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Abstract. Lung cancer has emerged as a major causes of death and
early detection of lung nodules is the key towards early cancer diagnosis
and treatment effectiveness assessment. Deep neural networks achieve
outstanding results in tasks such as lung nodules detection, segmentation
and classification, however their performance depends on the quality of
the training images and on the training procedure. This paper introduces
UniToChest , a dataset consisting Computed Tomography (CT) scans
of 623 patients and 10071 lesions labelled for segmentation with nodules
spanning different diameters ranges. Then, we propose a lung nodules
segmentation scheme relying on a convolutional neural architecture that
we also re-purpose for a nodule detection task. The experimental results
show accurate segmentation of lung nodules across a wide diameter range
and better detection accuracy over a traditional detection approach. The
datasets and the code used in this paper are publicly made available as
a baseline reference.

Keywords: Medical image segmentation · Deep Learning · U-Net ·
Dataset · Chest CT Scan · Lung nodules · DeepHealth

1 Introduction

Lung cancer has become the leading cause of death for men and women in 2021,
surpassing breast and prostate cancer [19]. With such a low survival rate of 14-
15% at late stages of lung cancer, detecting and monitoring malign cancerous
nodules is the key towards better recovery rates [7]. Conventionally, first a tho-
racic Computed Tomography (CT) scan of the lungs generates high resolution
images of the chest structures [16]. The same procedure is used to monitor the
growth of lung nodules over time, as an indicator of the success of the treatment
or as a warning in case of a sudden volume change [13].
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Manual lung nodules analysis is time-consuming, so Computer-Aided Diagno-
sis (CAD) systems are commonly employed for the detection and segmentation
tasks.Over the past decade, several systems based on traditional or deep learn-
ing based image processing techniques have been proposed for the detection and
segmentation of lung nodules [8, 21, 10]. Differences in size and shape of the nod-
ules, age and gender of the patients, imaging device model and brand along with
the similarity between nodules and their surrounding, make this a challenging
task. Most of the methods rely on supervised approaches , so an important fac-
tor towards precise segmentation and detection is the training dataset quality.
Images and relative annotations in fact often lack in terms of quality or quantity
or both, due to the cost of acquiring and annotating the images by a radiologist.
While some methods attempt to cope with small sample sizes [22] or noisy labels
[6], a good training set remains of paramount importance. Finally, releasing an-
notated medical images to the public requires abiding by the privacy protection
laws, which includes making sure that neither the images nor the annotations
leak any sensitive information.

This paper present a twofold contribution towards accurate lung nodule de-
tection and segmentation.
First, we present UniToChest, a dataset collected and annotated by Radiology
Unit in Città della Salute e della Scienze Hospital within the framework of the
EU-H2020 DeepHealth project 4. The dataset [15] includes 306440 lung can-
cer screening thoracic computed tomography (CT) scans of 623 patients. Each
patient file contains diagnostic lung cancer CT scan images and associated seg-
mentation masks for the annotated lesions. This dataset is the largest of its kind
with most diversity in lesions (lung nodule) size.

Second, we propose a complete nodule detection and segmentation pipeline
designed around a convolutional neural network. Namely, we first segment nod-
ules using an autoencoder with skip connection that we train in a fully super-
vised way. Next, we recast the nodule detection task as a segmentation problem,
showing better performance than a baseline nodule detector.

2 Background and Related Works

In this section we first provide the medical background relevant to the under-
standing of this work, next we review existing techniques in pulmonary nodules
detection highlighting the main limitations that prompted this research.

Computed Tomography (CT) scan is a medical imaging procedure that uses
a computer linked to an x-ray machine to grab series of pictures of areas of the
inner body. The pictures are taken from different angles and are used to create
3-dimensional views of tissues and organs. Sometimes to increase the chances
of seeing diseases, a drug called contrast medium is used which is injected into
the venous circulation to make the blood vessels opaque and reveal neoplastic
lesions. Pulmonary nodules are small, focal, radiographic opacities that may be

