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Abstract: Arenediazonium o-benzenedisulfonimides have been used as efficient electrophilic partners
in Cu(I) catalysed Ullmann-type coupling. The synthetic protocols are mild and easy, and produced
either N-alkylanilines, aryl ethers, or thioethers in fairly good yields (18 positive examples, average
yield 66%). o-Benzenedisulfonimide was recovered at the end of the reactions and was reused to
prepare the starting salts for further reactions. It is noteworthy that diazonium salts have been used
as electrophilic partners in the Ullmann-type protocol for the first time.
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1. Introduction

In recent years, the considerable efforts made in understanding the mechanism of
Ullmann reaction [1,2], together with the urgency of cross-coupling protocols based on
generally less costly and toxic first row transition metals [3] (e.g., iron [4], nickel [5], and
copper [6,7]) rather than palladium, has led to a resurgence of this reaction. Indeed,
although the classical Ullmann reaction is perhaps the most ancient cross coupling proto-
col [8,9], harsh reaction conditions (generally > 200 ◦C) and low yields drastically limited
its applications, and consequently, its industrial employment.

Apart from being a powerful tool for the formation of a C(sp2)-C(sp2) bond between
two aromatic rings (Ullmann homocoupling of aryl halides), even under mild reaction
conditions [10,11], in optimal yields and excellent functional group tolerance [12–16],
the Ullmann protocol also proved its usefulness and versatility in broader applications,
including Cu-catalyzed nucleophilic aromatic substitution between various nucleophiles
with aryl halides, known as Ullmann-type (or hetero-Ullmann) coupling (Scheme 1) [17–28].
These reactions can lead to moieties that are building blocks of active molecules in the life
sciences [29] and in different material precursors [30]. Recent studies suggested that the
copper catalyst may play a significant role in the activation of the aryl halide with evidence
for an oxidative addition/reductive elimination process through a copper (III) intermediate
(Scheme 1); however, in spite of this progress, the role of the ligand in the catalytic cycle
remains relatively unresolved [12].

Aryl halides are generally the preferred electrophilic partners for Ullmann couplings;
other types of compounds have only rarely been used. In particular, arenediazonium salts,
which, in other coupling reactions, turn out to be a valid alternative to aryl halides [31,32],
have been employed only sporadically in classical Ullmann homocoupling [33].

The industrial use of diazonium compounds has historically been limited from their
intrinsic hazard [34] and instability, which depends, to a large extent on the reaction
medium [35,36], the nature of the substrate (i.e., alkyl diazonium salts cannot be isolated),
and of the counteranion [37], which has prompted the investigation of their decomposition
kinetics [38]. As a result, the knowledge acquired on the chemistry of diazonium salts
has even allowed for their application within the framework of particular reaction set-ups,
such as flow reactors [39]. Once these issues have been pointed out, arenediazonium
salts offer a series of advantages with respect to aryl halides. First of all, they possess
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better reactivity, due to the fact that the diazonium group is a better nucleofuge than
the halide, which allows the use of mild reaction conditions. Second, as the nucleofuge
is a gaseous species, it can work around the issue of high COD/BOD in wastewater,
due to the presence of halide anions. Finally, reactions often do not require a base or
additional ligands. Furthermore, our previous research has resulted in a large family of
dry diazonium salts, namely, arenediazonium o-benzenedisulfonimides (Figure 1) [40–51].
The properties of these compounds indicate that they have great potential in numerous
synthetic applications, as they are easy to prepare and isolate, they are extremely stable (in
some cases more than the corresponding tetrafluoroborates), and they can be stored for an
unlimited time. Moreover, they react smoothly both in water and organic solvents.
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In light of this, in this study, we propose a mild, easy, and efficient revisitation of Ullmann-
type couplings carried out by reacting suitable arenediazonium o-benzenedisulfonimides 1 with
primary aliphatic amines 2a–c, in the presence of tetrakis(acetonitrile)copper hexafluo-
rophosphate and 1,10-phenanthroline as a ligand (Scheme 2). It must be stressed that, to
the best of our knowledge, diazonium salts have been used here as electrophilic partners in
an Ullmman-type protocol for the first time.

