies	along	with	41 

population	trends	within	the	lowlands	and	the	mountainous	areas.	The	lowlands	were	more	42 

strongly	impacted	earlier	in	the	Holocene	than	the	mountainous	areas.	Anthropogenic	markers	43 

indicate	 that	 farming	 expanded	 in	 the	 lowlands	 during	 the	 first	major	 expansion	 of	 human	44 

populations	between	ca.	7200	and	6700	calibrated	years	BP	at	the	start	of	the	Neolithic	period.	45 

In	the	Atlas	and	Rif	Mountains	anthropogenic	impact	is	not	clearly	detectable	in	any	of	these	46 

areas	before	4000	cal.	BP.  47 
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Introduction	48 

Humans	have	been	present	in	the	northwest	corner	of	Africa	throughout	the	Quaternary.	49 

For	 example,	 fossil	 remains	 of	 Homo	 sapiens	 more	 than	 300,000	 years	 old	 were	 recently	50 

discovered	in	Jebel	Irhoud,	near	the	town	of	Safi	in	Morocco	(Hublin	et	al.	2017).	This	time	span,	51 

which	encompasses	the	latter	part	of	the	Palaeolithic	period,	witnessed	three	climatic	cycles	52 

with	marked	interglacials	that	were	similar	to	the	Holocene,	and	long	glacial	periods	(e.g.	Hays	53 

et	al.	1976).	.	During	the	most	recent	glacial	period,	around	20,000	years	BP,	glaciers	developed	54 

even	at	low	latitudes,	such	as	within	the	Mediterranean	(Hughes	et	al.	2006)	including	North	55 

Africa	 at	 elevations	 as	 low	 as	 2000	m	 a.s.l.	 (Hughes	 et	 al.	 2011,	 Hughes	 et	 al.,	 2018).	 As	 a	56 

consequence,	plant	and	animal	species	were	naturally	constrained,	which	reduced	their	range	57 

substantially	and	allowed	them	to	persist	only	in	refugial	areas	(e.g.	Hewitt,	2000).	Likewise,	58 

humans	would	have	adapted	their	population	size	and	habitats	locations	in	response	to	past	59 

climate	fluctuations	(Roberts	et	al.	2018;	van	de	Loosdrecht	et	al.,	2018). 60 

The	recolonisation	of	new	suitable	habitats	by	humans	after	the	last	glacial	period	from	61 

scattered	populations	was	probably	neither	synchronous	throughout	the	Mediterranean	nor	62 

continuous	and	homogeneous	during	the	Holocene	warm	period	(Hajar	et	al.	2010;	Mercuri	and	63 

Sadori	 2012).	 This	 may	 explain	 the	 asynchronous	 dating	 of	 the	 beginning	 and	 end	 of	 the	64 

Neolithic	in	the	Mediterranean	(Morales	et	al.	2013;	Linstädter	et	al.	2018).	In	terms	of	impact	65 

on	 the	 landscape,	 as	 soon	 as	 human	 populations	 began	 to	 settle	 and/or	 to	 spread	 in	 the	66 

Mediterranean	basin	they	left	clear	imprints	of	their	activities	(cultivation,	fire,	domestication,	67 

clearing,	use	of	tools	etc.)	directly	in	the	areas	they	occupied	and	indirectly	in	the	fossil	records	68 

preserved	in	wetlands	sediment	archives	and	lakes.	Most	Holocene	fossil	records	tend	to	show	69 

that	there	were	natural	changes	during	the	first	thousand	years	of	the	Holocene	when	climate	70 

mainly	forced	ecosystem	changes,	which	was	followed	by	complex	interactions	with	increasing	71 

human	 interference.	 Some	 authors	 have	 proposed	 that	 climate	 was	 the	 main	 driver	 of	72 

synchronous	 ecosystem	 changes	 in	 the	Mediterranean	 during	 the	 entire	Holocene	 and	 that	73 

landscape	 changes	 cannot	 be	 attributed	 to	 human	 activity	 alone	 (Jalut	 et	 al.	 2009).	 Other	74 

scholars	have	argued	that	there	is	an	interplay	between	climate,	humans	and	Mediterranean	75 

ecosystems,	which	becones	complex	 to	unravel	when	aridity	 increased	during	and	after	 the	76 

mid-Holocene	(Carrión	et	al.	2010;	Mercuri	2008;	Sadori	et	al.	2011). 77 

In	Morocco,	the	earliest	Holocene	human	use	of	pant	resources	was	detected	in	the	semi-78 

arid	 lowlands	 of	 the	 Northeast	 Moroccan	 hinterland.	 Charcoal	 samples	 from	 rock	 shelters	79 

(Grösdorf	 and	 Eiwanger,	 1999)	 and	 Epipalaeolithic	 open	 air	 sites	 (Ibouhouten	 et	 al.,	 2010,	80 

Linstädter	et	al.,	2012;	Mikdad	et	al.,	2000)	provide	14C	ages	between	11,700	and	7,800	years	81 

cal.	 BP.	 In	 the	 Middle	 Atlas	 Mountains,	 there	 are	 indications	 of	 early	 Holocene	 occupation	82 

during	 the	 Epipalaeolithic	with	 chronological	 evidence	 dating	 to	 around	 8,400	 cal	 BP	 from	83 

Ouberid	cave	(Mikdad	et	al.	2012).	However,	the	ecological	impact	of	Epipalaeolithic	hunter-84 

gatherers	on	the	Early	Holocene	landscape	was	minor,	therefore	this	early	occupation	is	not	85 

clearly	reflected	in	secondary	environmental	archives.	Thefirst	evidence	for	human	impact	on	86 

vegetation	cover	is	provided	by	recent	and	precise	archaeobotanical	studies	that	have	dated	87 

the	onset	of	Early	Neolithic	occupation	in	northern	Morocco,	close	to	the	Mediterranean	Sea,	88 

between	7700-7200	years	cal.	BP	(Linstädter	et	al.	2016;	Zapata	et	al.	2013).	 89 

Indirect	 evidence	 from	 fossil	 pollen	 records	 suggests	 that	 human	 impact	 has	 strongly	90 

increased	over	the	last	four	thousand	years	in	Morocco	and	became	increasingly	apparent	at	91 

both	low	and	high	elevations	(Lamb	et	al.	1991;	Cheddadi	et	al.	2015,	Campbell	et	al.	2017).	In	92 

addition	to	fossil	pollen	records,	model	simulations	show	that	during	the	historic	period,	forest	93 

cover	on	usable	 land	may	have	dropped	dramatically	 from	an	estimated	98%	in	3000	BP	to	94 

31.7%	in	1850	AD	(Kaplan	et	al.	2009)	in	relation	to	the	expansion	of	human	population.	In	95 

Morocco,	cedar	forest	cover	in	the	Rif	mountains	decreased	by	about	75%	between	1960	and	96 
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2010	(Cheddadi	et	al.	2017). 97 

Human	activities	can	be	identified	in	the	fossil	pollen	records	through	the	occurrence	and	98 

abundance	of	those	taxa	that	are	considered	anthropogenic	indicators	(Behre	1981;	Mercuri	et	99 

al.	 2011).	 Changes	 through	 time	 in	 human	 population	 size	 can	 also	 be	 estimated	 from	 the	100 

summed	 probability	 distributions	 (SPD)	 of	 archaeological	 (e.g.	 anthropogenic)	 radiocarbon	101 

dates	(Crema	et	al.	2016;	Gamble	et	al.	2004;	Palmisiano	et	al.	2017	and	in	press;	Shennan	et	al.	102 

2013;	Timpson	et	al.	2014;	Weninger	et	al.	2009;	Williams	2012;	Zielhofer	et	al.	2008). 103 

