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Abstract
We present a general blow-up technique to obtain local regularity estimates for solutions,
and their derivatives, of second order elliptic equations in divergence form in Hölder spaces
with variable exponent. The procedure allows to extend the estimates up to a portion of the
boundary where Dirichlet or Neumann boundary conditions are prescribed and produces a
Schauder theory for partial derivatives of solutions of any order k ∈ N. The strategy relies on
the construction of a class of suitable regularizing problems and an approximation argument.
The given data of the problem are taken in Hölder and Lebesgue spaces, both with variable
exponent.

Mathematics Subject Classification 35B45 · 35B65 · 35J25 · 46E30

1 Introduction

Given a bounded domain � in R
n with locally C1 boundary around 0 ∈ ∂�, n ≥ 2, let us

consider the following second order uniformly elliptic problem in divergence form{
−div (A∇u) = f + divF + Vu + b · ∇u in Br ∩ �

u = g or A∇u · ν = h on Br ∩ ∂�,
(1.1)

where Br = {x ∈ R
n : |x | < r} and the variable coefficients matrix A(x) = (ai j (x))ni, j=1

is continuous, symmetric and uniformly elliptic, i.e.

λ|ξ |2 ≤ A(x)ξ · ξ ≤ �|ξ |2 for given 0 < λ ≤ � < +∞.

We are interested in local regularity estimates up to the boundary in variable exponent Hölder
spaces for solutions to (1.1) and their derivatives which are sharp with respect to integrability
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or regularity conditions on given data and on the boundary ∂�, respectively in variable
exponent Lebesgue and Hölder spaces.

Regularity theory for linear partial differential equations in variable exponent spaces com-
prehends many contributions. Just to cite a few, we mention two seminal papers by Diening,
Růžička and collaborators [11, 12]where the authors deal with regularity in variable exponent
Sobolev spaces for the divergence, the Poisson and the Stokes problems (see also [13, 14]).
Local regularity estimates for solutions to second order uniformly elliptic equations in Hölder
spaces with variable exponent were obtained in [7, 8] both for operators in non-divergence
and in divergence form. We also report [6], where the author deals with the parabolic case.
Moreover, there exists an extensive production on regularity results for nonlinear equations
with non standard growth (the model operator is the p(·)-Laplacian); just to name a few we
refer to [1, 2].

Our target is twofold: on one side, we introduce a blow-up procedure which allows to
obtain estimates in variable exponent Hölder spaces for solutions to second order linear
equations; on the other, we are able to cover the results in [8] with very different techniques
and extend the regularity estimates up to a piece of the boundary where Dirichlet or Neumann
data are prescribed, dealing additionally with transport terms. Eventually, we show how to
iterate our gradient estimates in order to provide a complete Schauder theory for derivatives
of solutions of any order k ∈ N. Our approach uses very few facts about variable exponent
spaces and relies mostly on a perturbation argument and an approximation scheme.

1.1 Variable exponent spaces

Although the theory of variable exponent spaces has been developedmostly in the last twenty
years, the related literature is very extensive and we will not be able to list all the known
properties of these spaces, but we will recall from time to time only some properties that
will be needed throughout the proofs. We invite the reader who is interested in deepening
the knowledge of variable exponent spaces to the reading of the monograph [10], which
collects a substantial part of the theory on this subject. For an accurate definition of the
variable exponent Lebesgue space L p(·)(�)we refer to [10,Chapter 3]. Briefly, a measurable
function p : � → [1,+∞) is called exponent. Let p = inf� p(x) and p = sup� p(x).
If p < +∞ then p is called bounded exponent. For a bounded exponent p, the variable
exponent Lebesgue space L p(·)(�) consists of measurable functions f : � → R such that
the modular

ρ
p
�( f ) :=

∫
�

| f (x)|p(x)dx

is finite. The norm is defined as

‖ f ‖L p(·)(�) = inf{λ > 0 : ρ
p
�( f /λ) ≤ 1}.

The following is the definition of the variable exponent Hölder space C0,α(·)(�) (see also [3,
4]): let α : � ⊆ R

n → R be a measurable function such that 0 < α ≤ α(x) ≤ α ≤ 1. The
variable exponent Hölder space C0,α(·)(�) consists of continuous functions such that

‖u‖C0,α(·)(�) = ‖u‖L∞(�) + [u]C0,α(·)(�)
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is finite, where the variable Hölder seminorm is defined as

[u]C0,α(·)(�) = sup
x,y∈�

0<|x−y|≤1

|u(x) − u(y)|
|x − y|α(x)

= sup
x,y∈�

0<|x−y|≤1

|u(x) − u(y)|
|x − y|max{α(x),α(y)} . (1.2)

We remark here that since we are interested in local regularity, without loss of generality,
we can always localize our problems in small balls Br of radius r ≤ 1/2. In this way, the
condition of closeness of points |x − y| ≤ 1 in the definition of the Hölder seminorm in (1.2)
becomes natural and can be avoided. In general, for k ∈ N we say that a Ck(�) function u
belongs to Ck,α(·)(�) if

‖u‖Ck,α(·)(�) =
k∑

i=0

∑
|βi |=i

‖Dβi u‖L∞(�) + [u]Ck,α(·)(�)

is finite, where

[u]Ck,α(·)(�) = sup
x,y∈�

0<|x−y|≤1
|βk |=k

|Dβk u(x) − Dβk u(y)|
|x − y|α(x)

and Dβi u is a partial derivative of u of order i = |βi |, with βi ∈ N
n multiindex.

A very important condition on exponents which ensures many properties of variable
exponent spaces is the log-Hölder continuity. A continuous and bounded function u : � → R

is said to be log-Hölder continuous if there exists a positive constant c such that for any
x, y ∈ � with x �= y

|u(x) − u(y)| ≤ c

log
(
e + 1

|x−y|
) . (1.3)

We will denote the space of log-Hölder continuous functions by C0,1/| log ·|(�). Then, the
following are the families of exponents that we are going to consider

P log(�) =
{
p ∈ C0,1/| log ·|(�) : p ≤ p(x) ≤ p for some 1 < p ≤ p < +∞

}
and

Alog(�) =
{
α ∈ C0,1/| log ·|(�) : α ≤ α(x) ≤ α for some 0 < α ≤ α < 1

}
.

We will often indicate the log-Hölder modulus of continuity in (1.3), which is monotone
increasing, by the equivalent (for small 0 < t << 1)

ω(t) = 1

| log t | .

1.2 Structure of the paper andmain results

Throughout the paper, our strategy is the following:wefirst localize the problemat a boundary
point lying on ∂�; that is, we consider problem (1.1).We can imagine, up to a rotation, that the
portion of the boundary ∂�∩ Br where boundary conditions are prescribed can be described
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as the graph of a function ϕ and the portion of the domain where the equation is satisfied
� ∩ Br as its epigraph. In other words, we rewrite (1.1) as{

−div (A∇u) = f + divF + Vu + b · ∇u in Br ∩ {xn > ϕ(x ′)}
u = g or A∇u · ν = h on Br ∩ {xn = ϕ(x ′)}, (1.4)

with ϕ ∈ C1(B ′
r ), ϕ(0) = 0 and where x = (x ′, xn) ∈ R

n−1 × R, B ′
r = Br ∩ {xn = 0}.

Hence, regularity of the boundary ∂� must be understood as regularity of the function ϕ.
We would like here to leave the boundary free to enjoy a regularity condition with variable
exponent ∂� ∈ Ck,α′(·) (in [7] the boundary satisfies a classic regularity condition ∂� ∈ Ck,α

with α = supα). We set here another notation: from now on, we denote a variable exponent
which depends only on the first n − 1 variables by α′, and

α̃(x ′, xn) = α′(x ′) (1.5)

stands for the constant extension in the nth-variable of the exponent α′. Then, we define a
local diffeomorphism in order to straighten the boundary of �. We end up with a problem
on a half ball{

−div (A∇u) = f + divF + Vu + b · ∇u in B+
r = Br ∩ {xn > 0}

u = g or A∇u · ν = h in B ′
r .

(1.6)

Although we decided here not to change names to the data of the problem, we would like
to stress the fact that the new solution, the variable coefficients matrix, right hand sides and
boundary data are related to the original ones by composition with the diffeomorphism and
suitable products with Jacobian matrixes. We show that the problem does not change qualita-
tively after the diffeomorphism, i.e. the belonging to variable exponent spaces is preserved in
an appropriate sense. Hence, we regularize problem (1.6), by smoothing coefficients, forcing
terms and boundary data. Then, the regularized problems enjoy local boundary regularity
estimates by classical results, and we prove by a contradiction argument, which relies on
a blow-up procedure and a Liouville type theorem, that the constants in the estimates are
uniform with respect to the parameter of regularization. Hence, we construct a scheme of
approximation which brings the same estimates to any weak solution of (1.6) and ensures
sharp regularity; that is, we prove the following results, which are Hölder and gradient esti-
mates up to the flat boundary.

Theorem 1.1 Let r > 0, p, q,m1,m2 ∈ P log(B+
r ) with p,m1 > n

2 , q,m2 > n. Let s ∈
P log(B ′

r ) with s > n − 1. Let α ∈ Alog(B+
r ) with

α(x) ≤ min

{
2 − n

p(x)
, 2 − n

m1(x)
, 1 − n

q(x)

}
, α(x ′, 0) ≤ 1 − n − 1

s(x ′)
, (1.7)

and A ∈ C(B+
r ∪B ′

r ). Then there exists a positive constant (dependingonr , p, q,m1,m2, α, n
and ‖V ‖Lm1(·) , ‖b‖Lm2(·) ) such that for weak solutions to (1.6) (the notion of weak solution
is specified in (2.2) and (2.3)) holds

‖u‖C0,α(·)(B+
r/2)

≤ c

(
‖u‖L∞(B+

r ) + ‖ f ‖L p(·)(B+
r ) + ‖F‖Lq(·)(B+

r ) +
{

‖g‖C0,α(·)(B′
r )

or

‖h‖Ls(·)(B′
r )

)
.

(1.8)
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Theorem 1.2 Let r > 0, p,m1,m2 ∈ P log(B+
r ) with p,m1,m2 > n. Let α ∈ Alog(B+

r )

with

α(x) ≤ min

{
1 − n

p(x)
, 1 − n

m1(x)
, 1 − n

m2(x)

}
(1.9)

and A ∈ C0,α(·)(B+
r ). Then there exists a positive constant (depending on r , p,m1,m2, α, n

and ‖V ‖Lm1(·) , ‖b‖Lm2(·) ) such that for weak solutions to (1.6) holds

‖u‖C1,α(·)(B+
r/2)

≤ c

(
‖u‖L∞(B+

r ) + ‖ f ‖L p(·)(B+
r ) + ‖F‖C0,α(·)(B+

r ) +
{

‖g‖C1,α(·)(B′
r )

or

‖h‖C0,α(·)(B′
r )

)
.