The reaction, in the same conditions, was also extended to primary alcoholates 5a,b
and thiolate 6a (Scheme 3).
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2. Materials and Methods
2.1. General Informations

All the reactions were carried out in open air. Analytical grade reagents and solvents
were used and reactions were monitored by GC, GC-MS, and TLC. Column chromatog-
raphy and TLC were performed on Merck silica gel 60 (70–230 mesh ASTM) and GF 254,
respectively. Petroleum ether refers to the fraction boiling in the range 40–70 ◦C. Room
temperature is 22 ◦C. Mass spectra were recorded on an HP 5989B mass selective de-
tector connected to an HP 5890 GC with a methyl silicone capillary column. 1H NMR
and 13C NMR spectra were recorded on a Jeol ECZR spectrometer at 600 and 150 MHz,
respectively. IR spectra were recorded on an IR PerkinElmer UATR-two spectrometer.
Tetrakis(acetonitrile)copper hexafluorophosphate was prepared as reported in the liter-
ature [52]. Dry arenediazonium o-benzenedisulfonimides 1 were prepared as described
previously by us [40]. The crude salts 1 were virtually pure (by 1H NMR spectroscopy) and
were used in subsequent reactions without further crystallization. All the other reagents
were purchased from Sigma-Aldrich or Alfa-Aesar. Structures and purity of all the prod-
ucts obtained in this research were confirmed by their spectral (NMR, MS) and physical
data, which are substantially identical to those reported in the literature. Yields of the
pure (GC, above 96%; GC-MS; TLC and NMR) isolated compounds 3, 7, 8 are collected in
Tables 1 and 2. NMR spectra of 3, 7, 8 are reported in the Supplementary Materials.

2.2. N-(n-Hexyl)-4-Nitroaniline (3a): Representative procedure for the Ullmann-Type Coupling
Reactions of Arenediazonium o-Benzenedisulfonimides

Moreover, 4-Nitrobenzenediazonium o-benzenedisulfonimide (1a, 0.74 g, 2 mmol)
was added to hexan-1-amine (2a, 0.22 g, 2.2 mmol), tetrakis(acetonitrile)copper hexafluo-
rophosphate [(Me3CN)4Cu]PF6 (0.75 g, 2 mmol) and 1,10-phenanthroline (0.36 g, 2 mmol)
in DMSO (5 mL). The resulting mixture was stirred at room temperature for 3 h; the comple-
tion of the reaction was confirmed by the absence of azo coupling with 2-naphthol. Then,
the reaction mixture was poured into diethyl ether/water (100 mL, 1:1). The aqueous layer
was separated and extracted with diethyl ether (50 mL). The combined organic extracts
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were washed with water (50 mL), dried with Na2SO4, and evaporated under reduced
pressure. GC-MS analyses of the crude residue showed N-(n-hexyl)-4-nitroaniline (3a),
MS (EI): m/z 222 (M+) as the major product, as well as traces of 4,4′-dinitrobiphenyl,
MS (EI): m/z 244 (M+), 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a), MS (EI): m/z 250 and ni-
trobenzene MS (EI): m/z 123 (M+). The crude residue was purified on a short column,
eluting with petroleum ether/diethyl ether (9:1). The title compound 3a was obtained in
87% yield (0.39 g).

The aqueous layer and aqueous washings were collected and evaporated under re-
duced pressure. The tarry residue was passed through a column of Dowex HCR-W2 ion
exchange resin (1.6 g/1 g of product), eluting with water (about 50 mL). After removal
of water under reduced pressure, virtually pure (1H NMR) o-benzenedisulfonimide was
recovered (0.360 g, 81% yield; mp 192–194 ◦C. Lit. 190–193 ◦C).

3. Results and Discussion

A model reaction between 4-nitrobenzenediazonium o-benzenedisulfonimmide (1a)
and hexan-1-amine (2a) were studied under various conditions (Table 1), in order to
optimize the reaction conditions. First of all, the reaction carried out in absence of copper,
with THF as a solvent, only provided the corresponding triazene 4, as it is logical to expect,
on the basis of the well-known reactivity of the diazonium salts with aliphatic amines
(Table 1; entry 1) [53,54].