In	the	present	study,	we	estimated	the	size	of	human	population	in	Morocco	for	the	time	104 

period	 between	 10,000	 and	 3000	 cal	 BP	 and	 compared	 population	 variation	 during	 the	105 

Holocene	 to	 several	 anthropogenic	 pollen	 indicators	 as	 well	 as	 to	 reconstructed	 natural	106 

vegetation	 groups	 and	past	 taxonomic	 richness	derived	 from	an	 extensive	data-set	 of	 fossil	107 

pollen	records. 108 

Morocco	has	a	wide	range	of	topographies	with	highest	elevations	ranging	from	2500	in	109 

the	Rif	mountain	chain	up	to	more	than	4000masl	in	the	High	Atlas.	There	are	also	large	coastal	110 

lands	and	plains,	which	are	intensively	cultivated	today.	These	complex	topographic	features	111 

have	 almost	 certainly	 constrained	 the	 spread	 and	 settlement	 of	 humans	 throughout	 the	112 

Moroccan	landscape.	The	main	objectives	of	this	study	are	threefold	(1)	to	reconstruct	overall	113 

human	demographic	changes	in	Morocco	during	the	later	prehistory	(2)	to	identify	different	114 

past	human	activities	in	different	areas	using	a	set	of	anthropogenic	markers	from	a	dataset	of	115 

fossil	pollen	records	and	(3)	to	evaluate	the	spread	of	human	activities	and	their	impacts	both	116 

on	the	lowlands	and	mountain	landscapes. 117 

Materials	and	Methods	118 

Anthropogenic markers, natural vegetation groups and taxonomic richness 119 

The	pollen	data-set	used	in	the	present	study	includes	22	records	from	different	areas	120 

in	Morocco,	obtained	from	both	original	authors	and	digitized	published	work	(figure	1A,	table	121 

1).	There	are	two	sites,	Lake	Hachlaf	and	Lake	Sidi	Ali,	where	two	records	were	collected	in	122 

each	 lake.	 We	 integrated	 these	 duplicated	 records	 because	 they	 encompass	 different	 time	123 

periods.	The	Moroccan	pollen	records	were	produced	by	various	analysts	over	a	ca.	40	year	124 

period,	between	1976	and	2017	and	have	been	dated	relatively	accurately	by	conventional	and	125 

AMS	radiocarbon	dating.	Some	of	the	oldest	pollen	records	(Reille,	1976;	1977	and	1979)	have	126 

been	 dated	 using	 very	 few	 radiocarbon	 dates.	 Three	 pollen	 records	 (Marzine	 in	 the	 Rif,	127 

Tessaout	and	Tizi	Inouzane		in	the	High	Atlas)	for	which	the	published	chronologies	were	based	128 

on	just	one	14C	date	(Reille,	1976;	1977),	while	one	record	(Iguerda-Ait-Amama	in	the	Middle	129 

Atlas)	has	not	been	dated	by	any	radiometric	methods	(Reille,	1976).	The	age/depth	models	130 

that	we	have	built	for	these	four	pollen	records	are	based	on	the	published	original	author's	131 

assumptions	 based	 on	 stratigrahic	markers	 and	 expertise.	 The	 time	 spans	 proposed	 by	 the	132 

original	 author	 (Atlantic,	 Sub-boreal	 and	 Sub-Atlantic	 periods)	 have	 been	 used	 to	 build	 a	133 

quantitative	chronology	for	the	four	pollen	records. 134 

Within	the	dataset,	there	are	five	pollen	records	located	at	elevations	lower	than	800m	135 

asl.	 Two	 of	 them	 encompass	 the	 Early	 Holocene	 and	 three	 others	 only	 cover	 the	mid-	 late	136 

Holocene	(after	6500	BP).	Thus,	in	the	data-set	used	in	this	study,	there	are	more	pollen	records	137 

that	encompass	the	entire	Holocene	period	in	the	mountains	than	in	the	lowlands.	Such	bias	in	138 

the	duration	and	the	spatial	distribution	of	the	pollen	records	in	Morocco	must	be	taken	into	139 

account	when	 interpreting	 the	occurrence	of	anthropogenic	markers	and	overall	 vegetation	140 

changes.	All	of	the	pollen	records	compiled	have	been	archived	in	a	MySQL	database,	which	has	141 

a	 compatible	 structure	 with	 the	 European	 Pollen	 Database	142 

(www.europeanpollendatabase.net).	 The	 Moroccan	 pollen	 data	 will	 be	 contributed	 to	 the	143 

European	Pollen	Database	(Leydet,	2007-2018). 144 
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We	defined	 five	 anthropogenic	 pollen	markers	 (APMs)	 from	 the	 taxa	 identified	 in	 the	145 

fossil	pollen	records	(table	2).	These	APMs	are	based	on	earlier	published	research	and	are	146 

considered	 indicative	 of	 human	 activities	 (Behre	 1981;	Mercuri	 2008;	Mercuri	 et	 al.	 2011;	147 

2013a;	2013b;	Sadori	et	al.	2011)	.	The	reconstructed	APMs	include: 148 

-	Anthropogenic	pollen	index	(API)	149 

-	Regional	pastoral	indicators	(RPI)	150 

-	Anthropogenic	nitrophilous	herbs	(ANH)	151 

-	Cultures	and	crops	(CC)	152 

-	Olea-Juglans-Castanea-Vitis	(OJCV) 153 

We	 selected	 these	 five	 APMs	 to	 allow	 comparisons	with	 a	 selection	 of	 similar	 studies	154 

based	on	six	other	regions	spanning	the	Mediterranean	and	a	Mediterranean-wide	synthesis	of	155 

Holocene	population	and	landscape	change	(see	Bevan	et	al.,	in	press,	Roberts	et	al.,	in	press).	156 

In	Morocco,	these	APMs	were	reconstructed	for	three	separate	regions:	the	Rif	Mountains,	the	157 

Atlas	Mountains	and	lowland	sites	(located	at	an	elevation	lower	than	800m	asl).	The	three	sub-158 

regions	were	then	amalgamated	and	reconstructions	produced,	for	the	entire	country	as	one	159 

overall	 entity	 that	 takes	all	of	 the	pollen	 records	 into	account	 (figure	2).	 	One	palynological	160 

difference	with	these	similar	studies	carried	out	in	other	Mediterranean	regions	is	the	exclusion	161 

of	 Artemisia	 from	 the	 APMs	 because	 it	 is	 a	 natural	 dominant	 taxon	 in	 Moroccan	 steppe	162 

landscapes	 which	 occurs	 in	 the	 mountainous	 areas	 (e.g.	 Saadi	 and	 Bernard,	 1991).	 Thus,	163 

Artemisia	was	not	considered	an	anthropogenic	marker	in	the	present	study.In	addition	to	the	164 

APMs,	we	 reconstructed	 the	pollen	 taxonomic	 richness	 (figure	3)	using	 rarefaction	analysis	165 

(Birks	and	Line	1992)	for	the	same	areas	and	pollen	records	as	the	APMs.	Fossil	pollen	samples	166 

represent	 a	 partial	 representation	 of	 the	 anemophilous	 plants,	 due	 to	 the	 differing	 pollen	167 

productivity	of	different	plants	and	their	dissimilar	dispersal	capacity.	The	number	of	identified	168 

and	counted	pollen	grains	is	also	often,	 if	not	always,	different	from	one	analyzed	sample	to	169 

another	within	 the	 same	 record.	 Rarefaction	 analysis	 provides	 an	 unbiased	 estimate	 of	 the	170 

number	 of	 taxa	 in	 a	 fossil	 sample	 which	 allows	 a	 comparison	 of	 the	 pollen	 analyses	 from	171 

different	samples	in	the	same	record	(Birks	and	Line	1992).	However,	one	should	keep	in	mind	172 

that	the	pollen	taxonomic	richness	does	not	represent	a	measure	of	the	species	diversity,	sensu	173 

