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Abstract: We define solitons for the generalized Ricci flow on an exact Courant algebroid. We then define
a family of flows for left-invariant Dorfman brackets on an exact Courant algebroid over a simply connected
nilpotent Lie group, generalizing the bracket flows for nilpotent Lie brackets in a way that might make this
new family of flows useful for the study of generalized geometric flows such as the generalized Ricci flow.We
provide explicit examples of both constructions on the Heisenberg group. We also discuss solutions to the
generalized Ricci flow on the Heisenberg group.
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1 Introduction
Generalized geometry, building on the work of Hitchin [9] and Gualtieri [7] and the structure of Courant alge-
broids, constitutes a rich mathematical environment. The main idea behind it lies in the shift of point of
view when studying structures on a differentiable manifold Mn, replacing the tangent bundle TM with the
generalized tangent bundle

𝕋M = TM ⊕ T∗M.

More explicitly, in the language of G-structures, one studies reductions of GL(𝕋M), the GL2n-principal bundle
of frames of 𝕋M.

A reduction to the orthogonal group O(n, n) always exists, thanks to the nondegenerate symmetric bilin-
ear form of neutral signature

⟨X + ξ, Y + η⟩ = 12 (η(X) + ξ(Y)), (1.1)

so that oneusually only considers structureswhich are reductions ofO(𝕋M), theO(n, n)-reduction of GL(𝕋M)
determined by this natural pairing.

In this spirit, for example, a generalized almost complex structure on M2m, defined by an orthogonal
automorphism J of 𝕋M, i.e. J2 = − Id𝕋M, determines a U(m,m)-reduction of GL(𝕋M). The integrability of
such a structure is expressed through an involutivity condition with respect to a natural bracket operation,
called the Dorfman bracket:

[X + ξ, Y + η] = [X, Y] + LXη − ιYdξ. (1.2)

On the other hand, a generalized Riemannianmetric onMn, defined by a symmetric (with respect to ⟨ ⋅ , ⋅ ⟩)
and involutive automorphism G of 𝕋M, determines an O(n) × O(n)-reduction of GL(𝕋M).

More generally, one can consider a Courant algebroid E over M, namely a smooth vector bundle over M
endowedwith apairing ⟨ ⋅ , ⋅ ⟩ andabracket [ ⋅ , ⋅ ] satisfying certain properties so that𝕋M, endowedwith (1.1)
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and (1.2), is a special case. On the generic Courant algebroid, one can then study reductions of GL(E) such
as generalized almost complex structures and generalized (pseudo-)Riemannian metrics.

In [5, 6, 22], the classical Ricci flow of Hamilton [8] and the B-field renormalization group flow of Type II
string theory (see [20]) were generalized to a flow of generalized (pseudo-)Riemannian metrics on a Courant
algebroid E over a smoothmanifoldM. The generalized Ricci flow, aswe shall refer to this flow fromnowon, is
actually a flow for a pair of families of generalized (pseudo-)Riemannian metrics G ∈ Aut(E) and divergence
operators div: Γ(E) → C∞(M), the latter of which are required in order to “gauge-fix” curvature operators
associated with a generalized (pseudo-)Riemannian metric.

The paper is organized as follows: Section 2 is devoted to a reviewof the setting of generalized geometry –
including the notions of Courant algebroid, generalized curvature tensors and the definition of generalized
Ricci flow – and of the algebraic framework of nilpotent Lie groups.

In Section 3, we introduce the notion of generalized Ricci soliton, which derives from the study of self-
similar (in a suitable sense) solutions to the generalizedRicci flowonexact Courant algebroids. This condition
generalizes theRicci soliton conditionRcg = λg + LXg, whereRcg denotes theRicci tensor of g, λ ∈ ℝ andLXg
denotes the Lie derivative of gwith respect to a vector field X. We show that, whenworking on a Lie group and
considering left-invariant structures, this condition descends to an algebraic condition on the Lie algebra of
the group.

Borrowing from the ideas of Lauret, in Section 4, we consider left-invariant Dorfman brackets on simply
connected nilpotent Lie groups, describing them as elements of an algebraic subset of the vector space of
skew-symmetric bilinear forms on ℝn ⊕ (ℝn)∗ for the suitable n. We then define a family of flows of such
structures, showing that they generalize the constructions known in literature as bracket flows, which have
been extensively used to rephrase geometric flows on (nilpotent) Lie groups (see, for example, [15]). This
justifies our definition of generalized bracket flows.

In Section 5, we perform explicit computations of generalized Ricci solitons and exhibit an example of
generalized bracket flow on the three-dimensional Heisenberg group.

In Section 6, we study solutions of the generalized Ricci flow on the Heisenberg group, highlighting the
differences with the classical Ricci flow.

2 Preliminaries

2.1 Courant algebroids

Let V be a real vector space of dimension n. We start by recalling a few facts about the algebra of the vector
space V ⊕ V∗; for more details, see [7].

The vector space V ⊕ V∗ can be endowed with a natural symmetric bilinear form of neutral signature

⟨X + ξ, Y + η⟩ = 12 (η(X) + ξ(Y))

and with a canonical orientation provided by the preimage of 1 ∈ ℝ in the isomorphism

φ : Λ2n(V ⊕ V∗) = ΛnV ⊗ ΛnV∗ → ℝ,
sending (X1 ∧ . . . ∧ Xn) ⊗ (ξ1 ∧ . . . ∧ ξn) into det(ξi(Xj))ij.

Consider the Lie group SO(V ⊕ V∗) ≅ SO(n, n) of automorphisms of V ⊕ V∗ preserving the pairing ⟨ ⋅ , ⋅ ⟩
and the canonical orientation. Its Lie algebra

so(V ⊕ V∗) ≅ so(n, n)
consists of endomorphisms T ∈ gl(V ⊕ V∗) which are skew-symmetric with respect to ⟨ ⋅ , ⋅ ⟩, namely

⟨Tz1, z2⟩ + ⟨z1, Tz2⟩ = 0 (2.1)
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for all z1, z2 ∈ V ⊕ V∗. By seeing T as a block matrix, (2.1) dictates T to be of the form

T = (ϕ β
B −ϕ∗)

for some ϕ ∈ gl(V), B ∈ Λ2V∗ and β ∈ Λ2V, recovering the fact that

so(V ⊕ V∗) ≅ Λ2(V ⊕ V∗)∗ ≅ Λ2V∗ ⊕ (V∗ ⊗ V) ⊕ Λ2V,

where the former isomorphism is given by T 󳨃→ ⟨T⋅ , ⋅ ⟩.
Via the exponential map

exp: so(V ⊕ V∗) → SO(V ⊕ V∗),
we obtain distinguished elements of SO(V ⊕ V∗):
∙ We have

eB = (Id 0
B Id
) : X + ξ 󳨃→ X + ξ + ιXB,

called B-field transformations.
∙ We have

eϕ = (e
ϕ 0
0 (e−ϕ)∗) ,

which extends to an embedding of the whole GL(V) into SO(V ⊕ V∗), sending A ∈ GL(V) into
A = (A 0

0 (A∗)−1) .
In the case V = ℝn, the image of this embedding will be denoted by GLn.
Let M be an oriented smooth manifold of positive dimension n.

