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Simple Summary: The radiological response assessment of neuroendocrine tumors (NET) to peptide
receptor radionuclide therapy (PRRT) using [177Lu]DOTATOC is still suboptimal due to the high
variability in targeted somatostatin receptor 2 (SSTR-2) expression and histological heterogeneity
among patients with well-differentiated NET. Promising and innovative laboratory assays have
been proposed, but they are highly costly and not easily accessible. Machine learning offers new
opportunities to provide quantitative characteristics from molecular images that cannot be appre-
ciated by the human eye. We therefore retrospectively analyzed [68Ga]DOTATOC PET/CT images
before and after complete [177Lu]DOTATOC PRRT in well-differentiated progressive, metastatic
gastroenteropancreatic NET and obtained radiomics features as new and reliable imaging parameters
that correlate to the response to PRRT and might be used for improved patient selection in the future.

Abstract: Despite impressive results, almost 30% of NET do not respond to PRRT and no well-
established criteria are suitable to predict response. Therefore, we assessed the predictive value of
radiomics [68Ga]DOTATOC PET/CT images pre-PRRT in metastatic GEP NET. We retrospectively
analyzed the predictive value of radiomics in 324 SSTR-2-positive lesions from 38 metastatic GEP-NET
patients (nine G1, 27 G2, and two G3) who underwent restaging [68Ga]DOTATOC PET/CT before
complete PRRT with [177Lu]DOTATOC. Clinical, laboratory, and radiological follow-up data were
collected for at least six months after the last cycle. Through LifeX, we extracted 65 PET features
for each lesion. Grading, PRRT number of cycles, and cumulative activity, pre- and post-PRRT CgA
values were also considered as additional clinical features. [68Ga]DOTATOC PET/CT follow-up
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with the same scanner for each patient determined the disease status (progression vs. response in
terms of stability/reduction/disappearance) for each lesion. All features (PET and clinical) were
also correlated with follow-up data in a per-site analysis (liver, lymph nodes, and bone), and for
features significantly associated with response, the ∆radiomics for each lesion was assessed on
follow-up [68Ga]DOTATOC PET/CT performed until nine months post-PRRT. A statistical system
based on the point-biserial correlation and logistic regression analysis was used for the reduction
and selection of the features. Discriminant analysis was used, instead, to obtain the predictive model
using the k-fold strategy to split data into training and validation sets. From the reduction and
selection process, HISTO_Skewness and HISTO_Kurtosis were able to predict response with an
area under the receiver operating characteristics curve (AUC ROC), sensitivity, and specificity of
0.745, 80.6%, 67.2% and 0.722, 61.2%, 75.9%, respectively. Moreover, a combination of three features
(HISTO_Skewness; HISTO_Kurtosis, and Grading) did not improve the AUC significantly with 0.744.
SUVmax, however, could not predict the response to PRRT (p = 0.49, AUC 0.523). The presented
preliminary “theragnomics” model proved to be superior to conventional quantitative parameters to
predict the response of GEP-NET lesions in patients treated with complete [177Lu]DOTATOC PRRT,
regardless of the lesion site.

Keywords: 177Lu; artificial intelligence; [68Ga]DOTATOC PET; GEP NET; machine-learning; PRRT;
delta radiomics