Shannon	or	Simpson	indices,	as	one	pollen	taxon	may	correspond	to	one	or	several	species	and	174 

the	pollen	percentage	in	a	fossil	sample	does	not	correspond	to	the	number	of	occurrences	of	175 

the	 species	 in	 the	 studied	 site.	Modern	 human	 activities	 often	 result	 is	 negative	 impact	 on	176 

species	 diversity.	 Pollen	 taxonomic	 richness	 is	 not	 a	 direct	 indicator	 of	 past	 human	177 

disturbances,	but	it	may	help	comprehend	whether	the	past	human	demographic	changes	had	178 

a	negative	or	positive	impact	on	species	diversity. 179 

In	addition	to	the	APMs	and	pollen	taxonomic	richness,	we	also	used	clusters	of	pollen	180 

taxa	to	 identify	four	natural	vegetation	groups	(figure	4)	that	represent	the	main	ecosystem	181 

types	in	Morocco	(Quézel	and	Médail,	2003).	These	natural	vegetation	groups	are	ordered	by	182 

increasing	elevation	(1)	evergreen	trees	and	shrubs,	(2)	deciduous	trees,	(3)	mountain	conifers,	183 

and	(4)	steppe	(table	3).	 	This	is	based	on	grouping	pollen	samples	into	‘vegetation	clusters’	184 

according	 to	 their	 taxa	 assemblages	 and	 builds	 on	 the	 cluster	 analysis	 approach	 used	 by	185 

Woodbridge	et	al.	(2018)	and	Fyfe	et	al.	(2018). 186 

Demographic change over the Holocene 187 

In	the	past	two	decades	one	of	the	most	popular	proxies	for	inferring	demographic	trends	188 

in	 the	 prehistoric	 period	 has	 involved	 summed	 probability	 distributions	 (SPDs)	 of	189 

archaeological	radiocarbon	dates	as	a	result	of	increasingly	sophisticated	methods	(Rick,	1987;	190 

Shennan	and	Edinborough,	2007;	Bocquet-Appel	et	al.,	2009;	Shennan	et	al.,	2013;	Timpson	et	191 

al.,	2014;	Balsera	et	al.,	2015;	Crema	et	al.,	2016;	Bevan	et	al.,	2017;	Palmisano	et	al.;	2017;	192 

Capuzzo	 et	 al.	 2018).	 The	 SPD	 results	 	 from	 'counting	 up'	 (summed	 in	 the	 manner	 of	 a	193 
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histogram)	the	calibrated	raw	radiocarbon	years	of	each	organic	sample,	which	are	expressed	194 

as	probability	statements	with	error	ranges.	This	 is	based	on	 the	assumption	 that	 the	more	195 

people	living	in	a	given	region,	the	more	archaeological	remains,	the	more	organic	materials,	196 

and	the	more	samples	can	be	collected	for	radiocarbon	dating	(Rick	1987).	Such	indicators	do	197 

not	offer	good	evidence	for	absolute	numbers	of	a	human	poplation	but	rather	give	an	idea	of	198 

relative	 intensities	 of	 population	 and	 proportional	 change	 through	 time.	 Although	 SPDs	 of	199 

radiocarbon	 dates	 has	 been	 extensively	 used	 by	 archaeologists	 for	 modelling	 population	200 

fluctuations	 in	 prehistory,	 it	 faces	 several	 challenges	 such	 as	 biases	 in	 research	 strategies,	201 

budgets	 and	 interests	 that	 can	 undermine	 a	 random	 sample	 of	 human	 activity	 in	 every	202 

archaeological	phase. 203 

Over	 the	past	 ten	years,	both	 the	number	and	 the	accuracy	of	 radiocarbon	dates	have	204 

increased	in	most	newly	investigated	archaeological	sites.	This	is	the	case	in	Morocco,	where	205 

more	than	two-thirds	of	the	radiocarbon	dates	used	in	the	present	study	were	published	in	the	206 

past	decade.	In	the	present	study	we	have	estimated	human	population	size	in	Morocco	from	207 

270	uncalibrated	radiocarbon	dates	which	have	been	collected	 from	83	archaeological	 sites	208 

(figure	1B)	between	10,000	and	3000	cal	BP.	To	our	knowledge,	the	dataset	used	in	this	work	209 

represents	the	largest	existing	collation	of	archaeological	radiocarbon	data	for	Morocco.	This	210 

number	of	dates	collected	(n=270)	exceeds	the	suggested	minimum	threshold	of	200-500	dates	211 

to	produce	a	reliable	SPD	with	reduced	statistical	fluctuation	for	a	time	interval	of	10,000	years;	212 

specific	 issues	 about	 sample	 size	will	 be	 discussed	 below	 (Michczyńska	 and	 Pazdur,	 2004;	213 

Michczyńska	 et	 al.,	 2007;	Williams,	 2012,	 580-581).	We	 are	 aware	 of	 the	 limitations	 of	 our	214 

dataset	and	the	results	are	a	preliminary	attempt	to	reconstruct	demographic	change	given	the	215 

spatially	restricted	archaeological	data	available	in	the	area. 216 

All	of	the	radiocarbon	dates	are	from	archaeological	contexts,	with	the	majority	based	on	217 

samples	of	bone,	charcoal	and	wood.	Radiocarbon	dates	obtained	from	marine	sources,	such	as	218 

shells	have	been	removed	(and	are	not	part	of	the	above	total)	to	avoid	the	complicated	issues	219 

arising	from	unknown	or	poorly	understood	marine	reservoir	offsets.	The	probabilities	from	220 

each	calibrated	date	have	been	combined	to	produce	a	summed	probability	distribution	(SPD,	221 

figure	 5)1.	 The	 potential	 bias	 of	 oversampling	 particular	 site-phases	 has	 been	 reduced	 by	222 

aggregating	multiple	uncalibrated	radiocarbon	dates	 from	the	same	site	that	are	within	100	223 

years	of	each	other	and	dividing	by	 the	number	of	dates	 that	 fall	within	 this	 time	 ‘bin’	 (see	224 

Timpson	et	al.	2014).	Following	this	process,	the	probabilities	of	each	bin	are	summed:	in	our	225 

case,	270	radiocarbon	dates	have	been	aggregated	 into	207	bins.	Following	previous	works	226 

(Weninger	et	al.	2015;	Williams	2012),	which	show	that	normalized	calibrated	dates	emphasize	227 

narrow	artificial	peaks	in	SPDs	due	to	steepening	portions	of	the	radiocarbon	calibration	curve,	228 

we	opted	to	use	unnormalized	dates	prior	to	summation	and	calibrated	via	the	IntCal13	curve	229 

(Reimer	et	al.	2013;	see	former	applications	of	calibrated	unnormalized	radiocarbon	dates	in	230 

Bevan	et	al.	2017;	Palmisano	et	al.	2017;	Roberts	et	al.	2018).	A	logistic	null	model	representing	231 

expected	population	increase	has	been	fitted	to	the	observed	SPD	in	order	to	produce	a	95%	232 

confidence	envelope	(composed	of	1,000	random	SPDs)	and	statistically	test	 if	the	observed	233 

pattern	significantly	departs	from	this	model		(for	the	general	approach	see	Shennan	et	al	2013;	234 

Timpson	 et	 al	 2014;	 as	 specifically	 implemented	 in	 Bevan	 and	 Crema	 2018:	 modelTest,	235 