(1.10)

Remark 1.3 Let us stress the fact that the estimates stated above are truly boundary estimates
in the sense that they do not follow straightforwardly from interior regularity estimates after
reflecting the equation across the boundary. In fact, the structure of the variable coefficients
matrix A obtained after the diffeomorphism does not allow in general, even in the case of
homogeneous boundary conditions, a standard even or odd reflection of the equation across
{xn = 0} which preserves continuity of coefficients. By carrying out the reflection, jump-
type discontinuities could appear in the matrix coefficients across {xn = 0}, and this would
prevent to obtain the desired regularity estimates. In other words, the hyperplane {xn = 0} is
not required to be invariant with respect to A when xn = 0.

Then, we show that the information obtained on the straightened problem immediately
translates into boundary regularity for the original curved problem.

Corollary 1.4 Let r > 0, α, α̃ ∈ Alog(Br ∩ �) and u be a weak solution to (1.1). Then

i) if p, q,m1,m2 ∈ P log(Br ∩ �) with p,m1 > n
2 , q,m2 > n, s ∈ P log(Br ∩ ∂�) with

s > n − 1, α satisfies

α(x) ≤ min

{
2 − n

p(x)
, 2 − n

m1(x)
, 1 − n

q(x)

}
in Br ∩ �,

α(x) ≤ 1 − n − 1

s(x)
in Br ∩ ∂�,

∂� ∈ C1, A ∈ C(Br ∩�), f ∈ L p(·)(Br ∩�), F ∈ Lq(·)(Br ∩�), V ∈ Lm1(·)(Br ∩�),
b ∈ Lm2(·)(Br ∩ �) and g ∈ C0,α(·)(Br ∩ ∂�) or h ∈ Ls(·)(Br ∩ ∂�), then u ∈
C0,α(·)
loc (Br ∩ �);

ii) if p,m1,m2 ∈ P log(Br ∩ �) with p,m1,m2 > n, α satisfies

α(x) ≤ min

{
1 − n

p(x)
, 1 − n

m1(x)
, 1 − n

m2(x)

}
in Br ∩ �,

∂� ∈ C1,α′(·), α̃ satisfies (1.5), γ = min{α, α̃}, A ∈ C0,α(·)(Br ∩�), f ∈ L p(·)(Br ∩�),
F ∈ C0,α(·)(Br ∩�), V ∈ Lm1(·)(Br ∩�), b ∈ Lm2(·)(Br ∩�) and g ∈ C1,α(·)(Br ∩∂�)

or h ∈ C0,α(·)(Br ∩ ∂�), then u ∈ C1,γ (·)
loc (Br ∩ �).

Eventually, by an inductive argument, the gradient estimate in Theorem 1.2 implies the
following Schauder regularity for partial derivatives of solutions of any order k ∈ N.
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Corollary 1.5 Let r > 0, k ≥ 0, α, α̃ ∈ Alog(Br ∩ �), and u be a weak solution to

{
−div (A∇u) = divF in Br ∩ �

u = g or A∇u · ν = h on Br ∩ ∂�,

with A, F ∈ Ck,α(·)(Br ∩ �), g ∈ Ck+1,α(·)(Br ∩ ∂�) or h ∈ Ck,α(·)(Br ∩ ∂�), ∂� ∈
Ck+1,α′(·), α̃ satisfies (1.5), γ = min{α, α̃}. Then u ∈ Ck+1,γ (·)

loc (Br ∩ �).

Remark 1.6 We would like to stress the fact that all the results stated above at boundary
points (either on curved domains or half balls with a boundary condition on the flat boundary)
continue to hold a fortiori in the interior (on balls inside the domain).

2 Uniform Hölder and gradient estimates for regularized problems

In this section, we apply a local diffeomorphism on (1.1) andwe associate to the new straight-
ened problem a family of regularized equations by smoothening coefficients, forcing terms
and boundary data. Hence, we prove Hölder and gradient estimates with variable exponent
for the regularized problems which are uniform with respect to the regularization parameter.

2.1 A diffeomorphism straightening the boundary

Let us consider the following local diffeomorphism

ψ(x ′, xn) = (x ′, xn + ϕ(x ′)). (2.1)

Hence, there exists a small enough R > 0 such thatψ(BR ∩{xn > 0}) ⊆ Br ∩{xn > ϕ(x ′)};
that is, is a subset of the domainwhere the original equation is satisfied andψ(0) = ψ−1(0) =
0. Additionally, the boundary BR ∩{xn = 0} is mapped into the boundary Br ∩{xn = ϕ(x ′)}.
The Jacobian associated with ψ is given by

Jψ(x ′) =
(

In−1 0
(∇ϕ(x ′))T 1

)
, with |det Jψ(x ′)| ≡ 1.

Up to a possible dilation, one can translate the study of (1.4) into the study of the following
problem for v = u ◦ ψ{

−div (M∇v) = f̃ + divF̃ + Ṽ v + b̃ · ∇v in B+
r = Br ∩ {xn > 0}

v = g̃ or M∇v · ν = h̃ on B ′
r = Br ∩ {xn = 0},

where the new matrix M is given by

M = (J−1
ψ )(A ◦ ψ)(J−1

ψ )T ,

and

f̃ = f ◦ ψ, F̃ = (J−1
ψ )F ◦ ψ, Ṽ = V ◦ ψ

b̃ = (J−1
ψ )b ◦ ψ g̃ = g ◦ ψ, h̃ = h ◦ ψ.

Nowwe are going to state some easy preliminary lemmas about product of variable exponent
Hölder continuous functions and which show the precise translation of integrability and
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regularity conditions after the composition with a local diffeomorphism. Although some
results have an intersection with [7,Lemma 4.4], for completeness we repeat them here in a
version which will be suitable for our purposes.

Lemma 2.1 Let be k ∈ N, � a bounded domain in R
n and let be u ∈ Ck,α(·)(�) and

v ∈ Ck,β(·)(�) with 0 < α ≤ α(x) ≤ α ≤ 1 and 0 < β ≤ β(x) ≤ β ≤ 1. Then the product

uv ∈ Ck,min{α(·),β(·)}(�).

Proof Let us procede by induction and let us start with the case k = 0. Let x, y ∈ � with
0 < |x − y| ≤ 1. Then

|uv(x) − uv(y)| ≤ |v(y)(u(x) − u(y))| + |u(x)(v(x) − v(y))|
≤ sup

x∈�

|v(x)|cα|x − y|max{α(x),α(y)} + sup
x∈�

|u(x)|cβ |x − y|max{β(x),β(y)}

≤ C |x − y|min{max{α(x),α(y)},max{β(x),β(y)}}

≤ C |x − y|max{min{α(x),β(x)},min{α(y),β(y)}}.

Hence

[uv]C0,min{α(·),β(·)}(�) = sup
x,y∈�

0<|x−y|≤1

|uv(x) − uv(y)|
|x − y|max{min{α(x),β(x)},min{α(y),β(y)}} < +∞.

Then let us suppose the result true in the generic case k and let us prove the result in case k+1.
We are assuming that u ∈ Ck,α(·)(�) and v ∈ Ck,β(·)(�) implies uv ∈ Ck,min{α(·),β(·)}(�).
Let us suppose now that u ∈ Ck+1,α(·)(�) and v ∈ Ck+1,β(·)(�). Taken a partial derivative
Dαk+1(uv) for |αk+1| = k + 1, then there exists i ∈ {1, . . . , n} and multiindex αk with
|αk | = k, such that

Dαk+1(uv) = Dαk (∂i (uv)) = Dαk (v∂i u) + Dαk (u∂iv).

By inductive hypothesis v∂i u ∈ Ck,α(·)(�) and u∂iv ∈ Ck,β(·)(�). So, Dαk+1(uv) is the sum
of two functions belonging respectively to C0,α(·)(�) and C0,β(·)(�). By trivial inclusion of
spaces, we get that Dαk+1(uv) ∈ C0,min{α(·),β(·)}(�) which proves the result. ��
Lemma 2.2 If α, β ∈ Alog(�), then the pointwise minimum γ = min{α, β} ∈ Alog(�).

Proof Let x, y ∈ � with x �= y, and let us consider |γ (x) − γ (y)|. If γ (x) = α(x) and
γ (y) = α(y) or γ (x) = β(x) and γ (y) = β(y) then we can conclude by log-Hölder
continuity of α or β that

|γ (x) − γ (y)| ≤ c
1

log
(
e + 1

|x−y|
) .

Hence we can assume without loss of generality that γ (x) = α(x) and γ (y) = β(y), which
implies that on the segment [x, y] the graphs of the one dimensional restrictions of α and β

(which are continuous) have to cross each other by the intermediate zero theorem; that is,
there exists an intermediate point z such that α(z) = β(z) and ω(|x − z|), ω(|y − z|) are
both less or equal than ω(|x − y|) by the non decreasing monotonicity of the modulus of
continuity ω(t) = 1/ log(e + 1/t). Hence,

|γ (x) − γ (y)| = |α(x) − β(y)| ≤ |α(x) − α(z)| + |β(z) − β(y)| ≤ c
1

log
(
e + 1

|x−y|
) .

��
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Lemma 2.3 Let ψ : Rn → R
n be a local diffeomorphism between �′ = ψ−1� and � such

that ψ−1 is Lipschitz continuous in �. Then

i) if f ∈ L p(·)(�), then f ◦ ψ ∈ L p◦ψ(·)(�′);
ii) if ψ is bi-Lipschitz continuous and diam(�), diam(�′) ≤ 1, then u ∈ C0,α(·)(�) if and

only if u ◦ ψ ∈ C0,α◦ψ(·)(�′).

Proof i) Let us compute the modular of f ◦ ψ

ρ
p◦ψ

�′ ( f ◦ ψ) =
∫

�′
| f ◦ ψ(y)|p◦ψ(y)dy

=
∫

�

| f ◦ ψ(ψ−1(x))|p◦ψ(ψ−1(x))|det Jψ−1(x)|dx
≤ sup

�

|det Jψ−1 | ρ p
�( f ) < +∞.

i i) Let us consider the variable exponent Hölder seminorm of u ◦ ψ

[u ◦ ψ]C0,α◦ψ(·)(�′) = sup
x,y∈�′
x �=y

|u ◦ ψ(x) − u ◦ ψ(y)|
|x − y|α◦ψ(x)

= sup
x,y∈�

ψ−1(x)�=ψ−1(y)

|u(x) − u(y)|
|ψ−1(x) − ψ−1(y)|α(x)

≤ C sup
x,y∈�
x �=y

|u(x) − u(y)|
|x − y|α(x)

= C[u]C0,α(·)(�),

where in the last inequality above we have used the Lipschitz continuity and bijectivity of
ψ . We remark that the condition on diameters of �,�′ allows us to avoid the condition of
closeness of points |x − y| ≤ 1 in the definition of the seminorm. Then, using the Lipschitz
continuity of ψ−1 we can obtain the other implication. ��
We would like to remark here that our local diffeomorphism ψ in (2.1) can be set between
two domains with diameter less or equal than 1. Moreover ψ is bi-Lipschitz continuous with
|det Jψ | = |det Jψ−1 | ≡ 1 (the Lipschitz constant is L = 1) and hence ψ is also an isometry
between variable exponent Lebesgue/Hölder spaces and the related ones with exponents
obtained after the composition with the diffeomorphism itself.