1. Introduction

Neuroendocrine tumors (NETs) are heterogeneous and rare neoplasms, even if their
incidence rate has increased consistently during the last decades. Gastroenteropancreatic
(GEP) NETs represent the most common subtype, covering up to 70% of all NET. Func-
tional GEP NET release hormones that can cause symptoms, being consequently diagnosed
earlier, while non-functional GEP NETs are more frequent and usually diagnosed at an
advanced stage [1,2]. According to the recent 2019 WHO classification, GEP NET can be
divided into G1, G2, G3, small-cell type (SCNEC), large-cell type (LCNEC), and mixed
NET (MiNET) based on differentiation, grade, mitotic rate, and ki-67 index [3]. Well-
differentiated GEP NET (G1-G2-G3, or MiNET in case that the prevalent component is
well-differentiated) are mostly characterized by slow growth and good survival, even in
the presence of synchronous liver metastases at diagnosis. Otherwise, poorly differentiated
GEP neuroendocrine carcinomas (SCNEC, LCNEC, or MiNET in case that the prevalent
component is poorly differentiated) are more aggressive with worse prognosis [4,5]. A
precise assessment of primary (T) and eventual widespread disease (N and M) is of the
utmost importance to select the best therapeutic approach for GEP NET. In this scenario,
targeted somatostatin receptor 2 (SSTR 2) molecular imaging with positron emission to-
mography (PET)/computed tomography (CT) or magnetic resonance imaging (MRI) plays
a significant role. Therapeutic options for GEP NET include curative surgery when feasible,
interventional radiology, somatostatin analogues, interferon, chemotherapy, targeted drugs
(i.e., everolimus, sunitinib), selective internal radiotherapy, and peptide receptor radionu-
clide therapy (PRRT) using radiolabelled somatostatin analogues [6]. PRRT represents an
effective treatment for metastatic or inoperable NET, recently approved in Europe, USA,
and Canada for GEP forms [7]. PRRT is included in the theragnostics scenario, enabling,
through a unique radiopharmaceutical administration for multiple cycles, a molecularly
targeted therapeutic procedure (i.e., beta minus emission of 177Lu) and biodistribution
imaging (i.e., gamma emission of 177Lu). However, although PRRT is effective in the
majority of cases, approximately 15–30% of patients will progress during PRRT and can
benefit from timely adjustments, therapy combinations, rapid sequencing, or alternatives.
Furthermore, the Delphic consensus for GEP NET response to therapy assessment defined
both the RECIST 1.1 criteria and PET parameters as suboptimal due to the high variability
in SSTR expression, the different histological patterns related to disease heterogeneity,
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heterogeneous responses, and lack of standardized criteria for molecular imaging [8]. In
addition, biochemical assessment of tumor markers, such as Chromogranin A is also sub-
optimal [9]. However, promising and innovative approaches, such as NET TEST, have been
proposed but they are highly costly and not easily accessible [10]. Therefore, the identifica-
tion of new and reliable quantitative imaging parameters could be crucial to better address
eligible candidates and to assess the response to PRRT, early selecting the best therapeutic
opportunity, avoiding high-costly treatments [11] and related toxicities. In this scenario,
radiomics is a promising technique based on advanced mathematics and statistics that
aims to provide quantitative characteristics (features) from biomedical images of diverse
nature that cannot be assessed by the human eye [12]. In other words, radiomics assumes
that every part of the image (even the smallest) may include tumor features that may be
potentially related to patient outcomes [13,14], response to therapy [15], and molecular
profile [16], supporting medical decisions. Features of several orders can be extracted
and each of those may be related to a precise meaning as the I order features containing
information on shape and statistics deriving from the histogram describing the distribution
of grey values in the selected lesion, or the II or higher orders encompassing information
about the relationships between adjacent voxels. A few studies already assessed the po-
tential application of machine-learning (ML) in GEP-NET to predict response to PRRT.
However, such studies referred to very limited populations [17,18], heterogeneous cohorts,
or considered only predefined features [18–21]. Therefore, we aimed to develop a more
robust radiomics (“radiOMICS”) predictive model of response analyzing [68Ga]DOTATOC
PET/CT images before and after complete [177Lu]DOTATOC PRRT (“THERAGNOstics”)
in well-differentiated, progressive, metastatic GEP NET, namely “Theragnomics” that can
be applied in a clinical decision support system (CDSS).

2. Materials and Methods
2.1. Patients

In this retrospective study, we included all consecutive well-differentiated GEP NET pa-
tients who, between 1 April 2013 and 30 November 2019, underwent a baseline [68Ga]DOTATOC
PET/CT within 2 months before beginning the PRRT with [177Lu]DOTATOC, and a follow-
up [68Ga]DOTATOC PET/CT available within 9 months after the last PRRT cycle. Chromo-
granin A (CgA) was also assessed before each PRRT cycle and at the end of the treatment.
Clinical, laboratory, and [68Ga]DOTATOC PET/CT follow-up data were collected for a
period of at least 3 months after the last cycle. Patients were not eligible if: (a) they were
under 18 years of age; (b) lack of follow-up/baseline imaging and clinical data; (c) patients
with other concomitant oncological pathology. In Figure 1, we described the study work-
flow. The study was approved by the institutional review board (668-18/20), conducted
according to the Declaration of Helsinki principles and good clinical practice guidelines,
and written informed consent specifying the potential use of anonymized data for research
purposes was obtained for each patient.
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2.2. [68Ga]DOTATOC PET/CT

All GEP NET patients underwent [68Ga]DOTATOC PET/CT with the same scanner
at different institutions (GE Discovery ST, Discovery ST, and Discovery 690; Siemens
Biograph Horizon; Philips Gemini GXL 16) before and after complete PRRT for staging
and restaging purposes following the current guidelines [22]. [68Ga]DOTATOC PET/CT
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images were acquired 60 min after an administered [68Ga]DOTATOC dose of 2 MBq/kg
and co-registered with low-dose CT. The PET scans were validated for proper quantification
and quality.