‘uncalsample’).	 Deviations	 above	 and	 below	 the	 95%	 confidence	 limits	 of	 the	 envelope	236 

respectively	indicate	periods	of	population	growth	and	decline	greater	than	expected	according	237 

a	 logistic	model	 of	 population	 growth.	However,	 it	 is	 important	 to	 recognize	 that	 a	 logistic	238 

model	cannot	strickly	be	considered	as	a	realistic	model	for	population	growth,	but	rather	as	239 

an	 elementary	 model	 useful	 for	 quantitatively	 testing	 population	 fluctuations	 (cf.	 Turchin	240 

 
1	The	analysis	has	been	performed	in	R	v.	3.3.3	by	using	the	package	rcarbon	developed	by	Crema	and	Bevan	

(2018).	 
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2001).	In	this	case,	a	logistic	model	was	selected	as	a	more	suitable	option	as	opposed	to	other	241 

possible	null-models	(e.g.	uniform,	exponential)	given	the	observed	shape	of	radiocarbon	date	242 

SPDs	in	our	study	area	(see	Fig.	5). 243 

As	proxies	for	past	population	estimates	from	the	SPDs	of	radiocarbon	dates	can	be	used	244 

as	 recently	as	~3000	Cal	yr	BP	 in	Morocco,	 that	 is	prior	 to	 the	historical	 time	period	when	245 

archaeological	 chronologies	 rely	 more	 on	 specific	 evidence	 such	 as	 datable	 coins,	 written	246 

source	and	fine-ware	pottery	rather	than	on	radiometric	dating. 247 

 Chemical elements 248 

A	 chemical	 elements	 analysis	was	 carried	 out,	 using	 potable	 X-ray	 fluorescence	 (XRF)	249 

technique,	on	a	sediment	core	retrieved	in	Ait	Ichou	swamp	in	the	south	of	the	Middle	Atlas	250 

(Tabel	et	al.,	2016).	XRF	analyses	allowed	the	variation	of	more	than	20	chemical	elements	to	251 

be	measured	over	 the	past	25,000	years	 covered	by	 the	Ait	 Ichou	 core.	However,	 only	 four	252 

chemical	elements	were	used	in	this	study	(figure	6).	These	elements	are	iron	(Fe),	lead	(Pb),	253 

zinc	(Zn)	and	copper	(Cu).	These	elements	were	selected	as	indicators	of	human	activity	and	254 

marked	increase	of	their	concentration	in	the	sedimentary	record	is	related	to	different	human	255 

activities	in	the	area.	 256 

Results	257 

The	compiled	 fossil	pollen	data-set	 (figure	1A)	and	archaeological	 radiocarbon	dates	258 

(figure	 1B)	 allow	 us	 to	 reconstruct	 of	 several	 anthropogenic	markers	 (figure	 2),	 past	 plant	259 

taxonomic	richness	(figure	3),	natural	composition	of	past	ecosystems	(figure	4)	as	well	human	260 

demography	changes	(figure	5)	during	the	Holocene.	The	anthropogenic	pollen	markers	allow	261 

us	to	identify	of	potential	relationships	between	natural	ecosystems	and	superimposed	human	262 

disturbances.	A	spatial	and	temporal	analysis	of	these	pollen	markers	may	provide	information	263 

on	 the	 timing	of	human	 interference	 throughout	 the	Holocene	and	 the	 types	of	 impact.	The	264 

proportions	of	the	reconstructed	anthropogenic	markers	correlate	with	the	estimated	human	265 

demography,	which	may	 provide	 information	 about	 the	 intensity	 of	 human	 impacts	 on	 the	266 

landscape. 267 

The	archaeo-demographic	results	(Figure	5)	show	some	significant	overall	departures	268 

of	the	SPD	of	observed	data	from	the	envelope	of	the	logistic	model	(p	=	0.006),	which	indicates	269 

that	population	did	not	grow	logistically	from	10,000	to	3000	BP	in	Morocco.	The	population	270 

was	greater	than	predicted	by	the	logistic	null	model	in	the	Middle	Holocene	between	~7200-271 

6700	cal.	BP	and	~6300-6200	cal.	BP.	In	contrast,	population	was	significantly	below	expected	272 

values	in	the	Early	Holocene	(~9200-9000	cal.	BP,	~8450-8370	cal.	BP	and	~8200-8000	cal.	273 

BP).	Another	marked	decline	 in	population	occurs	during	4800-4500	 cal.	BP.	Generally,	 the	274 

level	of	population	was	lower	in	the	Early	Holocene	and	started	increasing	substantially	with	275 

the	 onset	 of	 the	 Neolithic	 in	 the	 8th	 millennium	 cal	 BP.	 The	 duration	 of	 these	 periods	 of	276 

decreasing	and	 increasing	human	population	differ	and	varies	between	ca.	one	and	ca.	 four	277 

centuries	(figure	5). 278 

The	anthropogenic	pollen	markers	API,	ANH	and	CC	show	a	marked	increase	(figure	2)	279 

that	matches	the	first	significant	expansion	of	human	populations	between	7180	and	6740	cal	280 

BP	(event	4	in	figure	5).	This	first	increase	in	pollen	indicators	of	human	activityis	recorded	281 

mainly	 in	 the	 lowland	sites	 rather	 than	 in	 the	Rif	 and	Atlas	Mountains.	The	arboreal	pollen	282 

percentages	 decrease	 most	 significantly	 within	 sites	 located	 at	 lower	 altitude.	 	 Human	283 

demographic	changes	(figure	5)	and	the	three	APMs	(API,	ANH	and	CC)	from	the	lowland	sites	284 

are	positively	correlated	(table	4).	Pollen	taxonomic	richness	shows	a	significant	correlation	285 

with	SPDs	(table	4)	with	a	marked	increase	between	7180	and	6740	then	between	6330	and	286 

6240	 when	 human	 population	 also	 increased	 (events	 4	 and	 5).	 This	 correlation	 is	 more	287 
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significant	in	sites	located	in	the	lowlands	than	in	the	Rif	and	Atlas	Mountains	(figure	3).	Periods	288 

of	decreasing	human	population	(events	1,	2,	3	and	6,	figure	5)	are	not	marked	in	the	lowlands	289 

or	in	the	mountains.In	order	to	evaluate	the	impact	of	human	demographic	changes	on	natural	290 

ecosystems	we	have	reconstructed	four	groups	of	vegetation	(figure	4,	table	3),	which	are	well	291 

defined	 in	 Morocco	 (Quézel	 and	 Médail,	 2003)	 and	 pollen	 grains	 representing	 these	 plant	292 

species	have	been	 identified	 in	 the	 fossil	 records.	These	vegetation	groups	 include	montane	293 

conifers,	deciduous	 trees,	evergreen	 trees	and	shrubs	and	steppic	plants	 (figure	4).	None	of	294 

these	 groups	 shows	 a	 significant	 correlation	with	 human	 demographic	 changes	 during	 the	295 

Holocene	(table	4)	and	none	of	the	human	population	increases	(event	4	and	5)	or	decreases	296 

(events	1,	2,	3	and	6)	clearly	reflect	changes	in	any	vegetation	group. 297 

Discussion	298 

The	modern	challenges	facing	the	Mediterranean	region	in	terms	of	managing	the	impacts	299 

of	both	the	climate	change	and	human	population	growth	are	intensifying.	Human	pressures	on	300 