Table 1. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and amines 2.
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T 
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Time 
(h) 

Products 3 and 
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Literature 
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1  
1a 

n-C6H13NH2 

2a 
- THF rt 3 - 2  

2 1a 2a Cu THF rt 3 - 3  
3 1a 2a CuCl THF rt 3 - 4  
4 1a 2a CuI THF rt 2 - 5  
5 1a 2a Cu2O THF rt 3 - 6  

6 1a 2a [(MeCN)4Cu]PF6 THF rt 2  
3a; 27 7 

 

7 1a 2a [(MeCN)4Cu]PF6 THF 50 1 - 8  
8 1a 2a [(MeCN)4Cu]PF6 EtOH rt 2 3a; 34 7  
9 1a 2a [(MeCN)4Cu]PF6 MeCN rt 3 3a; 30 7  
10 1a 2a [(MeCN)4Cu]PF6 DMSO rt 2 3a; 48 7  
11 1a 2a [(MeCN)4Cu]PF6/L DMSO rt 2 3a; 87 7,9 87 [55] 

12  
1b 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3b; 79 10 

94 [55] 

13 1b  
2b 

[(MeCN)4Cu]PF6/L DMSO rt 3 
 

95 [20] 
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Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13NH2 

2a 
- THF rt 3 - 2  

2 1a 2a Cu THF rt 3 - 3  
3 1a 2a CuCl THF rt 3 - 4  
4 1a 2a CuI THF rt 2 - 5  
5 1a 2a Cu2O THF rt 3 - 6  

6 1a 2a [(MeCN)4Cu]PF6 THF rt 2  
3a; 27 7 

 

7 1a 2a [(MeCN)4Cu]PF6 THF 50 1 - 8  
8 1a 2a [(MeCN)4Cu]PF6 EtOH rt 2 3a; 34 7  
9 1a 2a [(MeCN)4Cu]PF6 MeCN rt 3 3a; 30 7  
10 1a 2a [(MeCN)4Cu]PF6 DMSO rt 2 3a; 48 7  
11 1a 2a [(MeCN)4Cu]PF6/L DMSO rt 2 3a; 87 7,9 87 [55] 

12  
1b 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3b; 79 10 

94 [55] 

13 1b  
2b 

[(MeCN)4Cu]PF6/L DMSO rt 3 
 

95 [20] 

3a; 27 7

7 1a 2a [(MeCN)4Cu]PF6 THF 50 1 - 8

8 1a 2a [(MeCN)4Cu]PF6 EtOH rt 2 3a; 34 7

9 1a 2a [(MeCN)4Cu]PF6 MeCN rt 3 3a; 30 7

10 1a 2a [(MeCN)4Cu]PF6 DMSO rt 2 3a; 48 7

11 1a 2a [(MeCN)4Cu]PF6/L DMSO rt 2 3a; 87 7,9 87 [55]
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in DMSO (5 mL). The resulting mixture was stirred at room temperature for 3 h; the com-
pletion of the reaction was confirmed by the absence of azo coupling with 2-naphthol. 
Then, the reaction mixture was poured into diethyl ether/water (100 mL, 1:1). The aqueous 
layer was separated and extracted with diethyl ether (50 mL). The combined organic ex-
tracts were washed with water (50 mL), dried with Na2SO4, and evaporated under re-
duced pressure. GC-MS analyses of the crude residue showed N-(n-hexyl)-4-nitroaniline 
(3a), MS (EI): m/z 222 (M+) as the major product, as well as traces of 4,4’-dinitrobiphenyl, 
MS (EI): m/z 244 (M+), 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a), MS (EI): m/z 250 and ni-
trobenzene MS (EI): m/z 123 (M+). The crude residue was purified on a short column, elut-
ing with petroleum ether/diethyl ether (9:1). The title compound 3a was obtained in 87% 
yield (0.39 g). 

The aqueous layer and aqueous washings were collected and evaporated under re-
duced pressure. The tarry residue was passed through a column of Dowex HCR-W2 ion 
exchange resin (1.6 g/1 g of product), eluting with water (about 50 mL). After removal of 
water under reduced pressure, virtually pure (1H NMR) o-benzenedisulfonimide was re-
covered (0.360 g, 81% yield; mp 192–194 °C. Lit. 190–193 °C). 