2.3. Image Analysis

Following the current guidelines, [68Ga]DOTATOC PET/CT positivity was confirmed
in the case of non-physiologically uptake or higher uptake than background activity. In
comparison with baseline, [68Ga]DOTATOC PET/CT follow-up after PRRT determined
the status of response to therapy for each lesion in terms of disease progression (PD,
increase in lesion size/SUVmax of at least 25%) vs. stability (SD, increase-reduction in lesion
size/SUVmax < 25%), reduction (PR, decrease in lesion size/SUVmax of at least 25%), or
disappearance (CR) [21]. All PET/CT images were qualitatively analyzed with a dedicated
workstation and were interpreted by D.A. and M.I. (nuclear medicine physicians with 16
and 20 years of experience, respectively).

2.4. PRRT

All patients completed full PRRT (at least 5 cycles) that began within 2 months
after baseline [68Ga]DOTATOC PET/CT. PRRT was performed only in patients with
haemoglobin ≥ 8 g/dL, white blood cells ≥ 3000/mmc, platelets ≥ 75,000/mmc, cre-
atinine ≤ 1.70 mg/dL, and creatinine clearance ≥ 40 mL/min, according to published
guidelines [23]. Preparation of [177Lu]DOTATOC was carried out following established
procedures [24]. Therapy response was routinely assessed on an individual lesion level.

2.5. Radiomics [68Ga]DOTATOC PET/CT Analysis

LifeX [25] is an analysis software compliant with the Image Biomarker Standardiza-
tion Initiative (IBSI) [26] that allows the automatic extraction of radiomics features from
biomedical images. For each patient, all [68Ga]DOTATOC-positive lesions that were clearly
discriminated, non-confluent, and of minimal size of 16 voxels were selected. PET images
were imported to LifeX and a 2D-circular region of interest (ROI) were drawn around every
lesion. ROIs had a minimum size of 0.443 cm3 (corresponding to at least 16 voxels) to
allow for a consistent textural feature calculation. ROI size was adjusted to the size of
the lesions, without incorporating adjacent tissue; ROI size was adjusted to the size of
the lesions, without incorporating adjacent tissue. In this way, using an absolute intensity
rescaling factor of 0–60 of the SUV (64 bins, 0.95 fixed bin width), 65 radiomics features
were automatically extracted for each lesion. In addition, five clinical features were also
considered: grading (G1-G2-G3), number of PRRT cycles, PRRT cumulative activity, pre-
and post-PRRT CgA values. All the features (imaging and clinical) were correlated with
the response data. Specifically, due to the redundancy, heterogeneity, and uncertainty
of the information represented by the radiomics features, we used an innovative mixed
descriptive-inferential sequential approach [27,28] for the feature selection and reduction
process. For each feature, the point biserial correlation (pbc) index between features and
the dichotomic outcome (PD vs. SD, PR, CR) was calculated, sorting the features in pbc
descending order. Then, a cycle started to add one column at a time, performing a lo-
gistic regression analysis by comparing the p-value of each iteration and stopping in the
case of a growing p-value. Accordingly, the features with valuable association with the
outcome were identified and assessed (singularly and in combination) for response to
PRRT prediction. Finally, the discriminant analysis (DA) was used for implementing the
classification model using the k-fold strategy to split data into training and validation sets.
In this way, the PET studies were divided into k-folds. One of the folds was used as the
validation set and the remaining folds were combined in the training set. This process was
repeated k-times using each fold as the validation set and the other remaining sets as the
training set. In our study, k = 5 was empirically determined by trial-and-error strategy (k
range: 5–15, step size of 5). To ensure disjointed validation sets, the leave-one-out approach
was not adopted. In this way, more robust results can be obtained in implementing the
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classification model [29]. For the most significant features, we also assessed the percentage
difference value before (T0) and after PRRT (T1) in terms of delta radiomics, translating
the pre-PRRT [68Ga]DOTA-peptide PET/CT ROI in the same lesion area of the follow-up
performed within nine months after PRRT. The delta radiomics was then calculated using
the following formula:

∆ = 100 ∗ (Feature T1 − Feature T0)/Feature T0

Finally, we performed a per-district analysis (lymph node, liver, and bone) evaluating
all the pre-PRRT PET/CT features in response to PRRT prediction. In Figure 2, we described
the radiomics workflow.
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Figure 2. Radiomics’ workflow. (1) 324 GEP NET lesions with high SSTRs expression in
[68Ga]DOTATOC PET were analyzed (LIFEx) placing a 2D-circular ROI (at least 16 voxels, 0.443 cm3)
on the lesion’s part with the highest SUVmax. (2) 65 features from each lesion (parenchyma, lymph
nodes, bones) + additional features: Pre-PRRT CgA values and grading (G1-G2-G3) were assessed.
(3) Descriptive-inferential sequential approach for feature reduction and selection; for each feature,
the point biserial correlation index between the features and the dichotomic variable (0 PD vs. 1 SD,
CR, PR) was calculated, sorting the features in descending order. Then, a cycle started to add one
column at a time performing a logistic regression analysis comparing the p-value of each iteration
and stopping in case of a growing p-value. (4) Discriminant analysis was then used for feature
classification using the most discriminative ones identified in the previous step.

2.6. Statistical Analysis

Quantitative variables were expressed as mean ± standard deviation. Descriptive
analyses were used to display patient data as mean and range. The t-test was used to
compare means. The differences of the most significant features and delta radiomics
between responders and non-responders were compared using a non-parametric Mann–
Whitney U test. The ability of the most significant radiomics features to predict the response
to PRRT was assessed with receiver operating characteristics (ROC) analysis, and the
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Youden index was used for the maximization of specificity and sensitivity. The area under
the curves (AUC) was reported. In addition, a site-dependent sub-analysis was performed
for the most represented districts of our cohort (lymph node, liver, and bone), evaluating
both the pre-PRRT PET/CT parameters, radiomics features, and the delta radiomics for the
most significant parameters in the response to PRRT prediction.

Statistical analyses were performed by R.L. and V.L. (nuclear medicine physicians),
A.C. and A.St. (computer science PhDs). Statistical analyses were performed using SPSS
statistics software, version 26 (IBM, Armonk, NY, USA), and a p-value of less than 0.05 was
considered statistically significant.

3. Results

A total of 38 GEP NET patients with a median age of 58 years (range 35–79; mean
59.4 ± 10.3 y; 15 out of 38 female) were retrospectively included and underwent a baseline
[68Ga]DOTATOC PET/CT (mean activity 151.1 ± 55.5 MBq, range 93–330 MBq; median
120.5 MBq) a mean of 1.4 ± 0.7 months (0–2) before complete PRRT with a median cu-
mulative dose of 29.0 GBq (23.9–32.8 GBq), followed by [68Ga]DOTATOC PET/CT (mean
activity 165 ± 62.6 MBq, range 93–330 MBq; median 128.5 MBq) a mean of 8.7 ± 1.1 months
(3–9) after the last PRRT cycle. The primary sites originated from the pancreas in 17 out of
38, ileum 14 out of 38, colon three out of 38, stomach two out of 38, and jejunum two out of
38. Grading was distributed as follows: 9/38 G1, 27/38 G2, 2/38 G3. [177Lu]DOTATOC
PRRT was performed a median of five cycles (5–7; total 200; mean 5.3 ± 0.5) with a mean
administered activity of 29 ± 1.5 GBq. [177Lu]DOTATOC labelling yield >99% was reached
in all cases according to guidelines [23]. Baseline CgA was 277 ng/mL (17–1315; mean
394.7 ± 376.1 ng/mL), while follow-up CgA was 125.5 ng/mL (16–1630; mean 380.5 ±
426 ng/mL). Patients’ characteristics and scanner types are summarized in Table 1. The
patients’ inclusion diagram is reported in Figure S1.

Table 1. Patients’ main characteristics.

Patients’ Number
(female—male) 38 (15 F—23 M)

Mean/median age (Range) 59.4 ± 10.3 y/58 y (35–79)

Mean/median administred activity (range) 29 ± 1.5 GBq/29 GBq (23.9–32.8)

Mean/median PRRT cycles (range) 5.3 ± 0.5/5 (5–7)

GEP NET origin

Pancreas 17/38 (45%)

Ileum 14/38 (37%)

Colon 3/38 (8%)

Stomach 2/38 (5%)

Jejunum 2/38 (5%)

Grading (n)

G1 9/38 (23.7%)

G2 27/38 (71%)

G3 2/38 (5.3%)

Lesions’ distribution

Bone Lesions 42/324 (12.9%)

Lymph nodal Lesions 91/324 (28.1%)

Liver Lesions 169/324 (52.2%)

Parenchimal Lesions (no liver) 22/324 (6.8%)
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Table 1. Cont.