Mediterranean	biodiversity	has	steadily	increased	over	the	last	century	and	reached	a	critical	301 

threshold	within	 the	 last	 few	decades.	Understanding	of	 past	 relationships	between	human	302 

demography	and	ecosystem	changes	is	paramount	to	managing	ongoing	landscape	changes	and	303 

requires	studies	integrating	longer	time	scales	than	the	last	few	decades. 304 

Morocco	 is	 within	 the	 Mediterranean	 floristic	 area,	 which	 is	 considered	 a	 hotspot	 of	305 

biodiversity	(Myers	et	al.	2000)	with	approximately	22%	of	endemic	vascular	plants	(Rankou	306 

et	 al.	 2013).	Due	 to	 the	 geographical	 expansion	of	 human	population	 and	 related	 activities,	307 

several	species	have	become	extinct	over	the	last	century	and	many	species	are	endangered	or	308 

in	threat	of	extinction	today	(IUCN,	2018).	Forest	cover	in	Morocco	has	been	decreasing	steadily	309 

and	 substantially	 over	 the	 past	 century	 (Kaplan	 et	 al.	 2009)	 and	 all	 ecosystems,	 from	 the	310 

seashore	 to	 the	 highest	 elevation	 mountains,	 have	 been	 impacted	 by	 expanding	 human	311 

activities	and	increasing	exploitation	of	ecosystem	resources.	For	example,	cedar	forest	cover	312 

in	the	Rif	Mountains	has	decreased	by	about	75%	over	the	last	50	years,	from	more	than	45k	313 

ha	to	ca.	10k	ha	today	(Cheddadi	et	al.	2017).	Simultaneously,	human	population	more	than	314 

quintupled	between	1900	and	2014,	 from	ca.	6	to	ca.	34	million	 inhabitants.	 In	this	context,	315 

today	 more	 than	 ever	 it	 is	 important	 to	 analyze	 and	 understand	 past	 impacts	 of	 human	316 

demographic	change	on	different	ecosystem	types.	The	Neolithic	is	a	very	interesting	period	for	317 

exploring	 the	 impact	 of	 early	 human	 expansions	 and	 regressions,	 on	 landscapes	 and	 the	318 

increasingly	 complex	 ways	 in	 which	 such	 activities	 are	 superimposed	 on	 climate	 change	319 

records.	This	may	help	to	evaluate	the	ecosystem’s	capacity	for	adaptation	and	resilience	to	the	320 

combined	effects	of	natural	and	human	induced	changes. 321 

Evaluation	 of	 human	 demography	 during	 the	 Neolithic	 can	 be	 performed	 using	322 

radiocarbon	dates	available	from	archaeological	sites	and	ad	hoc	statistical	tools	(Crema	et	al.	323 

2016;	 Gamble	 et	 al.	 2004;	 Palmisiano	 et	 al.,	 2017;	 Shennan	 et	 al.	 2013;	 Williams	 2012).	324 

However,	one	should	be	cautious	as	archaeological	sites	are	often	not	exhaustively	studied	and	325 

there	may	be	important	differences	in	the	number	of	dates	available	at	each	site.	This	is	clearly	326 

the	 case	 for	Morocco	where	 the	 number	 of	 14C	 dates	 used	 in	 this	 study	 could	 certainly	 be	327 

improved	with	additional	 archaeological	 sites	 and	more	 14C	dates	per	 site.	Other	 additional	328 

potential	 biases	 related	 to	 14C	date	measurements	 and	 their	 calibration	may	 also	 introduce	329 

some	errors	in	estimating	human	demographic	trends	using	SPDs	(Shennan	et	al.	2013),	as	well	330 

as	the	duration	of	the	expansion/regression	of	human	populations	(Manning	et	al.	2014).	Used	331 

as	 a	 demographic	 proxy,	 SPDs	 may	 reflect	 only	 a	 local	 (or	 regional)	 expansion	 of	 human	332 

population	rather	than	representing	a	spatially	large	spread	(Shennan	et	al.	2013). 333 

There	 is	 a	 large	 literature	 focused	 on	 human	 expansion	 and	 related	 activities	 in	 the	334 

Mediterranean	basin	during	the	Neolithic	(summarized	in	Shennan,	2018).	However,	the	timing	335 
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of	expansion	and,	the	type	and	intensity	of	the	impacts	are	not	synchronous	and	probably	not	336 

comparable	 throughout	 the	Mediterranean	 region.	 Today,	 human	 population	 in	Morocco	 is	337 

composed	mainly	of	Berbers	(autochthonous	population)	and	Arabs.	Genetic	analyses	of	North-338 

Western	African	populations	reveal	that	lineages	of	different	Berber	groups	may	date	back	to	339 

at	least	the	last	glacial	period	and	that	the	omnipresence	of	a	certain	mitochondrial	DNA	motif	340 

suggests	a	continuous	presence	of	these	populations	in	Morocco	over	more	than	20,000	years	341 

(Rando	et	al.,	1998).	All	recent	genetic	studies	agree	that	the	spread	of	human	populations	in	342 

North	Africa	originated	from	the	East-West	(Bentayebi	et	al.	2014),	rather	than	originating	from	343 

sub-Saharan	 populations	 (Desanges,	 1981).	 The	 genetic	 contribution	 of	 sub-Saharan	344 

populations	to	the	modern	North	African	populations	seems	to	be	minor	(Bosch	et	al.,	1997;	345 

Brakez	et	al.,	2001).	Recent	archaeological	findings	in	Northern	Morocco	indicate	the	absence	346 

of	Saharan	 influences	during	the	Early	Neolithic	until	6.0	cal	ka	BP	(Linstädter	et	al.,	2018).	347 

Thus,	 even	 if	 the	 timing,	 continuity	 and	 degree	 of	 expansion	 of	 the	 migrating	 original	348 

populations	 is	 still	 under	 scientific	 debate,	 the	 Eastern	 origin	 of	 the	modern	North	 African	349 

populations	is	now	genetically	proven.	Rando	et	al.	(1998)	state	that	the	modern	dominating	350 

lineages	arrived	in	North	Africa,	during	the	Mesolithic	and	Neolithic	in	waves	while	Arredi	et	351 

al.	 (2004)	 propose	 that	 the	Neolithic	 transition	 in	North	Africa	was	 accompanied	 by	 demic	352 

diffusion	(see	Cavalli-Sforza	et	al.	1993).	The	marked	variations	in	14C	date	SPDs	(figure	5)	and	353 

the	 discontinuous	 occurrences	 of	 the	 fossil	 anthropogenic	 markers	 (figure	 2)	 suggest	 that	354 

human	 population	 in	Morocco	 did	 not	 increase	 steadily	 during	 the	 Holocene,	 but	 involved	355 

marked	periods	of	'booms'	and	'busts'	that	impacted	upon	the	landscape	intermittently.	These	356 

past	demographic	variations	(figure	5)	and	discontinuous	landscape	changes	could	probably	357 

have	resulted	from	waves	of	immigrating	populations	rather	than	demic	diffusion	into	Morocco	358 

during	the	Holocene. 359 

The	SPD	data	suggest	that	human	demography	fluctuated	during	the	Holocene	with	two	360 

periods	of	noticeable	population	increase	and	four	others	with	noticeable	population	decrease	361 

(figure	5;	 table	4).	Human	population	 increased	 substantially	with	 the	onset	 of	 the	Atlantic	362 

Neolithic	around	7400/7300	cal	BP.	In	agreement	with	the	SPD	data,	pollen	markers	of	cultures	363 

and	crops	and	farming	increased	in	sites	located	at	low	elevation.	The	correlation	between	the	364 

anthropogenic	markers	and	SPD	(table	5)	suggests	that	human	impact	was	not	only	 local	or	365 

regional,	but	probably	took	place	over	a	larger	area.	However,	this	positive	correlation	is	based	366 

on	only	five	lowland	records,	which	includes	two	Holocene	archaeological	sites	(figure	1B,	table	367 

1)	and	three	pollen	records	that	encompass	the	second	half	of	the	Holocene	(younger	than	6500	368 

cal.	BP).	To	confirm	that	human	 impact	 in	 the	 lowlands	was	spatially	more	extended	would	369 

require	additional	Holocene	data	from	off-site	contexts,	such	as	lake	sediments	at	low	elevation.	370 