Definition 2.1. A Courant algebroid over M is a smooth vector bundle E → M equipped with:
∙ a fiberwise nondegenerate bilinear form ⟨ ⋅ , ⋅ ⟩, which allows to identify E and its dual E∗, viewing z ∈ E

as ⟨z, ⋅ ⟩ ∈ E∗,
∙ a bilinear operator [ ⋅ , ⋅ ] on Γ(E),
∙ a bundle homomorphism π : E → TM, called the anchor,
which satisfy the following properties for all z, zi ∈ Γ(E), i = 1, 2, 3, f ∈ C∞(M):
(i) [z1, [z2, z3]] = [[z1, z2], z3] + [z2, [z1, z3]] (Jacobi identity).
(ii) π[z1, z2] = [π(z1), π(z2)].
(iii) [z1, fz2] = f[z1, z2] + π(z1)(f)z2.
(iv) [z, z] = 1

2D⟨z, z⟩, whereD := π∗d : C∞(M) → Γ(E).
(v) π(z1)⟨z2, z3⟩ = ⟨[z1, z2], z3⟩ + ⟨z2, [z1, z3]⟩.

Definition 2.2. A Courant algebroid E over M is exact if the short sequence

0 󳨀󳨀→ T∗M π∗
󳨀󳨀→ E π
󳨀󳨀→ TM 󳨀󳨀→ 0 (2.2)

is exact, namely if the anchor map is surjective and its kernel is exactly the image of π∗.
By the classification of Ševera [21], isomorphism classes of exact Courant algebroids over M are in bijection
with the elements of the third de Rham cohomology group ofM, i.e. H3(M): an exact Courant algebroid with
Ševera class [H] ∈ H3(M) is isomorphic to the Courant algebroid EH = 𝕋M := TM ⊕ T∗M overM with pairing
of neutral signature

⟨X + ξ, Y + η⟩ = 12 (η(X) + ξ(Y)) (2.3)

and (twisted) Dorfman bracket

[X + ξ, Y + η] = [X, Y] + LXη − ιYdξ + ιY ιXH (2.4)
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for any H ∈ [H]. Such isomorphisms are obtained explicitly via the choice of an isotropic splitting to (2.2),
while B-field transformations, B ∈ Γ(Λ2T∗M), provide explicit isomorphisms

eB : EH → EH−dB .
In what follows, let E be a Courant algebroid over M, with rk(E) = 2n and pairing ⟨ ⋅ , ⋅ ⟩ of neutral

signature.

Definition 2.3. A generalized Riemannian metric on E is an O(n) × O(n)-reduction of O(E), the O(n, n)-prin-
cipal subbundle of orthonormal frames of E with respect to the pairing ⟨ ⋅ , ⋅ ⟩. Explicitly, it is equivalently
determined by
∙ a subbundle E+ of E, rk(E+) = n, on which ⟨ ⋅ , ⋅ ⟩ is positive-definite;
∙ an automorphism G of E which is involutive, namely G2 = IdE, and such that ⟨G⋅ , ⋅ ⟩ is a positive-definite

metric on E.
Given E+, denoting by E− its orthogonal complement with respect to ⟨ ⋅ , ⋅ ⟩, we define G by G|E± = ± IdE± .
Then E± can be recovered as the ±1-eigenbundles of G. Given z ∈ E, we shall denote by z± its orthogonal
projections along E±.
Example 2.4. Every generalized Riemannian metric on the exact Courant algebroid EH is of the form

G = eB (0 g−1
g 0
) e−B

for some Riemannian metric g and for some 2-form B on M (see [7, Section 6.2]). The corresponding E± are
E± = eB{X ± g(X) : X ∈ TM},

where by g(X) we mean g(X, ⋅ ). Notice that G is of the form

(
0 g−1
g 0
)

in the splitting EH+dB.
2.2 Generalized curvature

We now recall the definition of generalized connection on a Courant algebroid E, showing how these objects
can be used to associate curvature operators with a generalized RiemannianmetricG. Unlike the Riemannian
case, where the uniqueness of the Levi-Civita connection allows to single out canonical curvature operators
for a given Riemannian metric, in the generalized setting there are plenty of torsion-free generalized connec-
tions compatiblewith a generalizedRiemannianmetricG, and thesemaydefinedifferent curvature operators.
To gauge-fix them, one needs to additionally fix a divergence operator. For further details, we refer the reader
to [3, 5].

Definition 2.5. A generalized connection on a Courant algebroid E is a linear map

D : Γ(E) → Γ(E∗ ⊗ E)
which satisfies a Leibniz rule and a compatibility condition with ⟨ ⋅ , ⋅ ⟩:

D(fz) = f(Dz) +Df ⊗ z,
⟨D⟨z1, z2⟩, ⋅ ⟩ = ⟨D⋅z1, z2⟩ + ⟨z1, D⋅z2⟩

for all z, z1, z2 ∈ Γ(E) and f ∈ C∞(M), where Dz1 z2 := Dz2(z1).

Given a generalized Riemannianmetric G, a generalized connection D is compatible with G if DG = 0, where D
denotes the induced E-connection on the tensor bundle E∗ ⊗ E ≅ End(E). Equivalently, D is compatible with
G if D(Γ(E±)) ⊂ Γ(E∗ ⊗ E±).
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The torsion TD ∈ Γ(Λ2E∗ ⊗ E) of a generalized connection D on E is defined by

TD(z1, z2) = Dz1 z2 − Dz2 z1 − [z1, z2] + (Dz1)∗z2.
If TD = 0, the generalized connection D is said to be torsion-free.