Nevertheless, if ∂� ∈ Ck,α′(·) for some integer k ≥ 1, then ψ−1 ∈ Ck,α̃(·) with α̃ given
in (1.5). This means also that, if A ∈ Ck−1,α(·)(Br ∩ �) then M ∈ Ck−1,γ ◦ψ(·)(B+

r ), where
γ = min{α, α̃}.

Of course, log-Hölder continuity of exponents is preserved after composition with ψ

(p ∈ P log(Br ∩�) ⇐⇒ p ◦ψ ∈ P log(B+
r ) and α ∈ Alog(Br ∩�) ⇐⇒ α ◦ψ ∈ Alog(B+

r )),
and the same happens with pointwise inequalities between exponents, for example

α(x) ≤ 2 − n

p(x)
in Br ∩ � ⇐⇒ α(ψ(y)) ≤ 2 − n

p(ψ(y))
in B+

r .

Thanks to the lemmas and remarks stated in this section we are in position to claim the
following proposition: Theorem 1.1 and Theorem 1.2 imply respectively Corollary 1.4 part
i) and i i).

Proof of ”Theorem 1.1 ⇒ Corollary 1.4 part i)” and of ”Theorem 1.2 ⇒ Corollary 1.4 part
i i)”
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Nowwe are going to show how to translate boundary regularity estimates for the straightened
problem into boundary local regularity for the original curved problem:

i) when the coefficients matrix A is continuous and the boundary ∂� is locally C1,
then ψ−1 ∈ C1 and the coefficients of M are continuous. Therefore, if we obtain
C0,α◦ψ(·)
loc (B+

r ∪ B ′
r )-regularity for v, then it translates into C0,α(·)

loc (Br ∩ �)-regularity
for u through composition with ψ−1 ∈ C1. In other words, Theorem 1.1 implies Corol-
lary 1.4 part i);

ii) when the coefficients matrix A is α(·)-Hölder continuous and the boundary ∂� is locally
C1,α′(·), then ψ−1 ∈ C1,α̃(·) and the coefficients of M are C0,γ ◦ψ(·)(B+

r ). Therefore, if

we obtain C1,γ ◦ψ(·)
loc (B+

r ∪ B ′
r )-regularity for v, then it translates into C1,γ (·)

loc (Br ∩ �)-
regularity for u. This is due to the fact that

∇u = ∇v(ψ−1) · Jψ−1

is the product of a C0,γ (·)
loc (Br ∩ �) and a C0,α̃(·)

loc (Br ∩ �) functions. In other words,
Theorem 1.2 implies Corollary 1.4 part i i).

2.2 A family of regularized problems

First of all, we would like to recall the standard definition of weak solution to problem (1.6).
In case of Dirichlet boundary conditions a function u ∈ H1(B+

r ) is a weak solution to (1.6)
if for any test function φ ∈ C∞

c (B+
r )∫

B+
r

A∇u · ∇φ =
∫
B+
r

f φ −
∫
B+
r

F · ∇φ +
∫
B+
r

V uφ +
∫
B+
r

b · ∇uφ. (2.2)

Additionally we ask that Tru, which is an element in H1/2(∂B+
r ), coincides with g on B ′

r . In
case of Neumann boundary conditions, a weak solution to (1.6) satisfies for any test function
φ ∈ C∞

c (B+
r ∪ B ′

r )∫
B+
r

A∇u · ∇φ =
∫
B+
r

f φ −
∫
B+
r

F · ∇φ +
∫
B+
r

V uφ +
∫
B+
r

b · ∇uφ +
∫
B′
r

hφ. (2.3)

It is not our interest to write precisely what the minimal conditions on the data are in order
to give sense to the above definition. We just would like to observe that the integrability and
regularity assumptions that we will make on the data are amply sufficient to guarantee the
validity of the weak formulation of the problem (1.6).

In this section we are going to introduce a family of regularized problems related to (1.6).
This regularization is done by convolving variable coefficients and the given data which
belong to variable exponent Hölder spaces with a standard family of mollifiers and instead
approximating the given data which belong to variable exponent Lebesgue spaces using some
density result of smooth functions in the space.

Every time we are considering some data in a variable exponent Hölder space of the half
ball B+

r (or variable coefficients), we can imagine to extend this function across {xn = 0}
in an even way. This operation is merely technical, does not affect the given regularity and
allows us to define the convolution up to the flat boundary. In fact, in this way we can ensure

uniform convergence of mollifications of our data to the data themselves on the compact B+
r

with 0 < r < r . Let

Aε(x) = (aε
i j (x))

n
i, j=1, with aε

i j (x) = ai j ∗ ηε(x) =
∫
Rn

η(t)ai j (x − εt)dt, (2.4)
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where η ∈ C∞
c (Rn) is a nonnegative radially decreasing cut-off function with

∫
Rn η = 1 and

the standard family of mollifiers is given by

ηε(x) = 1

εn
η

( x
ε

)
.

For example we can imagine that suppη = B1. The mollifications defined above are well
defined and smooth; that is, Aε ∈ C∞(Br ) in any fixed ball with radius 0 < r < r provided
that 0 < ε ≤ ε for a certain ε which depends on r (ε ↘ 0 as r ↗ r ). Moreover, if for
example A ∈ C(Br ) then Aε → A uniformly in Br .

We define in the same way Fε when F ∈ C0,α(·)(B+
r ). Nevertheless, for the Dirichlet

boundary datum g and the Neumann boundary datum h (in case we are assuming h ∈
C0,α(·)(B ′

r )) we define gε, hε by convolution with a standard family of mollifiers in R
n−1;

that is, for instance

gε(x
′) = g ∗ η̃ε(x

′) =
∫
Rn−1

η̃(t)g(x ′ − εt)dt (2.5)

where η̃ ∈ C∞
c (Rn−1) is a nonnegative radially decreasing cut-off function with

∫
Rn−1 η̃ = 1

and

η̃ε(x
′) = 1

εn−1 η̃

(
x ′

ε

)
.

Nowwe are going to present the key lemma for regularization in variable exponent Hölder
spaces. The result below ensures a uniform boundedness in variable exponent Hölder spaces
for the family of mollifications, even if such spaces are not translation invariant. The main
idea is the following: there are two scales of infinitesimals which are independent; they
are the distance between points |x − y| and the parameter of mollification ε. When the
relationship between the two scales is |x − y| � ε, then the translated point x − εt is not
"too far" from x and the log-Hölder continuity of α is enough to control the difference
(α(x − εt) − α(x)) log |x − y|. Otherwise, when |x − y| � ε, the translation above can not
be controlled without the help of the Lipschitz continuity of the cut-off function.

Lemma 2.4 Let 0 < r < r ≤ 1/2, k ∈ N, 0 < ε ≤ ε(r) < 1 and α ∈ Alog(Br ). If
u ∈ Ck,α(·)(Br ), then mollifications uε = u ∗ ηε defined in (2.4) satisfy the following

‖uε‖Ck,α(·)(Br ) ≤ c,

for a constant c > 0 which does not depend on ε ≤ ε.

Proof It is enough to prove the statement in case k = 0, then the same reasoning applies also
to partial derivatives of any order. The uniform L∞ bound is trivial, in fact for x ∈ Br

|uε(x)| ≤
∫
Rn

η(t)|u(x − εt)|dt ≤ ‖u‖L∞(Br ).

Now we want to estimate uniformly in ε the α(·)-Hölder seminorm of uε in Br . Hence, for
any triplet (x, y, ε) ∈ Br × Br × (0, ε] =: A, we have that it belongs to one of the following
two subsets

A1 = {(x, y, ε) ∈ A : | log |x − y|| ≥ n + 1

1 − α
| log ε|}

or

A2 = {(x, y, ε) ∈ A : | log |x − y|| <
n + 1

1 − α
| log ε|}.
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If we have a triplet in A1, we use the Lipschitz continuity of η in the estimate below

|uε(x) − uε(y)| ≤
∫
Rn

|ηε(x − t) − ηε(y − t)| · |u(t)|dt

≤ c|x − y|
εn+1

= c|x − y|α(x)|x − y|α−α(x) |x − y|1−α

εn+1

≤ c|x − y|α(x) ≤ c|x − y|max{α(x),α(y)},

where in the previous estimates we used the condition which characterizes A1 in order to

bound uniformly |x−y|1−α

εn+1 ≤ 1, and in the last inequality we used the log-Hölder continuity
of exponent α. In fact, if α(x) = max{α(x), α(y)} we have done, otherwise we can bound
uniformly

(α(x) − α(y)) log |x − y| = |α(x) − α(y)| · | log |x − y|| ≤ ω(|x − y|)| log |x − y|| ≤ c.

If we have a triplet in A2, we notice that

ω(ε)| log |x − y|| <
n + 1

1 − α
ω(ε)| log ε| ≤ c.

Hence, we show that there exists a positive constant independent from t ∈ suppη = B1 and
from the triplet such that

|x − y|α(x−εt) ≤ c|x − y|α(x).

If α(x − εt) > α(x) the inequality is trivial. Otherwise, it is enough to estimate uniformly

(α(x − εt) − α(x)) log |x − y| = |α(x − εt) − α(x)| · | log |x − y||
≤ ω(ε|t |) · | log |x − y|| ≤ ω(ε) · | log |x − y|| ≤ c.

Hence, we can conclude that

|uε(x) − uε(y)| ≤
∫
Rn

η(t)|u(x − εt) − u(y − εt)|dt

≤ c
∫
Rn

η(t)|x − y|max{α(x−εt),α(y−εt)}dt

= c
∫
Rn

η(t)|x − y|α(x−εt)dt

≤ c|x − y|α(x) ≤ c|x − y|max{α(x),α(y)}.

Abovewehave assumedwithout loss of generality thatα(x−εt) = max{α(x−εt), α(y−εt)},
otherwise one can change the roles of x and y. ��

The idea now is to regularize the data which belong to variable exponent Lebesgue spaces by
[10,Theorem 3.4.12]; that is, density of C∞

c (�) in L p(·)(�) where � is open. Hence, when
forcing terms, fields, potentials and drifts f , F, V , b belong to certain variable exponent
Lebesgue spaces L p(·)(B+

r ), thenwe define sequences of functions fk, Fk, Vk, bk inC∞
c (B+

r )

strongly converging in the Lebesgue spaces. When h ∈ Ls(·)(B ′
r ), then we define a sequence

of functions hk in C∞
c (B ′

r ) strongly converging in the Lebesgue space.
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2.2.1 The regularization for Hölder estimates

We are dealing here with given data which satisfy integrability and regularity conditions in
Theorem 1.1. Hence, as k → +∞ we consider a sequence εk → 0+. Along such a sequence
we study problems{

−div
(
Aεk∇uk

) = fk + divFk + Vkuk + bk · ∇uk in B+
r

uk = gεk or Aεk∇uk · ν = hk on B ′
r ,

(2.6)

where fk, Fk, Vk, bk, hk are sequences of smooth functions which strongly converges in the
right variable exponent Lebesgue spaces to f , F, V , b, h, while Aεk , gεk are mollifications
of A, g as in (2.4) and (2.5).