The	pollen	records	available	in	the	Rif	and	Atlas	Mountains	are	more	numerous,	well	dated	and	371 

many	of	them	encompass	the	entire	Holocene	(table	1).	In	these	montane	records	we	do	not	372 

observe	 a	 significant	 correlation	between	 the	APMs	 and	 SPDs	 (table	 5)	which	 supports	 the	373 

interpretation	that	human	imprints	were	probably	restricted	to	the	lowland	areas	during	the	374 

Early	Neolithic.	Archaeological	findings	in	the	Moroccan	coastal	areas	and	lowlands	confirm	the	375 

presence	of	cultivated	landscapes	as	early	as	ca.	7000	cal	BP	(Ballouche	and	Marinval	2003;	376 

Linstädter	et	al.	2016;	López-Sáez	and	López-Merino,	2008;	López-Sáez	et	al.,	2013;	Morales	et	377 

al.	2013;	Zapata	et	al.	2013).	At	higher	elevations,	several	palaeoecological	studies	indicate	late	378 

Holocene	human	impacts	on	ecosystems	in	the	Atlas	and	the	Rif	Mountains	(Abel-Schaad	et	al.	379 

2018;	Campbell	et	al.,	2017;	Cheddadi	et	al.	2015;	Lamb	et	al.	1991;	Reille	1977;	Zielhofer	et	al.	380 

2017).	The	 low	correlation	between	forest	ecosystems	(figure	4),	which	occur	mainly	 in	the	381 

mountain	areas,	and	SPDs	(table	5)	suggest	a	lower	level	of	human	impact	at	higher	elevations.	382 

Inhabitants	of	the	Moroccan	mountains	may	have	included	populations	of	hunters-gatherers	383 

rather	than	farmers,	which	could	have	delayed	the	expansion	of	cultivation	and	food	production	384 
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"technologies"	(Bosch	et	al.	1997)	and,	therefore,	may	explain	the	absence	or	low	level	of	human	385 

imprints	during	the	Early	Neolithic	in	the	Rif	and	Atlas	Mountains.	Prior	to	the	first	period	of	386 

significant	human	expansion	(ca.	7400	cal	BP)	there	are	high	values	of	OJCV	(>10%)	that	are	387 

dominated	 by	 Olea	 pollen	 percentages,	 which	 may	 be	 interpreted	 as	 related	 to	 early	388 

domestication	of	the	olive	tree	in	Morocco.	However,	these	high	Olea	occurrences	are	recorded	389 

during	 a	 time	 span	 of	 significantly	 lower	 human	popuation	 (figure	 2).	 The	 increase	 in	Olea	390 

pollen	percentages	during	the	early	Holocene	in	Morocco	likely	corresponds	to	the	spread	of	391 

wild	stands	(oleaster)	under	a	warmer	early	Holocene	climate	(Cheddadi	et	al.	1998)	rather	392 

than	to	early	domestication	of	the	olive	tree	(see	Langgut	et	al.,	this	volume). 393 

Reconstructed	pollen	 taxonomic	 richness	 (figure	3)	 is	not	well	 correlated	with	human	394 

demographic	 changes	either	 in	 the	 lowlands	or	 in	 the	mountainous	 sites	 (table	5,	 figure	3),	395 

which	 suggests	 that	 either	 human	 demographic	 fluctuations	 had	 a	 minor	 impact	 on	 the	396 

structure	and	composition	of	the	ecosystems	or	that	such	ecosystems	are	highly	resilient.	This	397 

reflects	the	characteristics	of	modern	Mediterranean	ecosystems,	which	are	considered	highly	398 

resilient	to	human	disturbances	due	to	their	high	ecological	diversity	(Lavorel,	1999;	Pausas	et	399 

al.	2008). 400 

After	 the	 first	major	 increase	 in	 human	 population	 (7180-6740	 cal	 BP)	we	 observe	 a	401 

quasi-steady	decreasing	trend,	which	reached	a	noticeable	SPD	minimum	between	ca.	4820	and	402 

ca.	4530	cal	BP	(figure	5).	The	anthropogenic	markers	(API,	ANH	and	CC)	also	decreased	in	the	403 

lowlands	and	remained	low	in	the	Rif	and	Atlas	Mountains	(figure	2)	during	this	time,	which	is	404 

coherent	 with	 the	 reconstructed	 decreasing	 trend	 in	 human	 population.	 Within	 the	 Rif	405 

Mountain	archaeological	sites	cereals	and	anthropogenic	herbs	decreased	between	6700	and	406 

6000	cal	BP,	indicating	reduced	grazing	and	cultivation	activities	(Linstädter	et	al.	2016).	The	407 

SPD	 data	 indicate	 that	 human	 population	 remained	 low	 until	 4000	 cal	 BP,	which	 probably	408 

marks	the	end	of	the	Neolithic	in	Morocco. 409 

Unlike	other	parts	of	the	Mediterranean,	the	metal	ages	(Bronze,	Copper,	Iron)	are	not	410 

well	dated	in	Morocco.	X-Ray	fluorescence	measurements	of	the	fossil	record	in	the	southern	411 

part	of	the	Middle	Atlas	(Tabel	et	al.	2016)	show	that	iron	(Fe),	lead	(Pb),	copper	(Cu)	and	zinc	412 

(Zn)	started	to	increase	significantly	after	4000	cal	BP	(figure	6)	which	seems	to	be	earlier	than	413 

in	 other	 parts	 of	 the	Mediterranean	 (Van	Der	 Plicht	 et	 al.	 2009),	 and	 coherent	with	 earlier	414 

archaeological	studies	in	Morocco	(Daugas	et	al.	1998;	Ballouche	and	Marinval	2003).	Chemical	415 

elements	(Fe,	Cu,	Zn	and	Pb)	are	often	associated	with	human	activities	during	the	metal	ages	416 

(i.e.	the	Bronze	and	Iron	Ages)	probably	mark	the	beginning	of	an	"industrial"	period	dedicated	417 

to	their	extraction.	The	SPD	data	cover	the	period	between	10000	and	3000	cal	BP,	which	does	418 

not	allow	exploration	of	human	demographic	changes	during	the	Iron	age.	In	the	northern	part	419 

of	the	Middle	Atlas,	and	increase	in	lead	concentration	(Pb)	in	a	fossil	record	(Nour	El	Bait	et	al.	420 

2014)	started	around	2000	cal	BP,	which	corresponds	to	the	beginning	of	the	Roman	presence	421 

in	Morocco.	 In	 the	 Rif	Mountains,	 the	 geochemical	 content	 of	 several	 records	 show	 similar	422 

changes	 to	 those	 of	 the	 Middle	 Atlas	 after	 2000	 cal	 BP	 and	 are	 clearly	 related	 to	 Roman	423 

industrial	activities,	which	started	to	impact	upon	mountain	ecosystems,	such	as	through	the	424 

degradation	of	the	Atlas	cedar	forests	(Cheddadi	et	al.	2015).	The	impact	of	Roman	activities	in	425 

Morocco	seems	to	have	been	more	critical	for	forest	ecosystems	with	a	decrease	in	arboreal	426 

pollen	percentages	(figure	2),	particularly	those	of	the	deciduous	and	evergreen	trees	(figure	427 

4). 428 

It	is	interesting	to	note	that	taxonomic	diversity,	as	detected	by	pollen	records,	(figure	3)	429 

was	not	altered	during	the	Neolithic	nor	the	Bronze/Iron	Ages	and	not	even	during	the	Roman	430 

period.	 Today,	 areas	 rich	 in	 endemic	 species	 are	 threatened	 by	 the	 wide	 range	 of	 human	431 

activities	particularly	 in	areas	 identified	as	biodiversity	hotspots	such	as	 the	Mediterranean	432 