Singular lesion response to PRRT

PD 133/324 (41%)

SD 79/324 (24.4%)

PR 92/324 (28.4%)

CR 20/324 (6.2%)

Lesions’ distribution according to response (SD, PR, CR) and grading

G1 28/82 (34.1%)

G2 157/232 (67.7%)

G3 6/10 (60%)

Scanner types n patients—n lesions

GE Discovery 690 15/38—135/324
Siemens biograph horizon 14/38—133/324

GE Discovery ST 4/38—34/324
Philips Gemini GXL 16 4/38—18/324

GE Discovery 600 1/38—4/324

3.1. [68Ga]DOTATOC PET/CT Findings

At baseline [68Ga]DOTATOC PET/CT, we obtained 324 SSTR-positive lesions with at
least 16 voxels. Based on their location, lesions were divided as follows: 169 in 324 liver, 91
in 324 lymph nodal, 42 in 324 bone lesions, and 22 in 324 parenchymal (different than liver).
At the qualitative assessment of follow-up [68Ga]DOTATOC PET/CT, 133 in 324 lesions
were classified as PD and 191 lesions as responsive to therapy (SD + PR + CR, Table 1).

3.2. Radiomics Analysis

Through LifeX software, 65 features were extracted from baseline [68Ga]DOTATOC
PET/CT for each lesion. All features (65 from PET and five from clinical data) were then
correlated with the response data at follow-up. The complete list of extracted features is
provided in Table S1. From the reduction and selection process, the combination of three
features, two from PET (HISTO_Skewness; HISTO_Kurtosis) and one clinical (Grading)
proved able to predict each lesion’s response to PRRT in terms of progression vs. positive
results, regardless of their nature (parenchymal, lymph nodes, bone lesions), with an
AUC ROC, sensitivity, and specificity of 0.744, 66.4%, and 70.3%, respectively. However,
the best predictive result was obtained for HISTO_Skewness, with an optimal cut-off
at 2.45 reaching an AUC ROC, sensitivity, and specificity of 0.745, 80.6%, and 67.2%,
respectively. Moreover, HISTO_Kurtosis, with an optimal cut-off at 6.94 reached an AUC
ROC, sensitivity, and specificity of 0.722, 61.2%, and 75.9%, respectively. Differently, the
SUVmax was not significant (p = 0.49) to predict the response to PRRT in terms of progression
vs. objective benefit or response (AUC ROC 0.523, sensitivity 36.7%, specificity 63.3%), as
shown in Figure 3.
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Furthermore, the two aforementioned features (HISTO_Skewness and HISTO_Kurtosis)
were significantly higher (p < 0.001) in non-responders’ lesions than in responders’ lesions
before and after PRRT, as shown in Table S2. Indeed, for such features, we also assessed the
delta radiomics, as described in Section 2. After PRRT, in responsive lesions (SD + PR + CR)
we observed a mean percentage reduction for ∆HISTO_Skewness (−3.31% ± 664.3%) and a
mean percentage increase for ∆HISTO_Kurtosis (15.98% ± 71.4%). Differently, for progres-
sive lesions (PD), we observed a higher mean percentage increase for ∆HISTO_Skewness
(112.54% ± 348.3%; p = 0.209) and for ∆HISTO_Kurtosis (5.81% ± 52.3%), less evident than
responsive/stable lesions (p = 0.255).

3.3. Lesions’ Per-Site Sub-Analysis

We performed a site-dependent sub-analysis for the most represented districts of
our cohort (lymph node, liver, and bone), evaluating all the most significant pre-PRRT
PET/CT features in response to PRRT prediction, also considering the ∆HISTO_Skewness
and ∆HISTO_Kurtosis.

The following PET features showed a statistically significant difference between respon-
der and non-responder lesions at the Mann–Whitney test: for the lymph node lesions (n = 91;
41 of 91 non-responsive and 50 of 91 responsive), SUVmin and SUVmean (both p < 0.028);
metabolic tumor volume (MTV; p < 0.0028); HISTO_Skewness and HISTO_Kurtosis (both
p < 0.028); shape (mL, p = 0.012). For liver lesions (n = 169; 61 of 169 non-responsive
and 108/169 responsive), MTV (p < 0.001), all HISTO features (p < 0.041), GLCM_Energy
(p = 0.05), and GLCM_Entropy (p = 0.048). Finally, for bone lesions (n = 42; 24 of 42
non-responsive and 18 of 42 responsive), only HISTO_Skewness and HISTO_Kurtosis
(both p < 0.014) showed a statistically significant difference between responder and non-
responder lesions. Moreover, in the sub-analysis for districts, the SUVmax was not signifi-
cant in predicting response to PRRT in terms of progression vs. objective benefit or response
(p > 0.05), with the only exception for the bone district (p = 0.047). The mean values of
HISTO_Skewness, HISTO_Kurtosis, and SUVmax for responder and non-responder patients
in the three districts are presented in Table 2.
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Table 2. The values of HISTO_Skewness, HISTO_Kurtosis, and SUVmax (median ± DS, range) for
responder and non-responder patients in the three main districts affected by the disease.