Given a generalized connection D on Ewhich is compatible with a generalized Riemannianmetric G, one
can define curvature operators

R±D ∈ Γ(E∗± ⊗ E∗∓ ⊗ o(E±)),
where o(E±) = ⟨ ⋅ , ⋅ ⟩−1Λ2E∗± denotes the Lie algebra of skew-symmetric endomorphisms of E± with respect to
⟨ ⋅ , ⋅ ⟩, by

R±D(z±1 , z∓2)z±3 = Dz±1Dz∓2 z±3 − Dz∓2Dz±1 z±3 − D[z±1 ,z∓2 ]z±3 .
One then has associated Ricci tensors

Rc±D ∈ Γ(E∗∓ ⊗ E∗±),
Ric±D ∈ Γ(E∗∓ ⊗ E±),

defined by

Rc±D(z∓1 , z±2) = tr(z± 󳨃→ R±D(z±, z∓1)z±2),
Ric±D = ⟨ ⋅ , ⋅ ⟩−1 Rc±D .

Definition 2.6. A divergence operator on E is a first-order differential operator div: Γ(E) → C∞(M) satisfying
the Leibniz rule

div(fz) = π(z)f + f div(z),

f ∈ C∞(M), z ∈ Γ(E). Given a generalized connection D on E, onemay define the associated divergence opera-
tor

divD(z) = tr(Dz).

Remark 2.7. Divergence operators on E form an affine space over the vector space Γ(E) ≅ Γ(E∗). Fixing
a divergence operator div0, any other divergence operator div is of the form

div = div0 −⟨z, ⋅ ⟩

for some z ∈ Γ(E).

Proposition 2.8 ([5, Proposition 4.4]). Let Di, i = 1, 2, be torsion-free generalized connections on E compatible
with a given generalized Riemannian metric G. Suppose divD1 = divD2 . Then, Rc±D1

= Rc±D2
.

Moreover, for any divergence operator div and generalized Riemannian metric G on E, the set of torsion-
free generalized connections D on E which are compatible with G and such that divD = div is nonempty
(see [5, Section 3.2]). Thus, Ricci tensors Rc±

G,div are well-defined as equal to Rc±D for any such generalized
connection D.

Example 2.9. On the exact Courant algebroid EH over M, let

G = (
0 g−1
g 0
)

and
divg,z(X + ξ) = dV−1g LXdVg − ⟨z, X + ξ⟩,

where g is a Riemannian metric, dVg its associated Riemannian volume form and z ∈ Γ(EH). Then, via the
isomorphism π+ = π|E+ : E+ → TM, the Ricci tensor Rc+ of (G, divg,θ) is given by

Rc+
G,divg,z = Rcg −

1
4H ∘g H −

1
2d
∗
gH +

1
2∇
+
g,Hθ, (2.5)
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where
∙ Rcg ∈ Γ(S2+T∗M) is the Ricci tensor associated with g,
∙ H ∘g H ∈ Γ(S

2T∗M), with
H ∘g H(X, Y) = g(ιXH, ιYH),

∙ d∗g = − ∗g d ∗g : Γ(Λ3T∗M) → Γ(Λ2T∗M) is the Hodge codifferential associated with the metric g and the
fixed orientation, with ∗g being the Hodge star operator,

∙ ∇+g,H = ∇g + 1
2 g
−1H is the Bismut connection with torsion H, with ∇g denoting the Levi-Civita connection

of g,
∙ θ ∈ Γ(T∗M) is given by θ = 2g(πz+, ⋅ ) = g(X, ⋅ ) + ξ if z = X + ξ .
See [6, Proposition 3.30] for the proof of this fact (cf. also [13]).

2.3 Generalized Ricci flow

We now review the framework of the generalized Ricci flow first introduced in [5, 22] and later described and
studied in [6] by Garcia-Fernandez and Streets. Consider a smooth family of generalized Riemannianmetrics
(G(t))t∈I on E, I ⊂ ℝ, with respective eigenbundles E±|t. Its variation Ġ(t) exchanges the eigenbundles E±|t,
so that Ġ(t) = Ġ+(t) + Ġ−(t), with

Ġ±(t) ∈ Γ(E∓|∗t ⊗ E±|t).
Definition 2.10. [5, Definition 5.1] A smooth pair of families (G(t), div(t))t∈I of generalized Riemannian met-
rics and divergence operators on E is a solution to the generalized Ricci flow if it satisfies

Ġ+(t) = −2Ric+t
for all t in the interior of I, where Ric+t := Ric+G(t),div(t).
On an exact Courant algebroid, the system may be written as follows.

Proposition 2.11 ([5, Example 5.4]). Let E be an exact Courant algebroid on an oriented smooth manifold M,
with Ševera class [H] ∈ H3(M). Fix an isotropic splitting EH = 𝕋M for E and consider the pair of smooth families
(G(t), div(t))t∈I defined by

G(t) = eB(t) ( 0 g(t)−1
g(t) 0

) e−B(t),
div(t) = divg(t),z(t),

where (g(t)) ⊂ Γ(S2+T∗M), (B(t)) ⊂ Γ(Λ2T∗M) and (z(t)) ⊂ Γ(E).
Then (G(t), div(t))t∈I is a solution of the generalized Ricci flow on E if and only if the families

(g(t), B(t), θ(t))t∈I , with θ(t) = 2g(πz(t)+, ⋅ ) ∈ Γ(T∗M),
solve the equation

ġ(t) = −2(Rcg(t) −14H(t) ∘g(t) H(t) − 12d∗g(t)H(t) + 12∇+g(t),H(t)θ(t)) + Ḃ(t), (2.6)

where H(t) = H + dB(t).