(e.g.	Cincotta	et	al.	2000).	Pollen	 taxonomic	 richness	 in	Morocco	actually	 shows	a	 relatively	433 
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steady	increase	throughout	the	Holocene	and	increases	more	over	so	throughout	the	last	3000	434 

years	during	the	metal	ages.	Elsewhere,	several	paleoecological	studies	have	also	shown	that	435 

the	last	thousand	years	of	the	Holocene	are	marked	by	an	increase	in	pollen	taxa	richness	(e.g.	436 

Birks	and	Line	1992;	Lotter	1998),	which	is	paradoxical	with	the	modern	negative	impacts	of	437 

human	activities	on	ecosystems	and	 their	 species	 richness,	but	perhaps	 consistent	with	 the	438 

well-known	(but	debated)	intermediate-disturbance	hypothesis	(e.g.	Fox,	2013).	Unlike	during	439 

the	 modern	 industrial	 era,	 human	 activities	 during	 earlier	 periods	 of	 the	 Holocene,	 which	440 

mainly	 involved	 livestock	grazing	and	cultivation,	were	excellent	means	 for	 the	dispersal	of	441 

seeds,	propagation	of	domesticated	plants	and	the	dispersal	of	ruderal	plants	 that	are	often	442 

subservient	to	crops.	 443 

Our	study	suggests	 that	 there	are	major	differences	between	past	and	modern	human	444 

activities,	 such	 as	 modern	 artificial	 reduction	 of	 species	 ranges	 through	 the	 industrial	445 

exploitation	 of	 forest	 resources	 (e.g.	 Pearson	 and	Dawson	2003),	mono-specific	 plantations	446 

over	large	areas	(Brockerhoff	et	al.	2008),	the	introduction	of	invasive	and	alien	plant	species	447 

which	 strongly	 and	 negatively	 disturb	 ecosystem	 composition	 (Thuiller	 et	 al.	 2005),	 the	448 

widespread	use	of	herbicides	and	pesticides,	 and	 the	abruptness	of	ongoing	climate	 change	449 

(http://www.ipcc.ch/)	which	 restricts	 species	 ranges.	Modern	 human	 activities	 are	 causing	450 

rapid,	novel,	and	substantial	changes	to	Earth’s	ecosystems	(Vitousek	et	al.	1997;	Nolan	et	al.,	451 

2018)	that	we	have	not	observed	in	our	Holocene	records	in	Morocco. 452 

Conclusions	453 

The	last	10,000	years	represent	an	informative	time	span	encompassing	the	spectrum	of	454 

natural	 to	 anthropogenic	 forcing,	which	 includes	 a	 period	 of	 natural	 climatic	 changes,	with	455 

negligible	 human	 impact	 in	 the	 early	 Holocene,	 followed	 by	 a	 period	 of	 interplay	 between	456 

natural	and	anthropogenic	impacts	with	the	expansion	of	human	populations. 457 

The	archaeological	and	environmental	data	used	in	this	study	indicate	that	prior	to	7400	458 

cal	 BP	 human	 populations	 had	 a	 limited	 impact	 on	 the	 lowland	 landscape	 and	 mountain	459 

ecosystems.	 The	 earliest	 significant	 expansion	 of	 human	 population	 in	Morocco	 during	 the	460 

Holocene	 took	place	 around	7000	 cal	BP	 and	 it	 is	marked	 in	 the	 fossil	 pollen	 record	by	 an	461 

increase	 in	 farming	 indicators,	 particularly	 crop	 pollen	 markers.	 This	 time	 span	 is	 a	 few	462 

hundred	years	 later	than	the	beginning	of	 the	Neolithic	period	 in	Morocco	and	ends	around	463 

4000	cal	BP	when	iron,	copper	and	zinc	content	started	to	 increase	 in	sedimentary	records.	464 

Geochemical	elements	were	extracted	to	make	metal	tools,	which	marks	the	end	of	the	Neolithic	465 

period	and	probably	the	beginning	of	a	prehistoric	metallurgical	industry	era.	We	observe	that	466 

several	anthropogenic	indicators	increase	when	human	population	increases.	Likewise,	natural	467 

ecosystem	 changes,	 including	 forest	 species,	 are	 negatively	 or	 positively	 impacted	 by	 an	468 

increase	or	a	decrease	in	human	population	size	during	the	Holocene,	respectively. 469 

The	correlations	we	have	performed	between	14C	date	SPDs,	as	a	proxy	for	population	470 

change,	and	the	fossil	pollen	data	suggest	that: 471 

(1)	early	expansion	of	human	populations	around	7000	cal	BP	took	place	mainly	in	the	472 

lowlands	and	if	there	was	a	spread	towards	the	mountain	areas	then	it	was	either	minor	or	the	473 

spreading	populations	had	a	negligible	impact	on	natural	ecosystems.	However,	early	Holocene	474 

anthropogenic	evidence	is	derived	from	very	few	lowland	sites.	To	confirm	whether	there	was	475 

a	more	extensive	vegetation	change	additional	data	from	archaeological	off-site	contexts,	such	476 

as	lake	sediments,	are	still	needed. 477 

(2)	 the	principal	human	activity	detected	 in	 the	 lowland	records	 involved	grazing	and	478 

farming	until	ca.	4000	cal	BP. 479 

(3)	 plant	 domestication	 seems	 not	 to	 have	 taken	 place	 before	 the	 early	 expansion	 of	480 

human	populations	in	Morocco,	which	is	recorded	during	the	Neolithic	around	7000	cal	BP. 481 
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The	 conclusions	 drawn	 in	 the	 present	 study	 have	 potential	 to	 be	 clarified	 through	482 

integration	of	additional	archaeological	sites	with	more	radiocarbon	dates	and	new	fossil	pollen	483 

records	from	lower	elevations	areas. 484 
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Figure	 1.	 A.	 Location	 of	 the	 fossil	 pollen	 records	 (red	 stars)	 used	 for	 reconstructing	491 

anthropogenic	 markers,	 vegetation	 groups	 and	 pollen	 taxonomic	 richness.	 Pollen	 record	492 

numbers	refer	to	table	1.	B.	Location	of	the	archaeological	sites	(blue	stars)	from	which	we	have	493 

obtained	14C	measurements	for	evaluating	past	changes	in	human	population	in	Morocco	(SPD).		494 

	495 

 496 
	 	497 

500

0

0

0

500

500

5
0
0

500

500

5
0
0

1
0
0
0

1000
1
0
0
0

1000

1500

1500

1500

2000

2
0
0
0

2500

15

15

10

10

5

5

0

0

25 25

30 30

35 35

M
or
oc
co



13 

Figure	 2.	 Percentages	 of	 anthropogenic	 pollen	markers	 (API,	 RPI,	 ANH,	 CC	 and	 OJCV)	 and	498 

arboreal	 pollen	 taxa	 (AP)	 during	 the	 Holocene	 in	 the	 Atlas	 mountains	 (red),	 the	 Rif	499 

mountains	(green),	the	lowlands	(sites	below	800m	asl,	blue)	and	Morocco	(black,	including	500 

all	pollen	records).	API	=	Anthropogenic	Pollen	index,	RPI	=	Regional	Pastoral	indicators,	501 

ANH	=	Anthropogenic	nitrophilous	herbs,	CC=	Cultures	and	crops	and	OJCV	=	Olea-Juglans-502 