3. Results and Discussion 
A model reaction between 4-nitrobenzenediazonium o-benzenedisulfonimmide (1a) 

and hexan-1-amine (2a) were studied under various conditions (Table 1), in order to opti-
mize the reaction conditions. First of all, the reaction carried out in absence of copper, with 
THF as a solvent, only provided the corresponding triazene 4, as it is logical to expect, on 
the basis of the well-known reactivity of the diazonium salts with aliphatic amines (Table 
1; entry 1) [53,54]. 

Table 1. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and amines 2. 

 
Entry Salt 1 Amines 2 Cu and Ligand (L) Solvent 

T 
(°C) 

Time 
(h) 

Products 3 and 
Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13NH2 

2a 
- THF rt 3 - 2  

2 1a 2a Cu THF rt 3 - 3  
3 1a 2a CuCl THF rt 3 - 4  
4 1a 2a CuI THF rt 2 - 5  
5 1a 2a Cu2O THF rt 3 - 6  

6 1a 2a [(MeCN)4Cu]PF6 THF rt 2  
3a; 27 7 

 

7 1a 2a [(MeCN)4Cu]PF6 THF 50 1 - 8  
8 1a 2a [(MeCN)4Cu]PF6 EtOH rt 2 3a; 34 7  
9 1a 2a [(MeCN)4Cu]PF6 MeCN rt 3 3a; 30 7  
10 1a 2a [(MeCN)4Cu]PF6 DMSO rt 2 3a; 48 7  
11 1a 2a [(MeCN)4Cu]PF6/L DMSO rt 2 3a; 87 7,9 87 [55] 

12  
1b 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3b; 79 10 

94 [55] 

13 1b  
2b 

[(MeCN)4Cu]PF6/L DMSO rt 3 
 

95 [20] 

1b

2a [(MeCN)4Cu]PF6/L DMSO rt 4
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in DMSO (5 mL). The resulting mixture was stirred at room temperature for 3 h; the com-
pletion of the reaction was confirmed by the absence of azo coupling with 2-naphthol. 
Then, the reaction mixture was poured into diethyl ether/water (100 mL, 1:1). The aqueous 
layer was separated and extracted with diethyl ether (50 mL). The combined organic ex-
tracts were washed with water (50 mL), dried with Na2SO4, and evaporated under re-
duced pressure. GC-MS analyses of the crude residue showed N-(n-hexyl)-4-nitroaniline 
(3a), MS (EI): m/z 222 (M+) as the major product, as well as traces of 4,4’-dinitrobiphenyl, 
MS (EI): m/z 244 (M+), 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a), MS (EI): m/z 250 and ni-
trobenzene MS (EI): m/z 123 (M+). The crude residue was purified on a short column, elut-
ing with petroleum ether/diethyl ether (9:1). The title compound 3a was obtained in 87% 
yield (0.39 g). 

The aqueous layer and aqueous washings were collected and evaporated under re-
duced pressure. The tarry residue was passed through a column of Dowex HCR-W2 ion 
exchange resin (1.6 g/1 g of product), eluting with water (about 50 mL). After removal of 
water under reduced pressure, virtually pure (1H NMR) o-benzenedisulfonimide was re-
covered (0.360 g, 81% yield; mp 192–194 °C. Lit. 190–193 °C). 

3. Results and Discussion 
A model reaction between 4-nitrobenzenediazonium o-benzenedisulfonimmide (1a) 

and hexan-1-amine (2a) were studied under various conditions (Table 1), in order to opti-
mize the reaction conditions. First of all, the reaction carried out in absence of copper, with 
THF as a solvent, only provided the corresponding triazene 4, as it is logical to expect, on 
the basis of the well-known reactivity of the diazonium salts with aliphatic amines (Table 
1; entry 1) [53,54]. 

Table 1. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and amines 2. 