Separating the symmetric and skew-symmetric part of (2.6), one gets (see [24])

{{{
{{{
{

ġ(t) = −2Rcg(t) +12H(t) ∘g(t) H(t) − 12Lg(t)−1θ(t)g(t),
Ḃ(t) = −d∗g(t)H(t) + 12dθ(t) − 12 ιg(t)−1θ(t)H(t),

where one has that
1
2Lg(t)−1θ(t)g(t) = S(∇+g(t),H(t)θ(t)), 1

2dθ(t) −
1
2 ιg(t)−1θ(t)H(t) = A(∇+g(t),H(t)θ(t))

are respectively the symmetric and skew-symmetric parts of ∇+g(t),H(t)θ(t).
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The pair (g(t), H(t)) evolves as

{{{
{{{
{

ġ(t) = −2Rcg(t) +12H(t) ∘g(t) H(t) − 12Lg(t)−1θ(t)g(t),
Ḣ(t) = −∆g(t)H(t) − 12Lg(t)−1θ(t)H(t), (2.7)

where ∆g = dd∗g + d∗gd denotes the Hodge–Laplacian operator associated with g and the fixed orientation.
Notice how, up to scaling, the pluriclosed flow introduced in [23] is equivalent to a particular case of the
generalized Ricci flow, as is proven in [24, Propositions 6.3 and 6.4]. By [24, Theorem 6.5], a solution to (2.7)
can be pulled back to a solution of

{{
{{
{

ġ(t) = −2Rcg(t) +12H(t) ∘g(t) H(t),
Ḣ(t) = −∆g(t)H(t), (2.8)

via the one-parameter family of diffeomorphisms generated by 1
4 g(t)
−1θ(t).

2.4 Simply connected nilpotent Lie groups

We briefly recall the structure of simply connected nilpotent Lie groups, in the description of Lauret (see, for
example, [15]).

Every simply connected nilpotent Lie group G is diffeomorphic to its Lie algebra of left-invariant fields g
via the exponential map. Identifying g with ℝn via the choice of a basis, denote by μ ∈ Λ2(ℝn)∗ ⊗ ℝn the
induced Lie bracket. Now, exploiting the Campbell–Baker–Hausdorff formula, we get

exp(X) ⋅ exp(Y) = exp(X + Y + pμ(X, Y)),

X, Y ∈ g ≅ ℝn, where pμ is an ℝn-valued polynomial in the variables X, Y, and one can endow ℝn with the
operation ⋅μ, i.e.

X ⋅μ Y = X + Y + pμ(X, Y),

so that exp: (ℝn , ⋅μ) → G is an isomorphismof Lie groups. Therefore, the set of isomorphismclasses of simply
connected nilpotent Lie groups is parametrized by the set of nilpotent Lie brackets on ℝn: these form an
algebraic subset of the vector space of skew-symmetric bilinear forms onℝn, i.e.

Vn := Λ2(ℝn)∗ ⊗ ℝn ,
which parametrizes all skew-symmetric algebra structures on ℝn. Coordinates for Vn can be obtained by
fixing a basis {ei}ni=1 for ℝn: this allows to determine the so-called structure constants of any fixed μ ∈ Vn as
the real numbers {μkij : i, j, k = 1, . . . , n} given by

μ(ei , ej) = μkijek .

One can then consider

Ln := {μ ∈ Vn : μ satisfies the Jacobi identity},

the algebraic subset of Vn consisting of Lie brackets onℝn, and

Nn := {μ ∈ Ln : μ is nilpotent},

which parametrizes all nilpotent Lie algebra structures on ℝn. By the previous remarks,Nn parametrizes all
n-dimensional simply connected nilpotent Lie groups, up to isomorphism.

Let us consider the following family of Riemannian metrics onℝn:

{gμ,q : μ ∈ Nn , q is a positive definite bilinear form onℝn}, (2.9)
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where gμ,q coincides with q at the origin and is left-invariant with respect to the nilpotent Lie group opera-
tion ⋅μ. The set (2.9) is actually the set of all Riemannian metrics on ℝn which are invariant by some transi-
tive action of a nilpotent Lie group. By [25, Theorem 3], the Riemannian manifolds (ℝn , gμ,q) (varying n, μ
and q) are, up to isometry, all the possible examples of simply connected homogeneous nilmanifolds, namely
connected Riemannian manifolds admitting a transitive nilpotent Lie group of isometries.

TheRiemannianmetrics in (2.9) are not all distinct, up to isometry: it was shownagain in [25, Theorem3]
that gμ,q is isometric to gμ󸀠 ,q󸀠 if and only if there exists h ∈ GLn such that μ󸀠 = h∗μ and q󸀠 = h∗q. By convention
we shall set gμ := gμ,⟨ ⋅ ,⋅ ⟩, where ⟨ ⋅ , ⋅ ⟩ denotes the standard scalar product.

Since the Riemannianmetrics gμ,q are completely determined by their value at 0 and by the Lie bracket μ,
so will be all curvature quantities related to gμ,q. In particular, we are interested in Riemannian metrics gμ
and their Ricci tensor, which we shall encounter in two guises, which we denote by

Rcμ := Rcgμ (0) ∈ S2(ℝn)∗ ⊂ (ℝn)∗ ⊗ (ℝn)∗,
Ricμ := Ricgμ (0) ∈ (ℝn)∗ ⊗ ℝn = gln ,

with Rcμ(X, Y) = ⟨Ricμ(X), Y⟩, X, Y ∈ ℝn.
For these, explicit formulas can be computed [14]. Let {ei}ni=1 be the standard basis of ℝn, which, in

particular, is orthonormal with respect to ⟨ ⋅ , ⋅ ⟩: one has

Rcμ(X, Y) = −
1
2 ⟨μ(X, ek), el⟩⟨μ(Y, ek), el⟩ +

1
4 ⟨μ(ek , el), X⟩⟨μ(ek , el), Y⟩, (2.10)

so that, if Rcμ = (Rcμ)ijei ⊗ ej and Ricμ = (Ricμ)jiei ⊗ ej, one has

(Rcμ)ij = (Ricμ)ji = −
1
2μ

l
ikμ

l
jk +

1
4μ

i
klμ

j
kl . (2.11)

Notice that one can use formulas (2.10) and (2.11) to define Rcμ ∈ S2(ℝn)∗ and Ricμ ∈ gln for any μ ∈ Vn.

3 Generalized Ricci solitons
Just as Ricci soliton metrics arise from self-similar solutions of the Ricci flow, generalized Ricci solitons arise
from self-similar solutions of the generalizedRicci flow.We focus on exact Courant algebroids, defining a fam-
ily of generalized Riemannian metrics, whose initial one is determined by a Riemannian metric on the base
manifold; imposing that this family (together with a family of divergence operators) is a solution of the gener-
alized Ricci flow, we draw necessary conditions on said Riemannian metric: these conditions generalize the
Ricci soliton condition, leading to the definition of generalized Ricci solitons.