District Responders Non-Responders p

Lymph nodes (n = 91)

HISTO_Skewness 2.01 ± 2.12
(−1.10–7.66)

3.02 ± 1.44
(0.02–5.60) 0.006

HISTO_Kurtosis 11.03 ± 11.79
(1.66–60.40)

13.72 ± 8.85
(1.85–36.05) 0.028

SUVmax
18.67 ± 12.14
(2.88–51.88)

18.16 ± 13.86
(2.77–75.17) 0.738

Liver (n = 169)

HISTO_Skewness 1.35 ± 2.25
(−4.47–7.66)

3.63 ± 1.90
(−0.51–7.63) 0.0001

HISTO_Kurtosis 9.04 ± 11.90
(1.81–60.40)

19.34 ± 13.86
(1.75–60.09) 0.0001

SUVmax
19.39 ± 10.17
(4.91–55.86)

20.87–10.14
(9.12–55.26) 0.326

Bone (n = 42)

HISTO_Skewness 2.40 ± 1.89
(0.51–6.67)

4.03 ± 1.87
(0.49–7.74) 0.014

HISTO_Kurtosis 11.57 ± 12.83
(2.35–48.00)

23.13 ± 15.46
(2.17–61.34) 0.015

SUVmax
10.31 ± 9.41
(2.06–36.07)

28.42 ± 28.61
(1.67–93.50) 0.047

For HISTO_Skewness and HISTO_Kurtosis, optimal cut-offs for predicting PRRT
responder vs. non-responder lesions were defined using the ROC curve, as shown in Figure
S2. For the lymph node district, the AUC of HISTO_Skewness was 0.67 (best cut-off at
2.45 with a sensibility and specificity of 76% and 60%, respectively), while the AUC of
HISTO_Kurtosis was 0.64 (best cut-off at 8.10 with a sensibility and specificity of 76% and
58%, respectively). For the liver district, the AUC of HISTO_Skewness was 0.76 (best cut-off
at 1.94 with a sensibility and specificity of 87% and 67%, respectively), while the AUC
of HISTO_Kurtosis was 0.75 (best cut-off at 6.55 with a sensibility and specificity of 87%
and 68%, respectively). For the bone district, the AUC of HISTO_Skewness was 0.73 (best
cut-off at 3.33 with a sensibility and specificity of 79% and 78%, respectively), while the
AUC of HISTO_Kurtosis was 0.72 (best cut-off at 15.33 with a sensibility and specificity of
79% and 78%, respectively). For the other aforementioned parameters, the ROC curve was
not informative (AUC < 0.5).

Finally, in Table 3, we summarized the results of the per-site sub-analysis performed on
the ∆radiomics of HISTO_Skewness and HISTO_Kurtosis. Accordingly, only ∆HISTO_Skewness
for the liver district and ∆HISTO_Kurtosis for the bone district showed a statistically signifi-
cant difference between PRRT responder and non-responder lesions (p = 0.031 and p = 0.022,
respectively). However, the ROC curve for these two parameters was not informative (AUC
< 0.6), probably related to the small sample size.
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Table 3. The values of ∆HISTO_Skewness and ∆HISTO_Kurtosis (median ± DS, range) for PRRT
responder and non-responder lesions in the three main districts affected by the disease.

District Responders Non-Responders p

Lymph node (n = 91)

∆HISTO_Skewness 21.18 ± 265.75%
(−880.0–1533.3)

176.83 ± 469.34%
(−96.3–2550.0) 0.886

∆HISTO_Kurtosis 13.97 ± 83.08%
(−82.9–340.5)

−4.48 ± 40.84%
(−85.2–96.2) 0.604

Liver (n = 169)

∆HISTO_Skewness −17.72 ± 865.36%
(−6300.0–4800.0)

134.23 ± 324.32%
(−180.00–1203.82) 0.031

∆HISTO_Kurtosis 9.76 ± 52.45%
(−94.83–193.68)

14.64 ± 60.64%
(−94.07–175.68) 0.906

Bone (n = 42)

∆HISTO_Skewness 6.84 ± 70.95%
(−125.0–134.53)

−24.54 ± 71.06%
(−240.8–56.6) 0.334

∆HISTO_Kurtosis 66.15 ± 113.10%
(−28.1–338.5)