 
Entry Salt 1 Amines 2 Cu and Ligand (L) Solvent 

T 
(°C) 

Time 
(h) 

Products 3 and 
Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13NH2 

2a 
- THF rt 3 - 2  

2 1a 2a Cu THF rt 3 - 3  
3 1a 2a CuCl THF rt 3 - 4  
4 1a 2a CuI THF rt 2 - 5  
5 1a 2a Cu2O THF rt 3 - 6  

6 1a 2a [(MeCN)4Cu]PF6 THF rt 2  
3a; 27 7 

 

7 1a 2a [(MeCN)4Cu]PF6 THF 50 1 - 8  
8 1a 2a [(MeCN)4Cu]PF6 EtOH rt 2 3a; 34 7  
9 1a 2a [(MeCN)4Cu]PF6 MeCN rt 3 3a; 30 7  
10 1a 2a [(MeCN)4Cu]PF6 DMSO rt 2 3a; 48 7  
11 1a 2a [(MeCN)4Cu]PF6/L DMSO rt 2 3a; 87 7,9 87 [55] 

12  
1b 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3b; 79 10 

94 [55] 

13 1b  
2b 

[(MeCN)4Cu]PF6/L DMSO rt 3 
 

95 [20] 

3b; 79 10
94 [55]

13 1b
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in DMSO (5 mL). The resulting mixture was stirred at room temperature for 3 h; the com-
pletion of the reaction was confirmed by the absence of azo coupling with 2-naphthol. 
Then, the reaction mixture was poured into diethyl ether/water (100 mL, 1:1). The aqueous 
layer was separated and extracted with diethyl ether (50 mL). The combined organic ex-
tracts were washed with water (50 mL), dried with Na2SO4, and evaporated under re-
duced pressure. GC-MS analyses of the crude residue showed N-(n-hexyl)-4-nitroaniline 
(3a), MS (EI): m/z 222 (M+) as the major product, as well as traces of 4,4’-dinitrobiphenyl, 
MS (EI): m/z 244 (M+), 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a), MS (EI): m/z 250 and ni-
trobenzene MS (EI): m/z 123 (M+). The crude residue was purified on a short column, elut-
ing with petroleum ether/diethyl ether (9:1). The title compound 3a was obtained in 87% 
yield (0.39 g). 

The aqueous layer and aqueous washings were collected and evaporated under re-
duced pressure. The tarry residue was passed through a column of Dowex HCR-W2 ion 
exchange resin (1.6 g/1 g of product), eluting with water (about 50 mL). After removal of 
water under reduced pressure, virtually pure (1H NMR) o-benzenedisulfonimide was re-
covered (0.360 g, 81% yield; mp 192–194 °C. Lit. 190–193 °C). 

3. Results and Discussion 
A model reaction between 4-nitrobenzenediazonium o-benzenedisulfonimmide (1a) 

and hexan-1-amine (2a) were studied under various conditions (Table 1), in order to opti-
mize the reaction conditions. First of all, the reaction carried out in absence of copper, with 
THF as a solvent, only provided the corresponding triazene 4, as it is logical to expect, on 
the basis of the well-known reactivity of the diazonium salts with aliphatic amines (Table 
1; entry 1) [53,54]. 

Table 1. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and amines 2. 

 
Entry Salt 1 Amines 2 Cu and Ligand (L) Solvent 

T 
(°C) 

Time 
(h) 

Products 3 and 
Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13NH2 

2a 
- THF rt 3 - 2  

2 1a 2a Cu THF rt 3 - 3  
3 1a 2a CuCl THF rt 3 - 4  
4 1a 2a CuI THF rt 2 - 5  
5 1a 2a Cu2O THF rt 3 - 6  

6 1a 2a [(MeCN)4Cu]PF6 THF rt 2  
3a; 27 7 

 

7 1a 2a [(MeCN)4Cu]PF6 THF 50 1 - 8  
8 1a 2a [(MeCN)4Cu]PF6 EtOH rt 2 3a; 34 7  
9 1a 2a [(MeCN)4Cu]PF6 MeCN rt 3 3a; 30 7  
10 1a 2a [(MeCN)4Cu]PF6 DMSO rt 2 3a; 48 7  
11 1a 2a [(MeCN)4Cu]PF6/L DMSO rt 2 3a; 87 7,9 87 [55] 