Let E be a Courant algebroid over an oriented smoothmanifoldM with Ševera class [H0] ∈ H3(M). Fixing
an isotropic splitting EH0 = 𝕋M, we consider a smooth self-similar pair of families (G(t), div(t))t∈I , 0 ∈ I, on E
of the form

G(t) = eB(t) ( 0 (c(t)φ∗t g0)−1
c(t)φ∗t g0 0

) e−B(t),
div(t) = divg(t),θ(t),

where g0 ∈ Γ(S2+(T∗M)) is a Riemannian metric, c : I → ℝ is smooth and positive, c(0) = 1, (φt) is a one-
parameter family of diffeomorphisms ofM, (B(t)) ⊂ Γ(Λ2T∗M), B(0) = 0, (θ(t)) ⊂ Γ(T∗M), θ(0) = θ0 ∈ Γ(T∗M),
and g(t) = c(t)φ∗t g0.

By Proposition 2.11, such (G(t), div(t))t∈I is a solution of the generalized Ricci flow if and only if

{{{
{{{
{

ċ(t)φ∗t g0 + c(t)φ∗t LYtg0 = −2Rcg(t) +12H(t) ∘g(t) H(t) + 14Lg(t)−1θ(t)g(t),
Ḃ(t) = −d∗g(t)H(t) − 14dθ(t) + 14 ιg(t)−1θ(t)H(t),
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where H(t) = H0 + dB(t) and (Yt)t∈I ⊂ Γ(TM) is such that
d
dt

φt(x) = Yt(φt(x))

for all t ∈ I, x ∈ M.
Setting t = 0 and rearranging the terms, we obtain

{{{
{{{
{

Rcg0 = λg0 + LXg0 +
1
4H0 ∘g0 H0 −

1
4Lg−10 θ0g0,

ω = −d∗g0H0 +
1
2dθ0 −

1
2 ιg

−1
0 θ0H0,

(3.1)

where −2λ = ċ(0) ∈ ℝ, −2X = Y0 ∈ Γ(TM) and ω = Ḃ(0) ∈ Γ(Λ2T∗M). Summing together the two equations
of (3.1), which involve symmetric and skew-symmetric tensor fields, respectively, one has

Rcg0 = λg0 + LXg0 +
1
4H0 ∘g0 H0 −

1
2∇
+
g0 ,H0

θ0 +
1
2d
∗
g0H0 +

1
2ω, (3.2)

which is therefore equivalent to (3.1). We can now introduce the following definition, which generalizes the
notion of Ricci soliton.

Definition 3.1. A Riemannian metric g0 on M is called a generalized Ricci soliton if there exist λ ∈ ℝ,
X ∈ Γ(TM), H0 ∈ Γ(Λ3T∗M) closed, θ0 ∈ Γ(T∗M), and ω ∈ Γ(Λ2T∗M) such that (3.2), or equivalently (3.1),
holds.

When working on a Lie group G, for simplicity one can assume all structures to be left-invariant, so that the
generalized Ricci soliton condition reduces to an algebraic condition on structures on the Lie algebra of G,
i.e. (g, μ).

In the context of semi-algebraic Ricci solitons, it was proven in [12, Theorem 1.5] that, if g0 is a left-
invariant Riemannian metric on G, the Lie derivative of g0 with respect to a left-invariant vector field X can
be written as

LXg0 = g0(
1
2 (D + D

t)) = g0(
1
2 (D + D

t)⋅ , ⋅ )

for some D = DX ∈ Der(g), where Der(g) denotes the algebra of derivations of g. It was then shown in
[11, Theorem 1] (generalizing the already known fact for the simply connected nilpotent case in [14, Propo-
sition 1.1]) that D can be chosen to be symmetric with respect to g0, so that one always has

LXg0 = g0(D) = g0(D⋅ , ⋅ )

for some D = DX ∈ Der(g) ∩ Sym(g, g0). Then (3.2) becomes

Rcg0 = λg0 + g0(D) +
1
4H0 ∘g0 H0 +

1
2d
∗
g0H0 −

1
2∇
+
g0 ,H0

θ0 +
1
2ω ∈ S

2g∗ (3.3)

for g0 ∈ S2+g∗, λ ∈ ℝ,D ∈ Der(g) ∩ Sym(g, g0),H0 ∈ Λ3g∗ (with dμH0 = 0, and dμ : Λ3g∗ → Λ4g∗ denoting the
Chevalley–Eilenberg differential of the Lie algebra (g, μ)), θ0 ∈ g∗, and ω ∈ Λ2g∗, or equivalently

{{{
{{{
{

Rcg0 = λg0 + g0(D) +
1
4H0 ∘g0 H0 −

1
4Lg−10 θ0g0,

ω = −d∗g0H0 +
1
2dθ0 −

1
2 ιg

−1
0 θ0H0.

(3.4)

Notice that d∗g0H0 is still a left-invariant form since the Hodge star operator commutes with pull-backs via
orientation-preserving isometries of g0, such as left translations Lg, g ∈ G, by left-invariance of g0.

4 Generalized bracket flows
Bracket flows have proven to be a powerful tool in the study of geometric flows on homogeneous spaces.
This technique was first fully formalized by Lauret to study the Ricci flow on nilpotent Lie groups [15]. In
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particular, Lauret proved that the Ricci flow on an n-dimensional simply connected nilpotent Lie group G
starting from a left-invariant Riemannian metric g0 is equivalent to an ODE system defined on the variety of
nilpotent Lie algebrasNn:

{
μ̇(t) = −π(Ricμ(t))μ(t),
μ(0) = μ0,

where μ0 is the nilpotent Lie bracket associated with a fixed g0-orthonormal left-invariant frame and
π : gln → gl(Vn), given by

(π(ϕ)μ)(X, Y) = ϕμ(X, Y) − μ(ϕX, Y) − μ(X, ϕY), ϕ ∈ gln , μ ∈ Vn , X, Y ∈ ℝn ,

is the differential of the standard GLn-action on Vn:

(A ⋅ μ)(X, Y) = Aμ(A−1X, A−1Y), A ∈ GLn , μ ∈ Vn , X, Y ∈ ℝn .

More generally, in literature many other bracket flows have been considered (see, for example, [1, 2, 4,
16–19]): these can be written in the form

{
μ̇(t) = −π(ϕ(μ(t)))μ(t),
μ(0) = μ0

(4.1)

for some smooth function ϕ : Vn → gln.