Remark 2.5 We would like to notice here that weak solutions to (2.6) are uniformly-in-k
locally bounded by Moser iterations assuming the integrability and regularity conditions on
data given in Theorem 1.1. This can be done by Sobolev and trace inequalities, using the fact
that the quadratic forms related to coefficients Aεk are equivalent norms in the Sobolev space
uniformly-in-k. Nonetheless, we remark here that the space L p(·) trivially embeds into L p

and C0,α(·) into C0,α . In other words, it is very easy to check that there exists a uniform-in-k
constant such that

‖uk‖L∞(B+
r/2)

≤ c

(
‖uk‖L2(B+

r ) + ‖ fk‖L p(·)(B+
r )+‖Fk‖Lq(·)(B+

r )+
{

‖gεk‖C0,α(·)(B′
r )

or

‖hk‖Ls(·)(B′
r )

)
. (2.7)

For this reason, without loss of generality we will always assume a uniform-in-k L∞-bound
for weak solutions to (2.6). We notice that the constant in (2.7) depends on the norms of the
potential and transport terms and so is uniform ifwe assumeuniformbounds ‖Vk‖Lm1(·)(B+

r ) ≤
c1 and ‖bk‖Lm2(·)(B+

r ) ≤ c2. For the requirement m2 > n we refer to [27]. For the sharp
requirement s > n − 1 we refer for example to [22,Proposition 2.6. (i)].

Hence, solutions to (2.6) satisfy the suboptimal estimate

‖uk‖C0,α(·)(B+
r/2)

≤ c

(
‖uk‖L∞(B+

r ) + ‖ fk‖L p(·)(B+
r ) + ‖Fk‖Lq(·)(B+

r ) +
{

‖gεk‖C0,α(·)(B′
r )

or

‖hk‖Ls(·)(B′
r )

)
, (2.8)

with a constant which depends on ‖Vk‖Lm1(·)(B+
r ) and ‖bk‖Lm2(·)(B+

r ) and possibly is not uni-
form in k. This kind of estimate, fixed k > 0, is implied by classical boundary regularity
results for second order uniformly elliptic equations in divergence form with smooth coef-
ficients and data (this is usually done by "freezing the coefficients" and passing to constant
ones, see for instance [21,Chapter 6], [5] or [19]). In the following result, we are going to
prove that actually the constant in the estimate above (2.8) can be taken uniform as k → +∞.
The proof is based on a contradiction argument involving a blow-up procedure and a Liou-
ville type theorem for harmonic functions (this kind of argument is very well known and we
refer to [17,Chapter 2] for a nice and clear overview of the technique).

Proposition 2.6 As k → +∞ let {uk} be a family of solutions to (2.6) in B+
r with r ≤ 1/2.

Let p, q,m1,m2 ∈ P log(B+
r ) with p,m1 > n

2 , q,m2 > n. Let s ∈ P log(B ′
r ) with s > n − 1.

Let ‖Vk‖Lm1(·)(B+
r ) ≤ c1 and ‖bk‖Lm2(·)(B+

r ) ≤ c2 uniformly in k for some positive constants.
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Let also α ∈ Alog(B+
r ) with (1.7). Then, there exists a positive constant c independent from

k such that (2.8) holds true.

Proof Without loss of generality we can assume that

Tk := ‖uk‖L∞(B+
r ) + ‖ fk‖L p(·)(B+

r ) + ‖Fk‖Lq(·)(B+
r ) +

{
‖gεk‖C0,α(·)(B′

r )
or

‖hk‖Ls(·)(B′
r )

= 1.

In fact, the thesis is equivalent to prove the existence of a uniform constant such that

‖ũk‖C0,α(·)(B+
r/2)

≤ c,

where ũk = uk/Tk are still solutions of the same equation with the property that their L∞-
norms, the relevant norms of right hand sides and boundary data are all uniformly controlled
by 1. We have already assumed that

‖Vk‖Lm1(·)(B+
r ) + ‖bk‖Lm2(·)(B+

r ) ≤ c.

Step 1: the contradiction argument We argue by contradiction; that is, there exists α ∈
Alog(B+

r ) with (1.7), and a subsequence of solutions (always denoted by {uk}) to (2.6) such
that

‖ηuk‖C0,α(·)(B+
r ) → +∞,

where the function η ∈ C∞
c (Br ) is a radial decreasing cut-off function such that η ≡ 1 in

Br/2, 0 ≤ η ≤ 1 in Br and suppη := B = B3r/4. Moreover we can take η ∈ C0,1(B) such
that η(z) ≤ �dist(z, ∂B) where � is the Lipschitz constant. Hence, we are supposing that

max
z,ζ∈B+

r
z �=ζ

|ηuk(z) − ηuk(ζ )|
|z − ζ |α(z)

= Lk → +∞.

We can assume that Lk is attained by a couple of points zk, ζk ∈ B ∩ {xn ≥ 0} and we call
rk := |zk − ζk |. Hence

|ηuk(zk) − ηuk(ζk)|
|zk − ζk |α(zk )

= Lk .

Using the L∞ bound of the uk’s and the Lipschitz continuity of η, one can easily show that

i) rk → 0,

ii) dist(zk, ∂
+B+)

rk → +∞ and dist(ζk, ∂
+B+)

rk → +∞,

where B+ = B+
3r/4 and ∂+B+ = ∂B3r/4 ∩ {xn > 0}. In fact, since rk = |zk − ζk | ≤ 2r ≤ 1,

point i) is implied by

Lk = |ηuk(zk) − ηuk(ζk)|
rα(zk )
k

≤ c

rα
k

.

For i i) one can reason in the same way using also Lipschitz continuity of η.
Step 2: the blow-up sequences Let us define

vk(z) = ηuk(ẑk + rk z) − ηuk(ẑk)

Lkr
α(zk )
k

, wk(z) = η(ẑk)(uk(ẑk + rk z) − uk(ẑk))

Lkr
α(zk )
k

,
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with

z ∈ B(k) := B+ − ẑk
rk

,

and ẑk ∈ B ∩ {xn ≥ 0} to be determined. We will take in any case ẑk = (z′k, ẑk,n), where
zk = (z′k, zk,n). At this point, since zk ∈ B ∩ {xn ≥ 0}, then the following quantity has a
sign

zk,n
rk

≥ 0. (2.9)

There are two cases:

Case 1 the term in (2.9) is unbounded, then we choose ẑk,n = zk,n . In other words, ẑk = zk ;
Case 2 the term in (2.9) is bounded, then we choose ẑk,n = 0. In other words, ẑk = (z′k, 0);

Now we want to understand the limit set B(∞) = limk→+∞ B(k). This limit of sets must
be understood in the following way: z ∈ B(∞) if there exists k0 such that z ∈ B(k) for any
k > k0. The blow-up domain B(k) can be expressed as the following intersection

B(k) = B − ẑk
rk

∩ {xn > 0} − ẑk
rk

= B 3
4rk

(
− ẑk
rk

)
∩ Hk,

with

Hk =
{
xn > − ẑk,n

rk

}
.

First, we observe that

B 3
4rk

(
− ẑk
rk

)
−→ R

n .

This is due to the fact that

B dist(ẑk ,∂+B+)

2

⊂ B − ẑk

and hence, using i i), one has the result. In fact, in Case 1 this is immediate by the choice
ẑk = zk . Instead, in Case 2

+∞ ← dist(zk, ∂+B+)

rk
≤ dist(ẑk, ∂+B+)

rk
+ zk,n

rk
≤ dist(ẑk, ∂+B+)

rk
+ c.

In Case 1

Hk −→ R
n .

In Case 2

Hk = {xn > 0} .

We remark here that since ẑk ∈ B ∩ {xn ≥ 0}, then 0 ∈ B(k) for any k. Let us consider
z, ζ ∈ K ⊂ B(∞) in a compact set. Then

|vk(z) − vk(ζ )| = |ηu(ẑk + rk z) − ηu(ẑk + rkζ )|
Lkr

α(zk )
k

≤ |z − ζ |α(ẑk+rk z)rα(ẑk+rk z)−α(ẑk )
k rα(ẑk )−α(zk )

k .
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For any k, we have named z as the point such that α(ẑk + rk z) ≥ α(ẑk + rkζ ) (the roles of
z and ζ are interchangeable here). Using the log-Hölder continuity of exponent α, we can
bound uniformly in the compact set

rα(ẑk+rk z)−α(ẑk )
k ≤ c(K ).

In fact

|α(ẑk + rk z) − α(ẑk)| · | log rk | ≤ ω(rk |z|)| log rk | ≤ ω

(
rk max

K
|z|

)
| log rk | ≤ c.

Nevertheless, in Case 2, when ẑk �= zk and zk,n/rk is bounded, we can bound also

rα(ẑk )−α(zk )
k ≤ c. (2.10)

In fact

|α(ẑk) − α(zk)| · | log rk | ≤ ω(zk,n)| log rk | = ω

(
rk
zk,n
rk

)
| log rk | ≤ c.

Hence there exists k0 such that for k > k0

max
z,ζ∈K
z �=ζ

|vk(z) − vk(ζ )|
|z − ζ |α(ẑk+rk z)

≤ c(K ). (2.11)

This condition gives uniform boundedness and uniform equicontinuity of the sequence vk
on any compact set K containing the origin. In fact, vk(0) = 0 for any k and

|vk(z)| ≤ c(K )|z|max{α(ẑk+rk z),α(ẑk )} ≤ c(K )max{1, |z|α} ≤ c̃(K ).

Moreover, fixed ε > 0, taken δ = min{1, (ε/c(K ))1/α} and z, ζ ∈ K with |z − ζ | < δ

|vk(z) − vk(ζ )| ≤ c(K )|z − ζ |α(ẑk+rk z) < ε.

Then, by the Ascoli-Arzelá theorem, there exists a subsequence converging uniformly on the
compact K to a function v. By a compact exhaustion of B(∞) with K1 ⊂ K2 ⊂ K3 . . . and
a diagonal procedure, we can extract a subsequence converging on any compact set to the
entire profile v.