12  
1b 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3b; 79 10 

94 [55] 

13 1b  
2b 

[(MeCN)4Cu]PF6/L DMSO rt 3 
 

95 [20] 
2b

[(MeCN)4Cu]PF6/L DMSO rt 3
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in DMSO (5 mL). The resulting mixture was stirred at room temperature for 3 h; the com-
pletion of the reaction was confirmed by the absence of azo coupling with 2-naphthol. 
Then, the reaction mixture was poured into diethyl ether/water (100 mL, 1:1). The aqueous 
layer was separated and extracted with diethyl ether (50 mL). The combined organic ex-
tracts were washed with water (50 mL), dried with Na2SO4, and evaporated under re-
duced pressure. GC-MS analyses of the crude residue showed N-(n-hexyl)-4-nitroaniline 
(3a), MS (EI): m/z 222 (M+) as the major product, as well as traces of 4,4’-dinitrobiphenyl, 
MS (EI): m/z 244 (M+), 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a), MS (EI): m/z 250 and ni-
trobenzene MS (EI): m/z 123 (M+). The crude residue was purified on a short column, elut-
ing with petroleum ether/diethyl ether (9:1). The title compound 3a was obtained in 87% 
yield (0.39 g). 

The aqueous layer and aqueous washings were collected and evaporated under re-
duced pressure. The tarry residue was passed through a column of Dowex HCR-W2 ion 
exchange resin (1.6 g/1 g of product), eluting with water (about 50 mL). After removal of 
water under reduced pressure, virtually pure (1H NMR) o-benzenedisulfonimide was re-
covered (0.360 g, 81% yield; mp 192–194 °C. Lit. 190–193 °C). 

3. Results and Discussion 
A model reaction between 4-nitrobenzenediazonium o-benzenedisulfonimmide (1a) 

and hexan-1-amine (2a) were studied under various conditions (Table 1), in order to opti-
mize the reaction conditions. First of all, the reaction carried out in absence of copper, with 
THF as a solvent, only provided the corresponding triazene 4, as it is logical to expect, on 
the basis of the well-known reactivity of the diazonium salts with aliphatic amines (Table 
1; entry 1) [53,54]. 

Table 1. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and amines 2. 

 
Entry Salt 1 Amines 2 Cu and Ligand (L) Solvent 

T 
(°C) 

Time 
(h) 

Products 3 and 
Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13NH2 

2a 
- THF rt 3 - 2  

2 1a 2a Cu THF rt 3 - 3  
3 1a 2a CuCl THF rt 3 - 4  
4 1a 2a CuI THF rt 2 - 5  
5 1a 2a Cu2O THF rt 3 - 6  

6 1a 2a [(MeCN)4Cu]PF6 THF rt 2  
3a; 27 7 

 

7 1a 2a [(MeCN)4Cu]PF6 THF 50 1 - 8  
8 1a 2a [(MeCN)4Cu]PF6 EtOH rt 2 3a; 34 7  
9 1a 2a [(MeCN)4Cu]PF6 MeCN rt 3 3a; 30 7  
10 1a 2a [(MeCN)4Cu]PF6 DMSO rt 2 3a; 48 7  
11 1a 2a [(MeCN)4Cu]PF6/L DMSO rt 2 3a; 87 7,9 87 [55] 

12  
1b 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3b; 79 10 

94 [55] 

13 1b  
2b 

[(MeCN)4Cu]PF6/L DMSO rt 3 
 

95 [20] 

3c; 73 10

95 [20]
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in DMSO (5 mL). The resulting mixture was stirred at room temperature for 3 h; the com-
pletion of the reaction was confirmed by the absence of azo coupling with 2-naphthol. 
Then, the reaction mixture was poured into diethyl ether/water (100 mL, 1:1). The aqueous 
layer was separated and extracted with diethyl ether (50 mL). The combined organic ex-
tracts were washed with water (50 mL), dried with Na2SO4, and evaporated under re-
duced pressure. GC-MS analyses of the crude residue showed N-(n-hexyl)-4-nitroaniline 
(3a), MS (EI): m/z 222 (M+) as the major product, as well as traces of 4,4’-dinitrobiphenyl, 
MS (EI): m/z 244 (M+), 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a), MS (EI): m/z 250 and ni-
trobenzene MS (EI): m/z 123 (M+). The crude residue was purified on a short column, elut-
ing with petroleum ether/diethyl ether (9:1). The title compound 3a was obtained in 87% 
yield (0.39 g). 