4.1 Left-invariant Dorfman brackets

Let E be an exact Courant algebroid over a real Lie group G.We shall be interested in the casewhenG is simply
connected and nilpotent, so that we know that G is isomorphic to (ℝn , ⋅μ) for some Lie bracket μ ∈ Nn.

As we have recalled, there exists a unique cohomology class [H] ∈ H3(ℝn) such that, for any H ∈ [H], E is
isomorphic to EH = Tℝn ⊕ T∗ℝn, endowed with the inner product ⟨ ⋅ , ⋅ ⟩ in (2.3) and Dorfman bracket [ ⋅ , ⋅ ]H
in (2.4).

The whole structure descends to a structure on left-invariant sections, viewed as elements ofℝn ⊕ (ℝn)∗,
if and only if the 3-form H is left-invariant. Explicitly, when X + ξ, Y + η ∈ ℝn ⊕ (ℝn)∗, the Dorfman bracket
[ ⋅ , ⋅ ]H reduces to the operator

μH(X + ξ, Y + η) = μ(X, Y) − η ∘ adμ(X) + ξ ∘ adμ(Y) + ιY ιXH
= μ(X, Y) − ημ(X, ⋅ ) + ξμ(Y, ⋅ ) + H(X, Y, ⋅ ).

We call such a bilinear operator a (nilpotent) left-invariant Dorfman bracket.
As one can check directly and also deduce from the axioms of Courant algebroids, a left-invariant

Dorfman bracket is totally skew-symmetric, namely

⟨μH( ⋅ , ⋅ ), ⋅ ⟩ ∈ Λ3(ℝn ⊕ (ℝn)∗)∗.
By a little abuse, we can say μH ∈ Λ3(ℝn ⊕ (ℝn)∗)∗, by identifying Λ3(ℝn ⊕ (ℝn)∗)∗ with a subset of

Vn := Λ2(ℝn ⊕ (ℝn)∗)∗ ⊗ (ℝn ⊕ (ℝn)∗).
We shall denote the set of left-invariant Dorfman brackets onℝn by Cn. By definition, it is clear that

Cn
1:1
←󳨀→ {(μ, H) ∈ Ln × Λ3(ℝn)∗, dμH = 0}.

Equivalently, a quick analysis using the axiomsof Courant algebroids and theprevious remarks shows thatCn
can be identified with the algebraic subset ofVn consisting of all brackets μ ∈ Vn such that:
∙ μ ∈ Λ3(ℝn ⊕ (ℝn)∗)∗,
∙ μ((ℝn)∗, (ℝn)∗) = 0,
∙ μ satisfies the Jacobi identity.
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Given any μ ∈ Vn, one can define the structure constants with respect to the standard basis of ℝn as the
(2n)3 = 8n3 real numbers μijk, i, j, k = 1, . . . , n, given by

μ(ei , ej) = μijkek + μijke
k ,

μ(ei , ej) = μijkek + μijke
k ,

μ(ei , ej) = μijkek + μijke
k ,

μ(ei , ej) = μijkek + μijke
k .

Taking μH ∈ Cn, the structure constants are skew-symmetric in all three indices and vanishwhen two ormore
indices are overlined. The remaining structure constants are determined by μ and H. More precisely,

(μH)ijk = μ
k
ij , (μH)ijk = Hijk .

The set of nilpotent left-invariant Dorfman brackets on ℝn, denoted by Nn, is an algebraic subset of Vn
contained in Cn. It is easy to see that its elements are exactly those Dorfman brackets μH for which μ ∈ Nn.

4.2 Generalized bracket flows

To introduce classical bracket flows, one uses the differential of the GLn-action on Vn. In the same spirit, one
can consider the natural GL(ℝn ⊕ (ℝn)∗) onVn:

(F ⋅ μ)(z1, z2) = Fμ(F−1z1, F−1z2), F ∈ GL(ℝn ⊕ (ℝn)∗), μ ∈ Vn , z1, z2 ∈ ℝn ⊕ (ℝn)∗,
which induces an action of GLn ≅ GLn ⊂ SO(ℝn ⊕ (ℝn)∗) onVn, preserving both Cn andNn.

Now, identifying μ ∈ Cn with (μ, H) ∈ Vn × Λ3(ℝn)∗, it is evident that this action distributes as
A ⋅ (μ, H) = (A ⋅ μ, A ⋅ H),

where A ∈ GLn and A ⋅ H := (A−1)∗H.
We denote the differential of this action again by π : gln → gl(Vn): for μ ∈ Vn and ϕ ∈ gln, one has

π(ϕ)μ = d
ds
󵄨󵄨󵄨󵄨󵄨󵄨s=0(esϕ ⋅ μ) ∈ TμVn ≅ Vn .

Since the curve s 󳨃→ esϕ ⋅ μ is contained in the orbit GLn ⋅μ, in this interpretation one has

π(ϕ)μ ∈ Tμ(GLn ⋅μ). (4.2)

Following the ideas in the work of Lauret (see [15]), these remarks suggest the idea of defining a flow,
which we shall refer to as generalized bracket flow, on the vector spaceVn, of the form

{
μ̇(t) = −π(ϕ(μ(t)))μ(t),
μ(0) = μ0

(4.3)

for some smooth function ϕ : Vn → gln and some μ0 ∈ Nn. By (4.2), a solution μ(t) to (4.3) satisfies

μ̇(t) ∈ Tμ(t)(GLn ⋅μ(t)) ⊂ Tμ(t)Nn for all t,

so that the curve μ(t) is entirely contained inNn. For this reason, the function ϕ may also be defined onNn
only.