−0.33 ± 41.43%
(−55.7–103.7) 0.022

4. Discussion

It is well known that the heterogeneity of GEP-NET limits the tumor grading based on
biopsy samples [30]. Furthermore, response to PRRT assessment is still suboptimal using
either, conventional imaging or tumor markers [8]. Considering the impact in terms of
side-effects and the high cost of advanced therapy for progressive, metastatic, or inoperable
GEP NET [11], the identification of new, reproducible, and easily accessible biomarkers
seems to be crucial towards a non-invasive and reliable whole-body assessment of tumor
grading. Due to its ability to visualize whole-body tumor burden on a molecular level,
PET-based tumor heterogeneity improved the intra-individual assessment of tumor biology.
In our model, the [68Ga]DOTATOC PET/CT radiomics features “HISTO_Skewness” and
“HISTO_Kurtosis” were able to predict the PRRT response based on a lesion for primary
tumors as well as metastasis regardless of the origin with an AUC ROC, sensitivity, and
specificity of 0.745, 80.6%, 67.2%, and 0.722, 61.2%, 15.9%, respectively, vs. 0.523 for the
SUVmax that was not significant to predict the response to PRRT (p = 0.49). Moreover, the
combination of two radiomics features (HISTO_Skewness; HISTO_Kurtosis) together with
one clinical feature (Grading) was able to predict the PRRT response with an AUC ROC,
sensitivity, and specificity of 0.744, 66.4%, and 70.3%, respectively, but did not improve the
accuracy over the HISTO_Skewness.

So far, very few studies have investigated the role of ML in the prediction of response
to PRRT in GEP NET patients. Wetz et al. have reported on the predictive role of “aspheric-
ity” in GEP-NET patients enrolled for PRRT [31]. They observed that a higher level of
“asphericity” was associated with poorer outcomes. However, compared to our study in-
vestigating [68Ga]DOTATOC PET/CT, features were derived from [111In]DTPA0-octreotide
scintigraphy, which has a lower affinity to SSTR2 compared to PET radiopharmaceuticals,
and different image modalities than PET/CT and/or PET/MRI. More recently, Önner et al.
assessed the value of two predefined first-order features, “skewness” and “kurtosis” (in-
terestingly the same to our study, that we obtained in a non-predefined way as described
in the material and methods section), in the prediction of response to PRRT in 22 GEP
NET patients for a total of 326 lesions [21]. Differently from our study, they considered
SD as a non-response to PRRT, even if in the clinical practice the stability of disease is
a warranted result in this scenario considering that PRRT is approved for progressive,
metastatic, and usually heavily treated NET patients. Similar to our results, they observed
that such features were significantly higher in non-responder patients (p < 0.001 for skew-
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ness and p = 0.004 for kurtosis, vs. a p < 0.001 in our study for both). Moreover, they
assessed the features’ predictive power in PRRT response assessment for skewness and
kurtosis singularly (without any clinical/biochemical parameters), reaching less significant
results compared to our study (AUC ROC of 0.619 for skewness and 0.518 for kurtosis vs.
0.745 and 0.722 in our paper, respectively; cut-offs 2.45 and 6.94). In a different scenario
from our paper (survival analysis), Werner et al. described their experience in a multicen-
tric cohort of 142 NET patients (108/142 GEP NET) applying predefined features. The
authors reported that four features, namely “entropy” (similar to our results for lymph
node lesions), “correlation”, “short-zone emphasis”, and “homogeneity”, provided a sig-
nificant distinction between responders from non-responders. Furthermore, “entropy”
proved to be independently associated with progression-free survival (PFS) and overall
survival (OS) while “skewness” was independently associated with OS. Moreover, con-
ventional PET parameters did not predict any of these outcomes [19]. Similarly, in our
study, we observed that the SUVmax was not significant to predict the response to PRRT
(p = 0.49), and only slightly significant for the distinction between PRRT responder and
non-responder bone lesions (p = 0.047). The same group later assessed (with predefined
features) 31 G1-G2 pancreatic NET patients who underwent [177Lu]DOTATATE PRRT.
They observed that differently from conventional PET parameters, a cut-off > 6.7 for “en-
tropy” reached a significant predictive ability for longer OS (AUC 0.71) [20]. Moreover,
in our study, for the most statistically significant PET features, we assessed the percent-
age variations in terms of delta radiomics: in responsive/stable lesions, we observed a
mean % reduction for ∆HISTO_Skewness (−3.3% ± 664.3%) and a mean % increase for
∆HISTO_Kurtosis (16% ± 71.4%); for progressive lesions, we observed a mean % increase
for ∆HISTO_Skewness (112.5% ± 348.3%) and ∆HISTO_Kurtosis (5.8% ± 52.3%), less evi-
dent than for responsive/stable lesions. In a small, heterogeneous NET cohort [18], Weber
et al. applied textural analysis to [68Ga]DOTATOC PET/MRI liver lesions before and after
PRRT at different dosages/radiopharmaceuticals using only predefined features. In terms
of delta radiomics, they observed that patients undergoing therapy with somatostatin-
analogue (SSA) showed a trend in “entropy” decrease (−0.07 ± 0.16) when compared to
patients undergoing PRRT (0.14 ± 0.43).