4 https://deephealth-project.eu/
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solitary or multiple. A classic solitary pulmonary nodule (SPN) [4] is a single,
spherical, well-circumscribed, radiographic opacity measuring less than or equal
to 30 mm in diameter and is surrounded completely by aerated lung. The SPN
is a coined term that in the past described solitary nodules detected incidentally
by chest radiography (CXR). Today, most nodules are detected by computed
tomography (CT). The detailed CT images frequently identify more than one
nodule, or enlarged lymph nodes. Indeterminate nodules are those that do not
possess features clearly associated with a benign etiology, such as a benign pat-
tern of calcification or stability on imaging for > 2 years. On CT scans, a nodule
appears as a rounded or irregular opacity, well or poorly defined, measuring up to
3 cm in diameter. Advances in chest imaging and the increased use of CT as a di-
agnostic modality have lead to incidental identification of many small pulmonary
nodules. The vast majority of nodules detected on CT are sub-centimeter based
on early lung screening trials (61%-89%). The overwhelming majority of these
are benign. The prevalence of pulmonary nodules changes significantly across
studies. This variation stems from the inconsistency among studies in method,
enrolled population, and reporting results. Most lung nodules are detected in-
cidentally on CXR or CT scans obtained for other purposes. The actual risk
for malignancy in sub-centimeter nodules is lower than the predicted risk based
on clinical and radiographic criteria for pulmonary nodules [11]. The risk factor
varies with the nodule diameter, staying under 35% for nodules below to 1 cm
in diameter and exceeding 97% for nodules above 3 cm. For this reason, accu-
rate nodule segmentation is of paramount importance to estimate its malignancy
probability. Methods for the detection and segmentation of lung nodules can be
categorized into traditional and learning-based.
Traditional methods rely on handcrafted feature extraction [2], often coupled
with shallow classifiers or regressors. The main problem with such techniques is
the manually designing feature extractors time consuming activity and features
may be tailored to some specific dataset.
Learning-based methods usually rely on a type of artificial neural networks
known as Convolutional Neural Networks(CNN) [9]. The underlying idea is to
let the convolutional layers learn feature extractors that maximize some loss
metric on an annotated dataset rather than handcrafting the feature extractor.
Such architectures include millions of learnable parameters and represent the
state of the art in a number of medical applications today [20]. In particular, the
U-Net [17] architecture is designed around an autoencoder topology with skip
connections and represents a standard for semantic segmentation tasks. Due to
the amount of learnable parameters they include, their performance strongly
depends on the amount of data available for training, prompting the collec-
tion of large annotated datasets. The Lung Image Database Consortium image
collection (LIDC-IDRI) dataset [1] is the largest publicly available dataset for
the detection and segmentation of lung nodules. LUNA16 (Lung Nodule Anal-
ysis 2016) [18] is a segmentation challenge that uses a subset of LIDC-IDRI.
The LIDC-IDRI dataset contains 7371 nodules annotated by atleast 3 out of
4 radiologists performing the study. For nodules greater than 3mm the com-
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plete volumetric nodule boundary is given as Region of Interests (ROIs) [12].
Whereas for nodules less than 3mm only the centroid point(x,y,z) is provided
as ROI instead of whole nodule boundary, which makes detecting the smaller
nodules harder.

3 The UniToChest Dataset

The UniToChest dataset has been collected within the EU-H2020 DeepHealth [3,
14] project and consists of about than 300k lung CT scans of pulmonary lungs
from 623 different patients. The scans are in DICOM format and each scan
comes with a manually annotated segmentation mask in black and white PNG
format, both being 512 × 512 in size. The slice thickness of CT scans ranges
from 1.25 to 6.5 mm and the pixel spacing from 0.41 to 0.97 mm. A comparison
with similar datasets in Tab. 3 shows that our dataset has more nodules and
from a wider diameter range especially at the top end. In fact, for most patients
are available images collected over multiple exams over the years including late
stages as shows in Fig. 1a. The dataset contains data collected from a gender-
balanced population (377 males and 246 females) and spanning across a wide
rage of ages (from 7 to 9, most of the population being between 60 and 80), as in
Fig. 1b For many comparable datasets, the images come from a single acquisition
device that may hide some specific bias; conversely, our dataset includes images
acquired using 10 different devices as in Figure 1c. For each and every image,
the radiologist inspected the image for nodules and, where found, each nodule
was manually segmented across multiple slices. Finally, compliance with the UE
regulation on privacy is guaranteed since any sensitive information (name, birth
date, identity) was carefully removed from images and annotations.

Splits Number of Patients Male Female Average Age

Training

V alidation

Test

498

62

63

303

39

35

195

23

28

66

68

65

Total 623 377 246 66

Table 1: Dataset population for the three splits we provide

The total number of nodules in the malignant CT scans of our dataset sur-
passes any publicly available dataset. The distribution of overall nodule diameter
in our dataset is represented in Figure 1a, and a detail description of nodule di-
ameter with respect to splits made in our experiment can be seen in Table 2.