System (4.3) may be rewritten as the following ODE system onNn × Λ3(ℝn)∗:
{{{{{{
{{{{{{
{

μ̇(t) = −π(ϕ(μ(t), H(t)))μ(t),
Ḣ(t) = −π(ϕ(μ(t), H(t)))H(t),
μ(0) = μ0 ∈ Nn ,
H(0) = H0 ∈ Λ3(ℝn)∗, dμ0H0 = 0,

(4.4)

where π denotes the differential of the GLn-action on Vn or Λ3(ℝn)∗.
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In what follows, we shall omit the time dependencies of the quantities involved. Fixing the standard
basis {ei}ni=1 forℝn, we shall denote by ϕj

i, i, j = 1, . . . , n, the entries of the generic ϕ ∈ GLn with respect to it,
such that ϕ(ei) = ϕj

iej for all i = 1, . . . , n. One can then compute the coordinate expression for the evolution
equations (4.4), obtaining

μ̇kij = ϕ
l
iμ

k
lj + ϕ

l
jμ

k
il − ϕ

k
l μ

l
ij , (4.5)

Ḣijk = ϕl
iHljk + ϕl

jHilk + ϕl
kHijl (4.6)

for i, j, k = 1, . . . , n.
Special generalized bracket flows are obtained when the gln-valued smooth function ϕ only depends

on μ, i.e. ϕ = ϕ(μ): when this happens, the first equation of (4.4) is independent from the second one and
corresponds to a usual bracket flow (4.1) onNn.

Classical bracket flows have proved to be a powerful tool in the study of geometric flows on (nilpotent) Lie
groups.We thus expect the generalized bracket flowswe have defined to be useful in the context of geometric
flows in generalized geometry.

5 Examples on the Heisenberg group
In this section, we perform explicit computations for the constructions introduced in the previous sections.
We focus in particular on the Heisenberg group.

The Heisenberg group H3 is a three-dimensional simply connected Lie group, which can be defined as
a closed subgroup of GL3:

H3 =
{{
{{
{

(
1 a c
0 1 b
0 0 1

) ∈ GL3, a, b, c ∈ ℝ
}}
}}
}

.

Via the exponential map, H3 is diffeomorphic to its Lie algebra

h3 =
{{
{{
{

(
0 a c
0 0 b
0 0 0

) ∈ gl3, a, b, c ∈ ℝ
}}
}}
}

.

By fixing the basis

e1 = (
0 1 0
0 0 0
0 0 0

) , e2 = (
0 0 0
0 0 1
0 0 0

) , e3 = (
0 0 1
0 0 0
0 0 0

) (5.1)

for h3, the induced bracket μ ∈ N3 is μ = e1 ∧ e2 ⊗ e3 since [e1, e2] = e3 and [e1, e3] = [e2, e3] = 0.

5.1 Generalized Ricci solitons on the Heisenberg group

Let H3 be the Heisenberg group, and fix the basis (5.1) for its Lie algebra h3.
In order to find generalized Ricci solitons on H3, we first notice that the codifferential d∗g0 is the null

map for every g0 ∈ S2+h∗3 since ∗g0 sends Λ3h∗3 to ℝ and d : ℝ → h∗3 is the null map. With respect to the basis
{e1, e2, e3} in (5.1), the generic derivation D of h3 can be written in matrix form as

D = (
a1 a2 0
a3 a4 0
a5 a6 a1 + a4

) ,

with ai ∈ ℝ, i = 1, . . . , 6.
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Let g0 be the standard metric
g0 = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

such that {e1, e2, e3} is an orthonormal basis. Now, symmetric derivations with respect to g0 are simply
represented by symmetric matrices with respect to this basis:

D = (
a1 a2 0
a2 a3 0
0 0 a1 + a3

) , (5.2)

ai ∈ ℝ, i = 1, 2, 3. In what follows, assume

H0 = ae123 =
a
6 εijke

ijk , θ0 = θiei , ω = 12ωijeij ,

where a, θi , ωij ∈ ℝ, ωij = −ωji, i, j = 1, 2, 3, ei1⋅⋅⋅ik := ei1 ∧ ⋅ ⋅ ⋅ ∧ eik , and εijk is equal to the sign of the per-
mutation sending (1, 2, 3) into (i, j, k) whenever i, j and k are all different, and equal to 0 otherwise, by
definition.

We are now ready to compute the coordinate expression for all the terms involved in (3.3):
∙ Rcg0 : from (2.11), since the basis {e1, e2, e3} is orthonormal, by a direct computation, we get

Rcg0 = (
−12 0 0
0 −12 0
0 0 1

2

)

in the fixed basis.
∙ g0(D): it is simply represented by the matrix (5.2) with respect to the orthonormal basis.
∙ H0 ∘g0 H0: one has

H0 ∘g0 H0(ei , ej) = g(ιeiH0, ιejH0) = grl0 g
st
0 (H0)irs(H0)jlt = a2εistεjst ,

so that, in matrix form, we get

H0 ∘g0 H0 = (
2a2 0 0
0 2a2 0
0 0 2a2

) .

∙ ∇+g0 ,H0
θ0: writing ∇+ instead of ∇+g0 ,H0

and by the left-invariance of the quantities involved, one has

∇+θ0(ei , ej) = −θ0(∇+ei ej).
Now, ∇+ = ∇g0 + 1

2 g
−1
0 H0 and, letting ∇g0ei ej = Γkijek and recalling the Koszul formula, one computes

Γkij = −
1
2 (μ

i
jk + μ

j
ik + μ

k
ji),

1
2 g
−1
0 H0(ei , ej) =

1
2aεijkek ,

so that
∇+θ0(ei , ej) = 12 θk(μijk + μjik + μkji − aεijk).

The corresponding matrix with respect to the orthonormal basis is thus

∇+θ0 = ( 0 −12 θ3(1 + a)
1
2 θ2(1 + a)

1
2 θ3(1 + a) 0 −12 θ1(1 + a)
1
2 θ2(1 − a) −

1
2 θ1(1 − a) 0

) ,

so that its symmetric and skew-symmetric parts are

S(∇+θ0) = ( 0 0 1
2 θ2

0 0 −12 θ1
1
2 θ2 −

1
2 θ1 0

) ,

A(∇+θ0) = ( 0 −12 θ3(1 + a)
1
2aθ2

1
2 θ3(1 + a) 0 −12aθ1
−12aθ2

1
2aθ1 0

) .
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The first equation of (3.4) gives now rise to a system of six equations in the unknowns λ, a1, a2, a3, θ1,
θ2, θ3:

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

1
2 + λ + a1 +

1
2a

2 = 0,

a2 = 0,
θ2 = 0,
1
2 + λ + a3 +

1
2a

2 = 0,

θ1 = 0,

−
1
2 + λ + a1 + a3 +

1
2a

2 = 0,

which is equivalent to
{{{{
{{{{
{

λ = −12 (3 + a
2),

a1 = a3 = 1,
a2 = θ1 = θ2 = 0.