Moreover,

∣∣∣∣vk
(
zk − ẑk

rk

)
− vk

(
ζk − ẑk

rk

)∣∣∣∣ = 1 (2.12)

for any k. Hence, we have that the limit v is a non constant. In fact, up to pass to a subsequence,
in Case 1 ζk−zk

rk
→ z ∈ S

n−1 since any point of the sequence belongs to S
n−1. Hence, by

(2.12), uniform convergence and equicontinuity, we have |v(0) − v(z)| = 1. In Case 2, up
to pass to a subsequence, the sequence

zk − ẑk
rk

= (0, zk,n)

rk
→ (0, 0, c) = z1,

and

ζk − ẑk
rk

= ζk − zk
rk

+ (0, zk,n)

rk
→ z + (0, 0, c) = z2,
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where z ∈ S
n−1. Hence, by (2.12), uniform convergence and equicontinuity, again |v(z1) −

v(z2)| = 1.
Let us define z∞ = lim zk = lim ẑk , up to pass to subsequences, and α∞ = α(z∞). Taken

z, ζ ∈ B(∞), they are contained in a compact set containing the origin K . Hence, passing
to the pointwise limit in inequality (2.11), we have

|v(z) − v(ζ )|
|z − ζ |α∞ ≤ e2.

This implies that v is globally α∞-Hölder continuous in B(∞). Nevertheless, wk → v do
converge to the same limit on compact sets since

sup
z∈K

|vk(z) − wk(z)| → 0.

Step 3: the rescaled equations Let k > k0 large enough. The functions wk solve in B(k)

−div
(
Aεk (ẑk + rk ·)∇wk

)
(z)

= η(ẑk)

Lk
r2−α(zk )
k fk(ẑk + rk z) + η(ẑk)

Lk
r1−α(zk )
k div

(
Fk(ẑk + rk ·)

)
(z)

+η(ẑk)

Lk
r2−α(zk )
k Vkuk(ẑk + rk z) + rkbk(ẑk + rk z) · ∇wk(z) (2.13)

in Case 1, while in Case 2 it remains also the boundary condition at {xn = 0}. We show that
the right hand side in the rescaled equation is vanishing in L1

loc (let us work for simplicity in
Case 1) in the sense that taken a test function φ ∈ C∞

c (Rn), with suppφ ⊂ BR for a certain
R > 0

η(zk)

Lk
r2−α(zk )
k

∣∣∣∣
∫
BR

fk(zk + rk z)φ(z)dz

∣∣∣∣
≤ cr2−α(zk )−n

k

∫
Brk R(zk )

| fk(ζ )|dζ

≤ c

Lk
r2−α(zk )−n
k ‖ fk‖L p(·)(Brk R(zk ))‖χBrk R(zk )‖L p′(·)(Rn)

≤ c

Lk
r2−α(zk )−n
k |Brk R(zk)| -

∫
Brk R(zk )

1
p′

≤ c

Lk
r
2−α(zk )− n

p(zk )

k r
n

(
1

p(zk )
− -

∫
Brk R(zk )

1
p

)
k ≤ c

Lk
. (2.14)

In fact, by log-Hölder continuity of 1/p we have∣∣∣∣∣ 1

p(zk)
− -

∫
Brk R(zk )

1

p(z)
dz

∣∣∣∣∣ ≤ -
∫

Brk R(zk )

c

log(e + 1
|zk−z| )

dz ≤ c

log(e + 1
|zk−(zk+rk Rξ)| )

for ξ ∈ S
n−1. For the estimate above on the norm of characteristic functions, in terms of

Lebesgue measure of the set elevated to the average of the reciprocal of the exponent, we
refer to [10,Section 4.5]. The term in the right hand side with the potential vanishes using
the same argument, once we recall that the uk’s are uniformly bounded. With very similar
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reasonings we can deal with the field term

η(zk)

Lk
r1−α(zk )
k

∣∣∣∣
∫
BR

Fk(zk + rk z) · ∇φ(z)dz

∣∣∣∣
≤ cr1−α(zk )−n

k

∫
Brk R(zk )

|Fk(ζ )|dζ

≤ c

Lk
r1−α(zk )−n
k ‖Fk‖Lq(·)(Brk R(zk ))‖χBrk R(zk )‖Lq′(·)(Rn)

≤ c

Lk
r1−α(zk )−n
k |Brk R(zk)| -

∫
Brk R(zk )

1
q′

≤ c

Lk
r
1−α(zk )− n

q(zk )

k r
n

(
1

q(zk )
− -

∫
Brk R(zk )

1
q

)
k ≤ c

Lk
.

Now we show that, in order to make vanish the drift term, no restriction on α is needed.

rk

∣∣∣∣
∫
BR

bk(zk + rk z) · ∇wk(z)φ(z)dz

∣∣∣∣
≤ cr1−n/2

k

(∫
BR

|∇wk |2
)1/2

‖bk‖Lm2(·)(Brk R(zk ))
‖χBrk R(zk )‖L2m2(·)/(m2(·)−2)(Rn)

≤ cr1−n/2
k |Brk R(zk)| -

∫
Brk R(zk )

m2−2
2m2

(∫
BR

|∇wk |2
)1/2

≤ cr
1− n

m2(zk )

k

(∫
BR

|∇wk |2
)1/2

= tk

(∫
BR

|∇wk |2
)1/2

,

with tk → 0. We will show that the full term vanishes thanks to a uniform energy bound of
the wk’s in (2.15).

We remark that in Case 2 nothing changes apart from notations, up to suitably adjusting
terms using (2.10).
Step 4: the limit equationWe define the limit constant coefficients matrix

Â = A(z∞) = lim
k→+∞ Aεk (ẑk) = lim

k→+∞ Aεk (ẑk + rk z).

By a Caccioppoli type inequality, easily obtained by multiplying (2.13) by ϕ2wk , being
0 ≤ ϕ ≤ 1 a radially decreasing cut-off function with η ≡ 1 in BR and suppϕ ⊂ B2R ,
taking into account possible boundary conditions, that functions wk are uniformly bounded
on compact sets and the vanishing of right hand sides (the drift term can be reabsorbed having
tk → 0), then we obtain uniform-in-k energy bounds holding on compact subsets of B(∞)

∀R > 0, ∃c > 0 : ∀k,
∫
BR∩B(∞)

Aεk (ẑk + rk z)∇wk · ∇wk ≤ c . (2.15)

In Case 1, B(∞) = R
n . Then the limit v belongs to H1

loc(R
n) and is a weak solution of

−div
(
Â∇v

)
= 0 in R

n,

in the sense that for every φ ∈ C∞
c (Rn)∫

Rn
Â∇v · ∇φ = 0.
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In Case 2 we have B(∞) = {xn > 0} = R
n+. Let us denote by H1{xn=0}(Rn+) the space of

functions belonging to H1(Rn+) having zero trace on {xn = 0}. Then the limit v belongs to
(H1{xn=0})loc(Rn+) or H1

loc(R
n+) and is a weak solution of

{
−div

(
Â∇v

)
= 0 in R

n+,

v = 0 or Â∇v · ν = 0 on {xn = 0},

in the sense that for every φ ∈ C∞
c (Rn+) or φ ∈ C∞

c (Rn+)∫
R
n+
Â∇v · ∇φ = 0.

As we have already said, this is done using the Caccioppoli inequality (2.15), which
gives weak convergence in H1

loc. Moreover, we use the pointwise convergence of coefficients
Aεk (ẑk + rk ·) → Â, hence∫

B(∞)

Aεk (ẑk + rk ·)∇wk · ∇φ →
∫
B(∞)

Â∇v · ∇φ.

When we consider Dirichlet boundary conditions in Case 2, thanks to Lemma 2.4 we have
on compact sets K ′ of the hyperplane {xn = 0} a uniform constant c(K ′) such that

|wk(x
′, 0)| = η(ẑk)

Lkr
α(zk )
k

∣∣gεk (ẑk + rk(x
′, 0)) − gεk (ẑk))

∣∣
≤ c(K ′) η(ẑk)

Lkr
α(zk )
k

|rk(x ′, 0)|max{α(ẑk+rk (x ′,0)),α(ẑk )} → 0

by the log-Hölder continuity of α and using (2.10). In case of Neumann boundary conditions,
using integration by parts in the equation, the boundary term vanishes having s > n − 1 and
α(x ′, 0) ≤ 1 − n−1

s(x ′,0) ; that is,∫
BR∩∂B(∞)

Aεk (ẑk + rk z)∇wk(z) · νφ(z)

= η(ẑk)r
1−α(ẑk )
k rα(ẑk )−α(zk )

k

Lk

∫
BR∩∂B(∞)

hεk (ẑk + rk z)φ(z)

≤ c
r
1−α(ẑk )− n−1

s(ẑk )

k

Lk
→ 0.

Step 5: a square root reflection and a Liouville type theorem The limit matrix Âwith constant

coefficients is symmetric positive definite. Let us consider the square root C =
√
Â of Â,

which is symmetric and positive definite too. We remark that the linear transform associated
to the inverse of such a matrix, maps Rn in itself, and in case B(∞) = {xn > 0}, maps such
half space in another half space. In fact, with the change of variable Cy = x , then

B(∞) = {xn > 0} = {x · en > 0} = {Cy · en > 0} = {y · Cen > 0},
which is an half space also in the new coordinate system, with boundary hyperplane given
by {y ·Cen = 0}. In other words, the new outward normal vector is related to the old one by
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the following formula ν′(y) = Cν(Cy), which in our case is the constant vector ν′ = −Cen .
Let u(y) = v(Cy). In Case 1, The function u is a weak solution of

−�u(y) = 0 in R
n,

is non constant and globally α∞-Hölder continuous. Additionally, in Case 2 it vanishes or
has vanishing normal derivative on {y · Cen = 0}; that is, weakly solves{

−�u(y) = 0 in {y · Cen > 0}
u = 0 or ∇u · ν′ = 0 in {y · Cen = 0}.

Hence, in the last situation we can perform an odd or even reflection across that hyperplane,
having in any case the equation satisfied in the whole of Rn . Hence we have proved that
the limit u ∈ H1

loc(R
n) is not constant and globally harmonic in R

n . Moreover it is globally
α∞-Hölder continuous with α∞ < 1, in clear contradiction with the Liouville theorem in
[24,Corollary 2.3]. ��

2.2.2 The regularization for gradient estimates

We are dealing here with given data which satisfy integrability and regularity conditions in
Theorem 1.2. Hence, as k → +∞ we consider a sequence εk → 0+. Along such a sequence
we study problems{

−div
(
Aεk∇uk

) = fk + divFεk + Vkuk + bk · ∇uk in B+
r

uk = gεk or Aεk∇uk · ν = hεk on B ′
r ,

(2.16)

where fk, Vk, bk are sequences of smooth functions which strongly converge in the right
variable exponent Lebesgue spaces to f , V , b, while Aεk , Fεk , gεk , hεk are mollifications of
A, F, g, h as in (2.4) and (2.5).

Hence, solutions to (2.16) satisfy the estimate

‖uk‖C1,α(·)(B+
r/2)

≤ c

(
‖uk‖L∞(B+

r ) + ‖ fk‖L p(·)(B+
r ) + ‖Fεk‖C0,α(·)(B+

r ) +
{

‖gεk‖C1,α(·)(B′
r )

or

‖hεk‖C0,α(·)(B′
r )

)
,

(2.17)

with a constant which depends on ‖Vk‖Lm1(·)(B+
r ) and ‖bk‖Lm2(·)(B+

r ) and possibly is not
uniform in k (see for instance [5, 19, 21]). Now we are going to show that actually the
constant in the estimate above can be taken uniform in k. The proof follows the contradiction
argument developed in [26].