The aqueous layer and aqueous washings were collected and evaporated under re-
duced pressure. The tarry residue was passed through a column of Dowex HCR-W2 ion 
exchange resin (1.6 g/1 g of product), eluting with water (about 50 mL). After removal of 
water under reduced pressure, virtually pure (1H NMR) o-benzenedisulfonimide was re-
covered (0.360 g, 81% yield; mp 192–194 °C. Lit. 190–193 °C). 

3. Results and Discussion 
A model reaction between 4-nitrobenzenediazonium o-benzenedisulfonimmide (1a) 

and hexan-1-amine (2a) were studied under various conditions (Table 1), in order to opti-
mize the reaction conditions. First of all, the reaction carried out in absence of copper, with 
THF as a solvent, only provided the corresponding triazene 4, as it is logical to expect, on 
the basis of the well-known reactivity of the diazonium salts with aliphatic amines (Table 
1; entry 1) [53,54]. 

Table 1. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and amines 2. 

 
Entry Salt 1 Amines 2 Cu and Ligand (L) Solvent 

T 
(°C) 

Time 
(h) 

Products 3 and 
Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13NH2 

2a 
- THF rt 3 - 2  

2 1a 2a Cu THF rt 3 - 3  
3 1a 2a CuCl THF rt 3 - 4  
4 1a 2a CuI THF rt 2 - 5  
5 1a 2a Cu2O THF rt 3 - 6  

6 1a 2a [(MeCN)4Cu]PF6 THF rt 2  
3a; 27 7 

 

7 1a 2a [(MeCN)4Cu]PF6 THF 50 1 - 8  
8 1a 2a [(MeCN)4Cu]PF6 EtOH rt 2 3a; 34 7  
9 1a 2a [(MeCN)4Cu]PF6 MeCN rt 3 3a; 30 7  
10 1a 2a [(MeCN)4Cu]PF6 DMSO rt 2 3a; 48 7  
11 1a 2a [(MeCN)4Cu]PF6/L DMSO rt 2 3a; 87 7,9 87 [55] 

12  
1b 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3b; 79 10 

94 [55] 

13 1b  
2b 

[(MeCN)4Cu]PF6/L DMSO rt 3 
 

95 [20] 

Entry Salt 1 Amines 2 Cu and Ligand (L) Solvent T
(◦C)

Time
(h)

Products 3 and
Yields (%) 1

Literature
Yields (%)

14 1a 2b [(MeCN)4Cu]PF6/L DMSO rt 3.5
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3c; 73 10 

14 1a 2b [(MeCN)4Cu]PF6/L DMSO rt 3.5  
3d; 85 10 

91 [56] 

15  
1c 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3e; 51 10 

85 [57] 

16  
1d 

2a [(MeCN)4Cu]PF6/L DMSO rt 2  
3f; 86 10 

78 [58] 

17  
1e 

2a [(MeCN)4Cu]PF6/L DMSO rt 5  
3g; 46 10 

56 [59] 

18  
1f 

2a [(MeCN)4Cu]PF6/L DMSO rt 3  
3h; 51 10 

98 [22] 

19  
1g 

2a [(MeCN)4Cu]PF6/L DMSO rt 3  
3i; 86 10 

87 [60] 

20 1a  
2c 

[(MeCN)4Cu]PF6/L DMSO rt 2  
3j; 79 10 

78 [61] 

21 1a  
2d 

[(MeCN)4Cu]PF6/L 
 

DMSO rt 2 - 11  

22 1a  
2e 

[(MeCN)4Cu]PF6/L DMSO rt 3 - 11  

1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 
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91 [56]
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3c; 73 10 

14 1a 2b [(MeCN)4Cu]PF6/L DMSO rt 3.5  
3d; 85 10 

91 [56] 

15  
1c 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3e; 51 10 

85 [57] 