The second equation of (3.4) now implies

ω12 = −ω21 = −
1
2 θ3(1 + a),

while all the other ωij’s vanish.
We thus obtain generalized Ricci solitons with the data

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

g0 = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3,

λ = −12 (3 + a
2),

D = e1 ⊗ e1 + e2 ⊗ e2 + 2e3 ⊗ e3,
H0 = ae123,
θ0 = θ3e3,

ω = −12 θ3(1 + a)e
12.

Remark 5.1. The metric g0 above is actually also a Ricci soliton in the classical sense since, by setting
a = θ3 = 0, H0, θ0 and ω vanish, leaving g0 satisfying Rcg0 = λg0 + g0(D), or equivalently, applying g−10 ,
Ricg0 = λ Id+D for λ = −32 and D as above. By [14, Theorem 3.5], g0 is the only left-invariant Ricci soliton
on H3, up to isometry and rescaling.

5.2 A generalized bracket flow on the Heisenberg group

The definition of the gauge-corrected generalized Ricci flow (2.8) suggest the generalized bracket flow

{{
{{
{

μ̇(t) = −π(Ricμ(t) −14H(t)2)μ(t),
μ(0) = μ0 ∈ Nn .

(5.3)

Here, for every H ∈ Λ3(ℝn)∗, we set H2 := ⟨ ⋅ , ⋅ ⟩−1(H ∘ H), where ∘ is meant with respect to ⟨ ⋅ , ⋅ ⟩. Recalling
(2.11), the whole endomorphism ϕ(μ) = ϕ(μ, H) = Ricμ −14H

2 can then be written in coordinates as

ϕj
i = −

1
2μ

l
ikμ

l
jk +

1
4μ

i
klμ

j
kl −

1
4HiklHjkl ,

with respect to the standard basis ofℝn.
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Now, let n = 3 and let μ0 be the Heisenberg Lie bracket μ0 = e1 ∧ e2 ⊗ e3. Let H0 be the generic (triv-
ially dμ0 -closed) 3-form H0 = ce123, c ∈ ℝ. Then, using (2.11), (4.5) and (4.6), it is easy to compute that the
solution to (5.3) is of the form μ(t) = (x(t)μ0, y(t)e123), with x(t) and y(t) satisfying the ODE system

{{{{{{
{{{{{{
{

ẋ = −32 x
3 −

1
2 xy

2,

ẏ = −32 y
3 −

1
2 x

2y,

x(0) = 1, y(0) = a.

(5.4)

It is easy to see that the solution (x(t), y(t)) is defined for all positive times and converges to (0, 0) since

d
dt
(x(t)2 + y(t)2) = 2(x(t)ẋ(t) + y(t)ẏ(t)) ≤ −(x(t)2 + y(t)2)2,

so that, by comparison, we get

x(t)2 + y(t)2 ≤ 1 + a2
1 + (1 + a2)t

for all t ≥ 0. For a = 1, the explicit solution to (5.4) is given by

x(t) = y(t) = (1 + 4t)− 12 .
defined for t ∈ (−14 ,∞).

6 Generalized Ricci flow on the Heisenberg group
Let us consider the gauge-corrected generalized Ricci flow (2.8) on the three-dimensional Heisenberg
group H3, with initial data

g0 = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3, H0 = ae123, a ∈ ℝ.

Denoting by (g(t), H(t)) the solution at time t, we adopt the ansatz

g(t) = g1(t)e1 ⊗ e1 + g2(t)e2 ⊗ e2 + g3(t)e3 ⊗ e3, gi(0) = 1, i = 1, 2, 3,

while H(t) = H0 is necessarily constant since d∗g and ∆g are null maps for every left-invariant Riemannian
metric g, as remarked in Section 5.1.

An explicit computation yields

Rcg(t) = (−12 g3
g2 0 0

0 −12
g3
g1 0

0 0 1
2

g23
g1g2

) , H0 ∘ H0 = (

2a2
g2g3 0 0
0 2a2

g1g3 0
0 0 2a2

g1g2

) ,

so that (2.8) reduces to the ODE system

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

ġ1 =
g3
g2
+

a2

g2g3
,

ġ2 =
g3
g1
+

a2

g1g3
,

ġ3 = −
g23
g1g2
+

a2

g1g2
,

gi(0) = 1, i = 1, 2, 3.



1012 | F. Paradiso, Generalized Ricci flow on nilpotent Lie groups

By uniqueness, we thus have g1(t) = g2(t) for all t and we obtain

{{{{{{{{
{{{{{{{{
{

ġ1 =
a2 + g23
g1g3

,

ġ3 =
a2 − g23
g21

,

g1(0) = g3(0) = 1.

(6.1)

Special cases are given by
∙ a = 0: the generalized Ricci flow reduces to the classical Ricci flow and an explicit solution to (6.1) is

given by
g1(t) = (1 + 3t)

1
3 , g3(t) = (1 + 3t)− 13 ,

defined on the maximal definition interval I = (−13 ,∞) (cf. [10]).
∙ a = ±1: the system reduces to

{{{{{
{{{{{
{

ġ1 =
2
g1

,

ġ3 = 0,

g1(0) = g3(0) = 1,

with solution
g1(t) = (1 + 4t)

1
2 , g3(t) = 1

for t ∈ I = (−14 ,∞).
A quick qualitative analysis of (6.1) shows that, for all a ∈ ℝ, the solution to (6.1) exists for all positive times,
with

lim
t→∞ g1(t) = ∞, lim

t→∞ g3(t) = |a|.
The maximal definition interval is always of the form Ia = (Tmin(a),∞), where Tmin : ℝ → ℝ<0 is an even
function, with Tmin(0) = −13 and monotonically converging to 0 as a goes to infinity (see Figure 1). We also
have

lim
t→Tmin(a)+ g1(t) = 0, lim

t→Tmin(a)+ g3(t) = {{{{{{
{

∞, |a| < 1,
1, a = ±1,
0, |a| > 1.

In Figure 2, we show some solutions of (6.1), sampled for a = k
4 , k = 0, . . . , 9, and viewed as curves in

the phase plane (g1, g3). The red and blue curves correspond to a = 0 and a = 1, respectively.

Figure 1: Behavior of the map Tmin.
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Figure 2: Examples of solutions to (6.1) viewed in the phase plane (g1 , g3).
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