For the purpose of training a neural network, we split the dataset into train-
ing, validation and test set randomly as 80-10-10 of patients. We maintain data
consistency across multiple splits by assigning a single split to each patient. The
data population with respect to the splits is summarized in Table 1 All the three
sets (train, validate, and test) have a 60 to 40 ratio between the number of male
and female patients.
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Fig. 1: Dataset distributions show no sign of bias with respect to nodule diam-
eter range, patient gender and machines used. The U-Net architecture is also
displayed for reference
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< 3mm < 10mm < 30mm > 30mm Total

Train 149 6527 1861 249 8786
Validation 7 315 116 23 461

Test 21 575 195 33 824

Total 177 7417 2172 305 10071

Table 2: Nodule diameter distribution across three splits

Dataset
Number of
Patients

Number of
Scans

Total Nodules
count

Nodule Diameter
range(mm)

LIDC − IDRI

LUNA16

UniToChest

1010

1010

623

244527

888

306440

7371

1836

10071

2− 69

3− 33

1− 136

Table 3: Comparison with similar public dataset shows that our dataset has
more clinical lung cancer CT scan slices and annotated lung nodule count with
a diverse diameter range

4 Methodology

This section describes the proposed method for pulmonary nodules segmen-
tation, including the preprocessing stage, the architecture of the deep neural
convolutional architecture we rely upon and the relative training procedures.

4.1 Data Preprocessing

DICOM files produced by CT machines tipically contain pixel intensity values
in Hounsfield Units (HU) , i.e. they indicate radiometric density per pixel (low
values indicating air, higher values indicating bones). Following a standard med-
ical practice, a clipped windowing transformation function is applied to such
desity values. The window width and center indicate the range of the Hounsfield
Units covered inside the converted pixel values, everything outside this range
will be equivalent to either zero or one. According to standard practice, we have
used a window width of 1600 and a window center of −500 to account for the
radiometric density of body structures actually useful for nodule detection.

4.2 Network Architecture

Our approach relies on the U-Net implementation [17] in Figure 1d. The en-
coder consists of 5 convolutional layers with max-pooling for featuremap down-
sampling. As in other convolutional architectures, as the size of the featuremaps
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shrinks the number of featuremaps increases by a two factor. The decoder in-
cludes 5 convolutional layers followed by an upconvolutions, where the size of the
featuremaps increases while their number decreases at each layer. A number of
encoder and decoder layers are matched with skip connections, where the feature
maps generated by the respective encoder layer is concatenated with the output
of decoder layer, enabling the precise learning and localization of image object
by allowing different tradeoffs between semantic level and spatial accuracy of
the featuremaps.

4.3 Training Procedure

The training method is fully supervised and consists in randomly initializing
the network weights (from scratch) and then training the network for nodule
segmentation minimizing the loss between the network output and the segmen-
tation mask relative to the input image. As for similar segmentation tasks, we
minimize the DICE loss since it has a derivative allowing for error gradient
backpropagation and minimizing the dice loss amount to maximizing the IoU
between predicted and ground truth mask. As a preliminary stage, we found
beneficial pretraining the network over the LIDC dataset prior to the training
on UniToChest. The rationale behind this pretraining is to have the network
learning additional features from the LIDC dataset that may be possibly useful
when trained for segmentation on UniToChest. Next, the network is trained over
UniToChest train set until the Intersection over Union (IoU) score as measured
over UniToChest validation set did not improved for 50 epochs. For this training,
only scans with one or more nodules have been considered, since other scans we
experimentally verified do not bring any useful information for segmentation.
The CT slices are provided in input to the network in batches of 5, as that
enabled a reasonable tradeoff between memory footprint and performance. We
found beneficial resorting to on the fly data augmentation during the training
to avoid overfitting to the training data. The augmentation technique we used
consist in cropping random patches from the slices and performing random flips
and rotations (the very same transformations are also applied to the correspond-
ing segmentation mask). The optimizer used in our experiment is Adam with an
initial learning rate of 0.001 and weight decay of 0.0001. The whole architecture
has been implemented in PyTorch and is available on github.5

5 Results and Discussion

In this section, we first experiment over the UniToChest dataset with the neural
network based method described in the previous section for nodule segmentation.
Next, we repurpose and the same method for nodules detection, with particu-
lar attention to the tradeoff between sensitivity and specificity. All results are
relative to UniToChest test set, i.e. images that the network has never seen at
training time.