A standard way to deal with inhomogeneous boundary data, in order to prove gradient
estimates, is to extend them inside the domain to functions with the same regularity and
consider the equation satisfied by the difference of the original solution and such extension.
In this way, due to the linearity of the equation, one could pass to the study of a problem with
homogeneous boundary data possibly with some new forcing terms appearing. We would
like to remark here that, when boundary data are prescribed in variable exponent Hölder
spaces, it is not even clear, at least for us, if an extension of such data inside the domain could
be easily defined and how in that case the extension of the variable exponent itself should be
defined. For this reason we will work directly on the problem with inhomogeneous boundary
conditions.
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Remark 2.7 We would like to remark here that actually we already know that solutions to
(2.16) enjoy a uniform C1,α local bound. This is due to classical results (see for instance [20,
23], for the sharp requirement on the drift term we refer also to the more recent [15, 16])
once we have observed that variable exponent Lebesgue and Hölder spaces L p(·) and Ck,α(·)
trivially embed into L p andCk,α . Hence, assuming ‖Vk‖Lm1(·)(B+

r ) ≤ c1 and ‖bk‖Lm2(·)(B+
r ) ≤

c2, we already have a uniform constant such that

‖uk‖C1,α(B+
r/2)

≤ c

(
‖uk‖L∞(B+

r ) + ‖ fk‖L p(·)(B+
r ) + ‖Fεk‖C0,α(·)(B+

r ) +
{

‖gεk‖C1,α(·)(B′
r )

or

‖hεk‖C0,α(·)(B′
r )

)
,

for the not sharp and possibly small α ≤ min{1− n/p, 1− n/m1, 1− n/m2}. Of course, the
constant is uniform if the variable coefficients of the equations are uniformly bounded in the
α-Hölder space. Anyway, the proof of this fact is actually contained in the following result
by reasoning in two steps; that is, proving first the not sharp uniform bound with α and then
using this information to get the sharp result (see [25,Remark 5.3] for more details about this
procedure).

Proposition 2.8 As k → +∞ let {uk} be a family of solutions to (2.16) in B+
r with

r ≤ 1/2. Let p,m1,m2 ∈ P log(B+
r ) with p,m1,m2 > n. Let ‖Vk‖Lm1(·)(B+

r ) ≤ c1 and

‖bk‖Lm2(·)(B+
r ) ≤ c2 uniformly in k for some positive constants. Let also α ∈ Alog(B+

r ) with
(1.9). Then, there exists a positive constant independent from k such that (2.17) holds true.

Proof By renormalization of the problem, without loss of generality we can assume that the
terms in the right hand side in (2.17) are equal to 1; that is,

‖uk‖L∞(B+
r ) + ‖ fk‖L p(·)(B+

r ) + ‖Fεk‖C0,α(·)(B+
r ) +

{
‖gεk‖C1,α(·)(B′

r )
or

‖hεk‖C0,α(·)(B′
r )

= 1.

We have already assumed that

‖Vk‖Lm1(·)(B+
r ) + ‖bk‖Lm2(·)(B+

r ) ≤ c.

Step 1: the contradiction argument We argue by contradiction; that is, there exists α ∈
Alog(B+

r )with (1.9), and a subsequence of solutions (always denoted by {uk}) to (2.16) such
that

‖ηuk‖C1,α(·)(B+
r ) → +∞,

where the function η is a radial and decreasing cut-off function such that η ∈ C∞
c (Br ) with

0 ≤ η ≤ 1, η ≡ 1 in Br/2 and suppη = B = B3r/4. Moreover we take η ∈ C0,1(B) with
∂ jη ∈ C0,1(B) for any j = 1, . . . , n, with the same constant �, that is η(z) ≤ �d(z, ∂B) and
∂ jη(z) ≤ �d(z, ∂B). We infer that the Hölder seminorm tends to infinity:

max
j=1,...,n

sup
z,ζ∈B+

r
z �=ζ

∣∣∂ j (ηuk)(z) − ∂ j (ηuk)(ζ )
∣∣

|z − ζ |α(z)
= Lk → +∞,

where ∂ j = ∂x j for any j = 1, . . . , n. Up to consider a subsequence, there exist i ∈
{1, . . . , n}, and two sequences of points zk, ζk in B ∩ {xn ≥ 0} such that

|∂i (ηuk)(zk) − ∂i (ηuk)(ζk)|
|zk − ζk |α(zk )

= Lk .
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We remark that it is not possible that the Hölder seminorms of the sequence of derivatives
∂i (ηuk) stay bounded while their L∞-norms explode. This would be in contradiction with
the uniform energy bound of the sequence uk . We define rk = |zk − ζk | ≤ 2r ≤ 1.
Step 2: the blow-up sequences Now we want to define two blow up sequences: let

vk(z) = η(ẑk + rk z)

Lkr
1+α(zk )
k

(
uk(ẑk + rk z) − uk(ẑk)

)
,

wk(z) = η(ẑk)

Lkr
1+α(zk )
k

(
uk(ẑk + rk z) − uk(ẑk)

)
,

for z ∈ B(k) := B+
r −ẑk
rk

and ẑk ∈ B ∩ {xn ≥ 0} to be determined. In any case ẑk = (z′k, ẑk,n)
where zk = (z′k, zk,n). Let B(∞) = limk→+∞ B(k). We consider the two different cases as
in the proof of Proposition 2.6; that is,

Case 1 the term zk,n
rk

is unbounded, then we choose ẑk,n = zk,n . In other words, ẑk = zk ;

Case 2 the term zk,n
rk

is bounded, then we choose ẑk,n = 0. In other words, ẑk = (z′k, 0).

In Case 1, since points zk lie on a compact set, then we already know that rk → 0. The
fact that rk → 0 in Case 2 has to be proved after suitably adjusting the blow-up sequences:
this helps also to have the sequence of derivatives uniformly bounded in a point, in order
to apply the Ascoli-Arzelá convergence theorem. Such adjustment consists in subtracting a
linear term:

vk(z) = vk(z) − ∇vk(0) · z, wk(z) = wk(z) − ∇wk(0) · z.
One can see that

i) vk(0) = wk(0) = 0 and |∇vk |(0) = |∇wk |(0) = 0;
i i) [∂ jvk]C0,α(·)(K ) = [∂ jvk]C0,α(·)(K ) for any compact K ⊂ B(∞) and any j = 1, . . . , n.

Moreover, fixing any compact set K ⊂ B(∞), there exists k such that for any k > k,

sup
z,ζ∈K
z �=ζ

∣∣∂ jvk(z) − ∂ jvk(ζ )
∣∣

|z − ζ |α(ẑk+rk z)
≤ c(K );

Nevertheless, for the i th-partial derivatives

1 ≤ sup
z,ζ∈K
z �=ζ

|∂ivk(z) − ∂ivk(ζ )|
|z − ζ |α(ẑk+rk z)

.

This is implied by the following∣∣∣∣∂ivk
(
zk − ẑk

rk

)
− ∂ivk

(
ζk − ẑk

rk

)∣∣∣∣
=

∣∣∣∣∣ 1

Lkr
α(zk )
k

(∂i (ηuk)(zk) − ∂i (ηuk)(ζk)) + uk(ẑk)

Lkr
α(zk )
k

(∂iη(zk) − ∂iη(ζk))

∣∣∣∣∣
= 1+O

(
|uk(ẑk)|r1−α(zk )

k �

Lk

)
=1+o(1)=

∣∣∣∣ zk − ẑk
rk

− zk − ẑk
rk

∣∣∣∣
α(zk )

+o(1); (2.18)
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i i i) the sequences {vk}, {wk} have the same asymptotic behaviour on compact subsets of
B(∞) and converge to the same function v. This is done by equicontinuity and uniform
boundedness of the family of functionsvk and∇vk on compact subsets of B(∞). The limit
function v possesses gradient which is globally α∞-Hölder continuous (α∞ = α(z∞))
and is non constant passing to the limit in (2.18) since

|∂iv(0) − ∂iv(z)| = 1 or |∂iv(z1) − ∂iv(z2)| = 1,

respectively in Cases 1, 2, where z, z1, z2 are the same as in the proof of Proposition 2.6;
iv) a contradiction argument shows that rk → 0 also in Case 2: seeking a contradiction, let

us suppose that rk → r > 0. Hence,

sup
z∈B(k)

|vk(z)| ≤ 2‖η‖L∞(Br )‖uk‖L∞(B+
r )

r1+α(zk )
k Lk

≤ c

r1+α(z∞)Lk
→ 0,

which means that vk → 0 uniformly on compact subsets of B(∞). This fact implies also
that pointwisely in B(∞)

v(z) = lim
k→+∞ ∇vk(0) · z.

Since 0 ∈ B(k) for any k, it is easy to see that B(∞) contains a half ball B+
R , for a small

enough radius R > 0. If the sequence {∂ jvk(0)}was unbounded at least for j = 1, . . . , n,
then

|v(Re j )| = R lim
k→+∞ |∇vk(0) · e j | = +∞,

which is in contradiction with the fact that v ∈ C1,α∞(B+
R ) and hence bounded. Hence,

{∇vk(0)} is a bounded sequence, and up to consider a subsequence, it converges to a
vector ν ∈ R

n and v(z) = ν · z, which is in contradiction with the fact that v has non
constant gradient.
Hence we can conclude that

B(∞) =
{
R
n in Case 1

{xn > 0} in Case 2.

In fact, even if this time the blow-up points zk, ζk may be on the boundary of the support
of the cut-off function, we can ensure that

B r
8rk

⊂ Br − ẑk
rk

.

Step 3: the rescaled equations Let k > k0 large enough. Functions wk solve in B(k)

− div
(
Aεk (ẑk)∇wk

)
(z) = η(ẑk)

Lk
r1−α(zk )
k fk(ẑk + rk z)

+η(ẑk)

Lk
r−α(zk )
k div

(
Fεk (ẑk + rk ·) − Fεk (ẑk)

)
(z)

+η(ẑk)

Lk
r1−α(zk )
k Vk(ẑk + rk z)uk(ẑk + rk z)

+rkbk(ẑk + rk z) · ∇wk(z)

+div
((
Aεk (ẑk + rk ·) − Aεk (ẑk)

) ∇wk
)
(z), (2.19)
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plus possibly boundary conditions in Case 2 (we will deal with boundary terms later). The
first and third terms vanish arguing as in (2.14). In order to make vanish the fourth and fifth
terms we use Remark 2.7. In fact, using Lemma 2.4, which gives uniform-in-k α(·)-Hölder
continuity of the coefficients ai j ’s and using (2.10) we have∫

BR∩B(∞)

∣∣(Aεk (ẑk + rk z) − Aεk (ẑk)
) ∇wk · ∇φ(z)

∣∣
≤ c

∫
BR∩B(∞)

rmax{α(ẑk+rk z),α(ẑk )}
k |∇wk |

≤ c(R)

Lk

∫
BR∩B(∞)

|∇uk(ẑk + rk z)|,

using the log-Hölder continuity of α having

|α(ẑk + rk z) − α(ẑk)| · | log rk | ≤ ω(rk |z|)| log rk | ≤ ω(rk R)| log rk | ≤ c.