Castanea-Vitis.	503 
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Figure	3.	 Estimated	pollen	 taxonomic	 richness	 using	 rarefaction	 analysis	 from	 the	 lowland	507 

sites	(below	800m	asl),	the	Rif	and	Atlas	Mountains,	and	all	datasets	from	Morocco. 508 
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Figure	4.	Pollen	percentages	of	four	natural	vegetation	groups.	512 
 513 
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Figure	 5.	 Summed	 Probability	 Distribution	 (SPD)	 of	 unnormalised	 calibrated	 radiocarbon	516 

dates	vs.	a	fitted	logistic	null	model	(95	%	confidence	grey	envelope).	Blue	and	red	bands	517 

indicate	 that	 chronological	 ranges	 within	 the	 observed	 SPD	 deviates	 negatively	 and	518 

positively	 from	 the	 null	model	 and	 corresponds	 to	 four	 significant	 decreases	 in	 human	519 

population	 (events	 1,	 2,	 3	 and	 6)	 and	 two	 significant	 increases	 (events	 4	 and	 5).	 The	520 

Epipalaeolithic	 and	 Neolithic	 periods	 have	 been	 defined	 according	 to	 Linstädter	 et	 al.	521 

(2018)	in	Northern	Morocco.	522 

 523 
Figure	6.	X-Ray	measurements	of	 Iron	(Fe),	Copper	(Cu),	Lead	(Pb)	and	Zinc	(Zn)	 in	the	Ait	524 

Ichou	fossil	record	collected	in	the	Middle	Atlas	(Tabel	et	al.,	2016)	525 
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Table	1.	Pollen	records	used	in	the	present	study	(displayed	in	figure	1A).	All	pollen	records	528 

from	 Reille	 (1976,	 1977	 and	 1979)	 have	 been	 digitized	 from	 the	 original	 published	 pollen	529 

diagrams	and	the	raw	data	computed	using	the	pollen	sums.	530 

	531 

 532 
	 	533 

Site Name Location Elevation Time span (approx) Authors

Aanasser Rif 1342 0-4000 Reille, 1977, Cheddadi et al., 2015; 2017

Abartete Rif 1260 0-8000 Reille, 1976

Bab El Karn Rif 1178 0-9000 Cheddadi et al., 2016

Col de Zad Middle Atlas 2138 0-3000 Reille, 1976

Hachlaf Middle Atlas 1700 0-6000; 0-16000

Ifrah Middle Atlas 1610 4500-25000 Cheddadi et al., 2009

Ifri nEtsedda Rif 300 4500-10000 Linstädter et al., 2016

Ifri Oudadane Rif 50 6000-10000 Zapata et al., 2013

Iguerda-Ait-Amama Middle Atlas 2052 0-2500 Reille, 1976

Ishou Middle Atlas 1608 0-23000 Tabel et al., 2016

Marzine Rif 1400 0-2000 Reille, 1976

Mhad Rif 754 0-6000 Cheddadi et al., 2015; 2017

Ras El Ma Middle Atlas 1633 0-18000 Nourelbait et al., 2014

Sidi Ali Middle Atlas 2080 0-7500; 0-12000 Lamb et al., 1999; Zielhofer et al., 2017

Sidi bou Ghaba Rabat province 20 0-6500 Reille, 1979

Tanakob Rif 726 0-1200 Reille, 1976

Tessaout High Atlas 2040 0-6000 Reille, 1976

Tifounassine Middle Atlas 1921 0-13000 Tabel & Cheddadi, unpublished data

Tigalmamine Middle Atlas 1626 0-10000 Lamb et al., 1995

Tizi Ninouzane High Atlas 2591 0-2500 Reille, 1976

Nourelbait et al., 2016; Tabel & 
Cheddadi, unpublished
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Table	2.	Taxa	used	to	identify	different	human	impacts	within	the	Moroccan	pollen	records:	534 

Anthropogenic	 Pollen	 index	 =	 API;	 Regional	 Pastoral	 indicators	 =RPI;	 Anthropogenic	535 

nitrophilous	herbs	=	ANH;	Cultures	and	crops	=	CC;	Olea-Juglans-Castanea-Vitis	=	OJCV.	536 
 537 

 538 
	 	539 
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Table	3.	Pollen	taxa	grouped	in	the	four	natural	vegetation	groups 540 

	541 

	542 
	543 

	544 

	 	545 

Conifer trees Deciduous Trees Steppe Evergreen shrubs and trees

Abies Acer Aster-type Acacia

Cedrus Alnus Artemisia Adenocarpus

Cupressaceae Carpinus Asphodeline Buxus

Juniperus Carpinus betulus-type Asphodelus Ceratonia

Taxus baccata Castanea Asteraceae subf. Asteroideae Ceratonia siliqua

Tetraclinis articulata Celtis Asteraceae subf. Cichorioideae Cistus ladanifer-type

Corylus Centaurea Cistaceae

Fraxinus Centaurea cyanus Coniferae (vesiculate)

Juglans Centaurea cyanus-type Cupressus

Ostrya Centaurea nigra-type Cytisus-type

Ostrya/Carpinus orientalis-type Chenopodiaceae Erica arborea-type

Populus Compositae subf. Cichorioideae Genista-type

Prunus-type Cyperaceae Ilex

Quercus canariensis Dipsacaceae Laurus

Quercus canariensis-type Dipsacus Lavandula stoechas-type

Quercus cf. Q. canariensis Ephedra Ligustrum

Quercus faginea Ephedra distachya Myrtaceae

Quercus pyrenaica Ephedra distachya-type Myrtus communis

Quercus robur-type Ephedra fragilis Olea

Salix Ephedra fragilis-type Oleaceae

Tilia Poaceae Phillyrea

Ulmus Sanguisorba minor Phillyrea latifolia

Scabiosa Pinus

Thymelaeaceae Pinus halepensis

Pinus halepensis/P. Pinea-type

Pinus pinaster

Pistacia

Quercus

Quercus coccifera

Quercus ilex

Quercus ilex-type

Quercus rotundifolia

Quercus suber

Rhamnaceae

Rhamnus

Rhamnus alaternus-type

Ribes

Ruscus

Tamarix

Viburnum

Vitis

Ziziphus

Ziziphus lotus
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	546 

	547 

Table	4.	Demographic	peaks	or	troughs	with	statistically	significant	deviation	from	null	model	548 

(see	Fig.	5).	The	dates	summarise	the	duration	of	these	events:	549 

	550 

Event	 Start	(cal	BP)	 End	(cal	BP)	 Duration	(years) 551 

1		 9220	 9030	 190 552 

2	 8450	 8370	 80 553 

3	 8210	 8030	 180 554 

4	 7180	 6740	 440 555 

5	 6330	 6240	 90 556 

6	 4820	 4530	 290 557 

	558 

	559 

	560 

	561 

Table	5.	Spearman's	correlation	coefficients	between	the	pollen	percentages	of	different	562 

anthropogenic	markers	(ANH,	API,	CC,	OJCV,	RPI),	vegetation	groups	and	arboreal	pollen	(AP)	563 

from	fossil	pollen	records	and	archaeo-demographic	datasets	(SPD)	by	region	and	elevation	564 

for	the	period	10000-3000	cal	BP.	Statistical	significance:	green:	0.05>P	value>0.001;	red:	P	565 

value	<0.001	566 

	567 

	568 
  569 

Morocco Atlas Rif Low elevation

AP 0,26 0,4 0,3 -0,09

ANH 0,63 -0,12 0,22 0,59

API 0,61 0,05 0,13 0,61

CC 0,7 0,16 0,03 0,74

OJCV 0,24 0,5 0,11 0,1

RPI -0,17 -0,23 0,61 0,06

Taxa diversity 0,26 -0.19 0,31 0,51

Conifers 0,48

Deciduous -0,16

Evergreen -0,13

Steppe -0,33
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