In our preliminary experience, we aimed to give weight to a predictive model of
response to PRRT based on the most significant [68Ga]DOTATOC PET/CT features. In the
innovative but uncertain setup of radiomics applied to GEP-NET, we tried to reproduce a
real-life scenario: well-differentiated GEP-NET who underwent [68Ga]DOTATOC PET/CT
with different scanners before and after complete PRRT. In the lesion progression prediction,
a HISTO_Skewness = 2.45 reached an AUC ROC of 0.745 (sensitivity 80.6%, specificity
67.2%) and a HISTO_Kurtosis = 6.94 reached an AUC ROC of 0.722 (sensitivity 61.2%, speci-
ficity 75.9%), with similar results if considered together with clinical parameters. Different
features’ behavior needs to be further investigated: at ∆radiomics analysis, we observed
different lesions’ conducts according to the presence of response (a mean reduction in
HISTO_Skewness and a more evident increase in HISTO_Kurtosis) or progression (a mean
increase in HISTO_Skewness and, less evident, HISTO_Kurtosis) after complete PRRT. In
other words, in responsive lesions after PRRT we observed a mean percentage reduction of
the “asymmetry” (namely, Skewness) and a more evident increase in the “discrepancy of
the considered histogram from the ordinary one” (namely, Kurtosis) than non-responsive
lesions. Moreover, in the district sub-analysis, we observed that ∆radiomics has a different
tendency to increase or decrease for each feature, thus further reflecting NET’s heterogene-
ity in the liver (often extensive lesions with central necrosis) bone (often mixed and small
lesions) and lymph node (possible desmoplastic reaction) [32].

As already stated, both [68Ga]DOTATOC PET/CT SUVmax and PET lesion volume are
considered suboptimal parameters to assess the response to PRRT. Therefore, the potential
added value of radiomics features is to provide prognostic additional information to
conventional parameters, and HISTO_Skewness and HISTO_Kurtosis belong to this subset
of features, as previously demonstrated [17]. The opportunity to assess for each patient the
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single lesion’s heterogeneity and predict each lesion’s response to PRRT would enhance
physicians to early address patients to the best options of care, reducing costs and potential
toxicities [11], improving quality of life and survival. The small sample size represents
a limitation for the statistics of this preliminary analysis. However, we considered each
patient’s lesion singularly (n = 324) and the cohort is a rather homogeneous group of well-
differentiated GEP NETs who completed full [177Lu]DOTATOC PRRT. Furthermore, images
were derived from different PET/CT scanners with potential variations in reconstruction
algorithms (no harmonization was performed). Nonetheless, this study may be more similar
to the real-life scenario, and the results of the testing features were also confirmed in the
validation cohort, thus highlighting features’ robustness and reproducibility. In addition,
radiomics features were extracted only from the most active part of [68Ga]DOTATOC
positive lesions to construct the model, and the remaining tissue in the image may still
contain invisible but useful data. To analyze the entire images, 3D deep learning methods
will be necessary for the “Theragnomics” scenario. The use of deep learning algorithms
might also allow us to eliminate any potential time-consuming ROI placement. The deep
learning algorithm will be responsible for the entire radiomics process in a completely
automatic way, from the segmentation process to the feature extraction process to the
predictive model implementation, avoiding the use of external softwares and other tools ,
and consequently eliminating any user-dependence. Furthermore, our study focused on
PET-based radiomics only without any comparison with survival. A combination with CT
imaging analysis may improve the performance of the prediction model and should be
evaluated in future larger studies, including more clinical/biochemical data and external
validation to evaluate the possible association of PET district-based semi-quantitative
parameters with the outcome.

5. Conclusions

The presented preliminary “theragnomics” model proved to be superior to conven-
tional quantitative parameters to predict the response of GEP-NET lesions in patients
treated with complete [177Lu]DOTATOC PRRT, regardless of the lesion site.
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