Were |∇uk | uniformly bounded, we could promptly conclude. However, this information is
given by the uniform C1,α estimate in Remark 2.7. Similarly,

rk

∣∣∣∣
∫
BR∩B(∞)

bk(ẑk + rk z) · ∇wk(z)φ(z)dz

∣∣∣∣
≤ c

η(ẑk)r
1−α(zk )
k

Lk

∫
BR∩B(∞)

|bk(ẑk + rk z)| · |∇uk(ẑk + rk z)|

≤ c
r
1−α(ẑk )− n

m2(ẑk )

k

Lk
sup

BR∩B(∞)

|∇uk(ẑk + rk z)| → 0,

using as before the information given by Remark 2.7; that is, boundedness of the |∇uk |’s. In
Case 2 we have to deal with boundary conditions. In case of Dirichlet boundary conditions,
using a first order Taylor expansion of gεk with Lagrange form of the remainder, the C1,α(·)
regularity of g and Lemma 2.4 imply on compact sets K ′ of {xn = 0}

|wk(x
′, 0)| = |wk(x

′, 0) − ∇wk(0) · (x ′, 0)|
= η(ẑk)

Lkr
1+α(zk )
k

∣∣gεk (ẑk + rk(x
′, 0)) − gεk (ẑk) − rk∇x ′gεk (ẑk) · x ′∣∣

≤ c
r1+max{α(ẑk+rk (ξ ′,0)),α(ẑk )}
k

Lkr
1+α(zk )
k

→ 0.

In the last line, the point ξ ′ stands for an intermediate point between 0 and x ′.
In case of Neumann boundary condition, after integration by parts in the equation we can

show that the contribution on the boundary vanishes∣∣∣∣
∫
BR∩∂B(∞)

(Aεk (ẑk + rk z)∇wk(z) − Aεk (ẑk)∇wk(0)) · νφ(z)

∣∣∣∣
≤ η(ẑk)rk

Lkr
1+α(zk )
k

∫
BR∩∂B(∞)

|hεk (ẑk + rk z) − hεk (ẑk)| · |φ(z)|

≤ c
1

Lkr
α(zk )
k

∫
BR∩∂B(∞)

rmax{α(ẑk+rk z),α(ẑk )}
k → 0.

123



  166 Page 24 of 31 S. Vita

The second term in the right hand side of (2.19), which is the term with fields Fεk , can be
treated in a similar way.
Step 4: the limit equation and a Liouville type theorem One can reason as in the last part
of proof of Proposition 2.6, obtaining that the limit function v belongs to H1

loc(R
n) or

(H1{xn=0})loc(Rn+)/H1
loc(R

n+) and solves

−div
(
Â∇v

)
= 0 in R

n, or

{
−div

(
Â∇v

)
= 0 in R

n+,

v = 0 or Â∇v · ν = 0 on {xn = 0},
respectively in Cases 1, 2with constant coefficients limit matrix Â = A(z∞) = lim Aεk (ẑk).
Nevertheless, v is non constant and has non constant gradient which is globally α∞-Hölder
continuous in R

n or Rn+. After applying the linear map introduced in Proposition 2.6, we
can reabsorb the constant coefficients limit matrix, and after possibly reflecting with respect
to the new hyperplane {y · Cen = 0}, we have an entire harmonic function in H1

loc(R
n)

globally C1,α∞ with a non constant partial derivative. Hence this derivative is also harmonic
and globally α∞-Hölder continuous with α∞ < 1, in clear contradiction with the Liouville
theorem [24,Corollary 2.3]. ��

3 An approximation scheme and Schauder estimates

In this section we are going to construct an approximation scheme which allows to extend
the estimates proved in the previous section to any weak solution to (1.6); in other words,
we are going to prove Theorem 1.1 and Theorem 1.2. Then, in the last part of the section we
show how to iterate the gradient estimate obtained in order to produce Schauder regularity
for partial derivatives of our solutions of any order; that is, Corollary 1.5.

3.1 An approximation scheme

The approximation scheme exposed in this section follows some ideas contained in
[25,Section 6].

Remark 3.1 We remark that we can always localize our problem in half balls (or balls, which
is a simpler case which we are not going to treat) with radii small enough to ensure local
coercivity of the bilinear form given by

b(u, φ) =
∫
B+
r

A∇u · ∇φ − Vuφ − b · ∇uφ, (3.1)

which implies, imposing boundary data on the curved part of the boundary ∂+B+
r , existence

and uniqueness of solutions to (1.6). Then, local estimates in generic domains are conse-
quently obtained through a covering argument. In other words, our balls will be taken with
r ≤ min{1/2, r0} where r0 depends on the norms ‖V ‖Lm1(·) and ‖b‖Lm2(·) and ellipticity
constants of A in the original domain where we would like to ensure regularity estimates.
The coercivity can be ensured whenever m1 ≥ n

2 and m2 ≥ n. Since we are going to perturb
the problem in order to regularize it, we would like to stress the fact that this coercivity radius
r0 can be taken in such a way as to guarantee coercivity of the k-perturbed bilinear forms, for
k large, as well. This is due to closeness of the regularized potentials and drifts to the original
ones in Lebesgue norms, and closeness of regularized coefficients to original ones in L∞.
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Proof of Theorem 1.1 and Theorem 1.2 We develop a strategy which has some relevant differ-
ences in case of Dirichlet and Neumann boundary conditions at B ′

r . We work in the setting
of the regularization for Hölder estimates, but the reasoning applies a fortiori also in the case
of regularization for gradient estimates. Taken a weak solution to (1.6) with either Dirichlet
or Neumann boundary data at the flat boundary, as we have already noticed in Remark 3.1,
without loss of generality we can restrict ourselves to small radii r ≤ min{1/2, r0}.
Case 1: Dirichlet BC Let u ∈ H1(B+

r ) be a generic weak solution to (1.6) with Dirichlet
boundary condition at B ′

r and let us fix a radius 0 < r < r . Along a sequence k → +∞
let us consider the regularizations of A, f , F, V , b, g as in Section 2.2. Mollifications Aε

and gε are well defined respectively in B+
r+r
2

and B ′
r+r
2

whenever ε ≤ ε depending on r . We

remark that the trace � of the solution u belongs to H1/2(∂B+
r ) (since B+

r is a Lipschitz
domain [18]). Nevertheless, on B ′

r we know that � = g ∈ C0,α(·). Hence, let us define

�k :=
{

� in ∂+B+
r

ηgεk + (1 − η)g in B ′
r

(3.2)

and in general, for any regularization Gε of a datum G by convolution, let us define G̃k :=
ηGεk + (1 − η)G in B+

r , where η ∈ C∞
c (Br+r

2
) is a radially non increasing cut-off function

with 0 ≤ η ≤ 1 and η ≡ 1 in Br . These junctions are introduced merely to ensure solvability
for theDirichlet problem. In fact, thiswaywewill be able to prescribe traces, for the perturbed
problems, belonging to H1/2(∂B+

r ). It is very easy to see that ‖�k‖L2(∂B+
r ) ≤ c uniformly

in k and that �k → � strongly in L2(∂B+
r ). Actually, one can show that the fractional

Gagliardo seminorm

[�k]H1/2(∂B+
r ) =

∫∫
∂B+

r ×∂B+
r

|�k(x) − �k(y)|2
|x − y|n dxdy ≤ c (3.3)

is bounded uniformly in k (we prove the previous claim in Remark 3.2). Let us consider, for
any trace �k an H1(B+

r )-extension u�k . Hence

‖u�k‖H1(B+
r ) ≤ c‖�k‖H1/2(∂B+

r ) ≤ c

and hence u�k converge weakly, up to consider a subsequence, to a function v ∈ H1(B+
r ).

Nevertheless, by compact trace embedding, Tru�k → Trv strongly in L2(∂B+
r ) which

implies that Trv = �. Hence, as extension of � we consider exactly u� := v and we define
w = u − u� ∈ H1

0 (B+
r ). In particular, w is the unique solution to

{
−div (A∇w) = f + divF + Vw + b · ∇w + div (A∇u�) + Vu� + b · ∇u� in B+

r

w = 0 on ∂B+
r .

(3.4)

This is due to continuity and coercivity of the bilinear form (3.1) and applying the Lax-
Milgram theorem with linear form

〈L, φ〉 =
∫
B+
r

f φ + F · ∇φ + A∇u� · ∇φ + Vu�φ + b · ∇u�φ.
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Let us now consider the unique solution wk ∈ H1
0 (B+

r ) to⎧⎪⎪⎨
⎪⎪⎩

−div
(
Ãk∇wk

)
= fk + divFk + Vkwk + bk · ∇wk + div

(
Ãk∇u�k

)
+Vku�k + bk · ∇u�k in B+

r

wk = 0 on ∂B+
r .

(3.5)

As we have previously remarked, solvability and uniqueness of the previous problem in
H1
0 (B+

r ) come from coercivity of the k-perturbed bilinear form

bk(v, φ) =
∫
B+
r

Ãk∇v · ∇φ − Vkvφ − bk · ∇vφ, (3.6)

and applying the Lax-Milgram theorem with linear form

〈Lk, φ〉 =
∫
B+
r

fkφ + Fk · ∇φ + Ãk∇u�k · ∇φ + Vku�kφ + bk · ∇u�kφ.

The sequence of thewk’s converges tow. This is done using strong convergences of sequences
{ fk}, {Fk}, {Vk} and {bk} to f , F, V , b in the right variable exponent Lebesgue spaces. In
fact, testing (3.5) with wk and using Sobolev embeddings one gets a uniform-in-k constant
such that

‖wk‖H1
0 (B+

r ) ≤ c
(
‖ fk‖L p(·)(B+

r ) + ‖Fk‖Lq(·)(B+
r ) + ‖�k‖H1/2(∂B+

r )

)
.

The constant above is uniformsincewehave‖Vk‖Lm1(·)(B+
r )+‖bk‖Lm2(·)(B+

r ) ≤ c (the constant
itself depends on them). We have used also the fact that there exists a positive constant which
is uniform in k and depends only on ellipticity constants of A such that the quadratic forms
associated to Ãk satisfy

1

c

∫
B+
r

|∇v|2 ≤
∫
B+
r

Ãk∇v · ∇v ≤ c
∫
B+
r

|∇v|2.

Hence, one gets easily weak convergence in H1
0 (B+

r ) to a certain function. Using pointwise
convergences and Vitali’s convergence theorem we obtain that such a function is solution
to (3.4) and hence must coincide with w by uniqueness (for details we refer to [25,Lemma
2.12]).