5 The git repository address has been removed not to disclose the authors’ identity,
and will be revealed after acceptance
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5.1 Nodules Segmentation

(a) Nodule
diameter = 7.8mm
IoU = 0.90

(b) Nodule
diam. = 35-77mm
IoU = 0.91

(c) Nodule
diameter = 37mm
IoU = 0.93

(d) Nodule
diameter = 161mm
IoU = 0.90

Fig. 2: Segmentation results over different nodule diameter range; regions in yel-
low represent the overlap between predicted and annotated segmentation masks.

As a first experiment, we evaluate the performance of the U-Net trained as in
the previous section at nodule segmentation. For this task, we consider only posi-
tive slices from the test set, i.e. slices with at least one nodule. Figure 3 shows the
Intersection over Union (IoU) and DICE scores for both the network pretrained
as in the previous section and a reference network that was trained from scratch.
The pretraining improves both segmentation accuracy (about +10% IoU) and
convergence speed. As further experiment, we tested the network pretrained on
LIDC only over UniToChest dataset, the top IoU settling at about 43% as a
proof of the benefit yield by pretraining.
Table 4 correlates the average IoU and DICE scores with the nodule diameter
size for both the cases without and with pretraining. The number of nodules in
the sub 10mm bin is approximately equal to the number of nodules in the above
10mm bin. The average IoU is as large as 61% and even on the nodules having a
diameter of less than 3 mm, we achieve an average IoU of 59%. We hypothesize
that the above 10mm bin benefits the most from the pretraining because LIDC
contains nodules ranging mainly in the 10mm to 50mm range.
Finally, Figure 2 shows some samples of the segmentation mask predicted by
the network (bottom row) for some sample test images (top row). Red pixels
represent false negatives, green pixel false positives and yellow pixels correctly
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segmented pixels: most of the pixels are correctly segmented, a few errors only
remaining at the borders of the nodule.

0 20 40 60 80 100

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IoU and Dice scores for 2D U-Nets

IoU score pretrained on LIDC

Dice score pretrained on LIDC

IoU score trained from scratch

Dice score trained from scratch

Fig. 3: Segmentation scores for the first 100 epochs: pretraining improves asymp-
totic IoU, plus the network converges faster.

Nodule Diameter
From scratch

(not pretrained)
Pretrained
on LIDC

IoU DICE IoU DICE

< 10mm 0.575 0.69 0.59 0.69
> 10mm 0.58 0.69 0.615 0.72

Table 4: Segmentation accuracy: pretraining improves accuracy, especially for
nodule sizes most represented in the dataset used for pretraining

5.2 Detection

Next, we evaluate the performance of the same U-Net network trained for seg-
mentation on a nodule detection task, this time considering both positive and
negative test scans. We provide each scans in input to the network and we count
the number of white pixels in the predicted segmentation mask. If such number
is greater than zero, the slice is labeled as positive, negative otherwise. Figure 4a
(left) shows that the network achieves a sensitivity of 0.95 and specificity of 0.80.
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We investigate whether the specificity value could be increased further, finding a
balance between sensitivity and specificity, since in many medical trials the aim
is also to reduce the number of false positives. For this reason, we finetune the
network adding to the train set 10% of the negative training samples drawn at
random. The confusion matrix on the right shows that the specificity improves
from 0.8 to 0.95,reducing the number of false positives.
As a baseline reference, we also trained a binary classifier based on a ResNet18 [5]
pretrained over ImageNet to discriminate each slice as positive or negative. We
achieved a sensitivity of 0.74 and specificity of 0.82, so the number of false pos-
itives is higher than our segmentation-based detection method.

Background Nodule
Predicted label

Background

Nodule

T
ru
e
la
b
el

0.8 0.2

0.048 0.95

0.2

0.4

0.6

0.8

(a) U-Net not finetuned

Background Nodule
Predicted label

Background

Nodule

T
ru
e
la
b
el

0.95 0.048

0.13 0.87

0.2

0.4

0.6

0.8

(b) Finetuned U-Net

Fig. 4: Normalized confusion matrices at nodule detection for a U-Net network
trained at segmentation. The network finetuned on negative slices has better
tradeoff between sensitivity and specificity

6 Conclusion and Future Works

This paper presented UniToChest, a CT scan lung nodules dataset, that is
among the largest of its kind and boasts a diversity of patient ages, acquisi-
tion machines and nodules diameter. We proposed a U-Net based architecture
that yield promising results at both detection and segmentation of lung nodules.
Future research directions of this work include exploiting the thee-dimensional
information of nodules across neighboring slices.
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