Hence, uk := wk + u�k weakly converges to w + u� = u with

‖uk‖H1(B+
r ) ≤ ‖wk‖H1

0 (B+
r ) + c‖�k‖H1/2(∂B+

r )

and it is solution to

{
−div

(
Ãk∇uk

)
= fk + divFk + Vkuk + bk · ∇uk in B+

r

uk = �k on ∂B+
r .

We remark that sequence {uk} satisfies the uniform estimate (2.8) in Proposition 2.6 on
B+
r ; that is,

‖uk‖C0,α(·)(B+
r/2)

≤ c
(
‖uk‖L∞(B+

r ) + ‖ fk‖L p(·)(B+
r ) + ‖Fk‖Lq(·)(B+

r ) + ‖gεk‖C0,α(·)(B′
r )

)
,

with a constant which depends on ‖Vk‖Lm1(·) and ‖bk‖Lm2(·) . Since the right hand side is in
turns uniformly bounded in k (by convergences, uniform energy bounds and Lemma 2.4),
in particular the convergence uk → u is uniform on compact subsets of B+

r/2 ∪ B ′
r/2, which
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means that one can pass to the limit in the previous estimate getting for the general solution
u the desired estimate (up to restrict a bit the radius of the ball r̃ < r ).
Case 2: Neumann BC Let us consider, along a sequence k → +∞, the unique solution wk

to the following problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−div
(
Ãk∇wk

)
= fk + divFk + Vkwk + bk · ∇wk + div

(
Ãk∇u

)
+Vku + bk · ∇u in B+

r

Ãk∇wk · ν = hk − Ãk∇u · ν on B ′
r

wk = 0 on ∂+B+
r .

This time, solvability and uniqueness of the previous problem in H1
0 (B+

r ∪ B ′
r ) come from

coercivity of the bilinear form (3.6) and applying the Lax-Milgram theoremwith linear form

〈Lk, φ〉 =
∫
B+
r

fkφ + Fk · ∇φ + Ãk∇u · ∇φ + Vkuφ + bk · ∇uφ +
∫
B′
r

hkφ − Ãk∇u · ν.

We argue as before obtaining easily that wk weakly converge to a function w which is the
unique solution to ⎧⎪⎨

⎪⎩
−div (A∇w) = Vw + b · ∇w in B+

r

A∇w · ν = 0 on B ′
r

w = 0 on ∂+B+
r ,

which however is the zero function.
Hence, uk := wk + u weakly converges to u. Moreover, the uk’s weakly solve⎧⎪⎪⎨

⎪⎪⎩
−div

(
Ãk∇uk

)
= fk + divFk + Vkuk + bk · ∇uk in B+

r

Ãk∇uk · ν = hk on B ′
r

uk = � on ∂+B+
r .

Of course, as in Case 1, the sequence of the uk’s enjoys the uniform estimate (2.8) in
Proposition 2.6. Hence u inherits the regularity estimate by uniform convergence on compact
sets (up to consider a smaller ball with radius r̃ < r ).

The case of gradient estimates is very similar (which is the proof of Theorem 1.2). We
only remark that in the last part of the argumement, in order to transfer the uniform estimate
(2.17) of Proposition 2.8 to the limit, one has to use the uniform convergence on compact
sets of the sequences of partial derivatives {∂i uk}. ��
Remark 3.2 Let �k as in (3.2). Then (3.3) holds true.

Proof We are going to estimate uniformly in k the following fractional Gagliardo seminorm

[�k]H1/2(∂B+
r ) =

∫∫
∂B+

r ×∂B+
r

|�k(x) − �k(y)|2
|x − y|n .

One can split the double integral into several pieces, using different information to manage
the estimate. We can reduce ourselves to the following case:
Case 1 x ∈ B ′

r+r
2

and y ∈ ∂B+
r .

In fact, the complementary can be divided into the union of x ∈ ∂B+
r \ B ′

r+r
2

and y ∈
∂B+

r \ B ′
r+r
2

with x ∈ ∂B+
r \ B ′

r+r
2

and y ∈ B ′
r+r
2
. By symmetry, the third case is part of the
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first one, while the integral contribution in the second case can be trivially estimated by

∫∫
(∂B+

r \B′
r+r
2

)2

|�k(x) − �k(y)|2
|x − y|n =

∫∫
(∂B+

r \B′
r+r
2

)2

|�(x) − �(y)|2
|x − y|n ≤ [�]H1/2(∂B+

r ).

Hence, we consider the subcase
Case 1.1 x ∈ B ′

r+r
2

and y ∈ ∂+B+
r .

In this case points are not too close; that is, |x − y| ≥ r−r
2 , and hence the integral contri-

bution can be estimated by some constant times ‖�k‖L2(∂B+
r ), which is however uniformly

bounded.
Then, we consider another subcase

Case 1.2 x ∈ B ′
r+r
2

and y ∈ B ′
r \ B ′

r+r
2
.

Actually, if x ∈ B ′
r , again points are not so close |x − y| ≥ r−r

2 . Hence, if x ∈ B ′
r+r
2

\ B ′
r

and y ∈ B ′
r \ B ′

r+r
2
, using that η(y) = 0, α-Hölder continuity of g and Lipschitz continuity

of η

|�k(x) − �k(y)|2 = |η(x)gεk (x) + (1 − η(x))g(x) − g(y)|2
= |(η(x) − η(y))(gεk (x) − g(x)) + g(x) − g(y)|2

≤ cε2α|x − y|2
(∫

suppη̃
η̃(t)|t |α

)2

+ |g(x) − g(y)|2

which divided by the kernel |x − y|n are integrable terms.
Hence, we consider the last subcase

Case 1.3 x ∈ B ′
r+r
2

and y ∈ B ′
r+r
2
.

We consider three subcases of Case 1.3:
Case 1.3.1 x ∈ B ′

r+r
2

\ B ′
r and y ∈ B ′

r .

Using that 1 − η(y) = 0,

|�k(x) − �k(y)|2 = |η(x)gεk (x) + (1 − η(x))g(x) − gεk (y)|2
= |(η(x) − η(y))(g(x) − gεk (x)) + gεk (x) − gεk (y)|2

and hence, we can conclude if we are able to bound uniformly

Ik :=
∫∫

(B′
r+r
2

)2

|gεk (x) − gεk (y)|2
|x − y|n ≤ c. (3.7)

One can show that also in the last two subcases we have left behind; that is,
Case 1.3.2 x ∈ B ′

r+r
2

\ B ′
r and y ∈ B ′

r+r
2

\ B ′
r

and
Case 1.3.3 x ∈ B ′

r and y ∈ B ′
r

the key point is the uniform bound of Ik in (3.7). Hence, in order to prove it, one can
reason as in [9,Lemma A.1.],
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Ik =
∫∫

(x,y)∈(B′
r+r
2

)2

| ∫t∈B′
εk

η̃εk (t)(g(x − t) − g(y − t))|2
|x − y|n

≤
∫∫

(x,y)∈(B′
r+r
2

)2

∫
t∈B′

εk
η̃εk (t)|g(x − t) − g(y − t)|2

|x − y|n ,

where in the last inequality we have used Jensen’s inequality and the fact that η̃εk (t)dt is a
probability measure. We can conclude using the fact that η̃εk is supported in B ′

εk
and hence

for the function

H(x, y) = g(x) − g(y)

|x − y|n/2 ∈ L2(B ′
r × B ′

r )

we have by continuity of translations

‖H(· − t, · − t)‖L2(B′
r+r
2

×B′
r+r
2

) ≤ c,

which is uniform if |t | ≤ εk ≤ ε. ��

3.2 Schauder estimates with variable exponent

In this last section we prove Corollary 1.5; that is, we obtain local boundary Schauder
estimates for weak solutions to{

−div (A∇u) = divF in Br ∩ �

u = g or A∇u · ν = h on Br ∩ ∂�,

By applying the diffeomorphism introduced in (2.1), and using the lemmas and reasonings
in Section 2.1, the proof of Corollary 1.5 is actually implied by the following result

Proposition 3.3 Let r > 0, k ≥ 0, α ∈ Alog(B+
r ), and u be a weak solution to{

−div (A∇u) = divF in B+
r

u = g or A∇u · ν = h on B ′
r ,

(3.8)

with A, F ∈ Ck,α(·)(B+
r ), g ∈ Ck+1,α(·)(B ′

r ) or h ∈ Ck,α(·)(B ′
r ). Then u ∈ Ck+1,α(·)

loc (B+
r ∪

B ′
r ).

We would like to remark here that the proof is based on the iteration of the gradient
estimate in Theorem 1.2.

Proof We procede by induction. The result for k = 0 is contained in Theorem 1.2. Hence,
we suppose the result true for a generic integer k ≥ 0 and we prove it for the case k + 1; that
is, we are assuming A, F ∈ Ck+1,α(·)(B+

r ), g ∈ Ck+2,α(·)(B ′
r ) or h ∈ Ck+1,α(·)(B ′

r ), and we

want to prove that actually u ∈ Ck+2,α(·)
loc (B+

r ∪ B ′
r ). First, we prove that actually

∂xi u ∈ Ck+1,α(·)
loc (B+

r ∪ B ′
r ) for any i = 1, . . . , n − 1. (3.9)
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In fact, differentiating the equation, one gets{
−div

(
A∇(∂xi u)

) = div
(
∂xi A∇u + ∂xi F

)
in B+

r

∂xi u = ∂xi g or A∇(∂xi u) · ν = ∂xi A∇u · ν + ∂xi h on B ′
r .

Using the inductive hypothesis, and the fact thatwe already know that u ∈ Ck+1,α(·)
loc (B+

r ∪B ′
r )

(which implies ∇u ∈ Ck,α(·)
loc (B+

r ∪ B ′
r )), then (3.9) follows. In order to conclude, it remains

to prove

∂xn u ∈ Ck+1,α(·)
loc (B+

r ∪ B ′
r ). (3.10)

Actually, (3.10) follows if we prove that ∂2xn xn u ∈ Ck,α(·)
loc (B+

r ∪ B ′
r ). In fact, by (3.9) we

already know that ∂xi ∂xn u ∈ Ck,α(·)
loc (B+

r ∪ B ′
r ) for any i = 1, . . . , n − 1. Hence, considering

equation (3.8), we have the following

−∂xn (A∇u · en) = divF +
n−1∑
i=1

∂xi (A∇u · ei ) .

Hence

−an,n∂
2
xn xn u = divF +

n−1∑
i=1

∂xi (A∇u · ei ) + ∂xn an,n∂xn u + ∂xn

(
n−1∑
i=1

an,i∂xi u

)
.

The uniform ellipticity of A implies that an,n(x) = A(x)en · en ≥ λ > 0, and together
with the expression above allows to conclude. In fact ∂2xn xn u can be expressed as sum of

Ck,α(·)
loc (B+

r ∪ B ′
r )-functions. ��
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10. Diening, L., Harjulehto, P., Hästö, P., Růžička M.: Lebesgue and Sobolev spaces with variable exponents.

Lecture Notes in Mathematics. Springer (2011)
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