16  
1d 

2a [(MeCN)4Cu]PF6/L DMSO rt 2  
3f; 86 10 

78 [58] 

17  
1e 

2a [(MeCN)4Cu]PF6/L DMSO rt 5  
3g; 46 10 

56 [59] 

18  
1f 

2a [(MeCN)4Cu]PF6/L DMSO rt 3  
3h; 51 10 

98 [22] 

19  
1g 

2a [(MeCN)4Cu]PF6/L DMSO rt 3  
3i; 86 10 

87 [60] 

20 1a  
2c 

[(MeCN)4Cu]PF6/L DMSO rt 2  
3j; 79 10 

78 [61] 

21 1a  
2d 

[(MeCN)4Cu]PF6/L 
 

DMSO rt 2 - 11  

22 1a  
2e 

[(MeCN)4Cu]PF6/L DMSO rt 3 - 11  

1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 
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2a [(MeCN)4Cu]PF6/L DMSO rt 4
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14 1a 2b [(MeCN)4Cu]PF6/L DMSO rt 3.5  
3d; 85 10 

91 [56] 

15  
1c 

2a [(MeCN)4Cu]PF6/L DMSO rt 4  
3e; 51 10 

85 [57] 

16  
1d 

2a [(MeCN)4Cu]PF6/L DMSO rt 2  
3f; 86 10 

78 [58] 

17  
1e 

2a [(MeCN)4Cu]PF6/L DMSO rt 5  
3g; 46 10 

56 [59] 

18  
1f 

2a [(MeCN)4Cu]PF6/L DMSO rt 3  
3h; 51 10 

98 [22] 

19  
1g 

2a [(MeCN)4Cu]PF6/L DMSO rt 3  
3i; 86 10 

87 [60] 

20 1a  
2c 

[(MeCN)4Cu]PF6/L DMSO rt 2  
3j; 79 10 

78 [61] 

21 1a  
2d 

[(MeCN)4Cu]PF6/L 
 

DMSO rt 2 - 11  

22 1a  
2e 

[(MeCN)4Cu]PF6/L DMSO rt 3 - 11  

1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 
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1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 
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1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 
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1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 
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1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 
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1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 

1f
2a [(MeCN)4Cu]PF6/L DMSO rt 3

Reactions 2022, 3,  5 
 

3c; 73 10 

14 1a 2b [(MeCN)4Cu]PF6/L DMSO rt 3.5 
 

3d; 85 10 

91 [56] 

15  
1c 

2a [(MeCN)4Cu]PF6/L DMSO rt 4 
 

3e; 51 10 

85 [57] 

16  
1d 

2a [(MeCN)4Cu]PF6/L DMSO rt 2  
3f; 86 10 

78 [58] 

17  
1e 

2a [(MeCN)4Cu]PF6/L DMSO rt 5  
3g; 46 10 

56 [59] 

18  
1f 

2a [(MeCN)4Cu]PF6/L DMSO rt 3  
3h; 51 10 

98 [22] 

19  
1g 

2a [(MeCN)4Cu]PF6/L DMSO rt 3 
 

3i; 86 10 

87 [60] 

20 1a  
2c 

[(MeCN)4Cu]PF6/L DMSO rt 2  
3j; 79 10 

78 [61] 

21 1a  
2d 

[(MeCN)4Cu]PF6/L 

 
DMSO rt 2 - 11  

22 1a  
2e 

[(MeCN)4Cu]PF6/L DMSO rt 3 - 11  

1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
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yls as by-products. 11 The only product was corresponding triazene 4. 
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1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 2, 2 mmol of Cu(I) adduct, and 2 
mmol of ligand. Yields refer to pure and chromatographic column isolated 3. 2 The main product 
was 3-hexyl-1-(4-nitrophenyl)triaz-1-ene (4a). 3 GC-MS analyses of crude residues showed the pres-
ence of 4a, 4,4′-dinitrobiphenyl and nitrobenzene. 4 GC-MS analyses of crude residues showed the 
presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene 1-chloro-4-nitrobenzene. 5 GC-MS analyses of 
crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene and 1-iodo-4-nitroben-
zene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitroben-
zene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the 
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower 
amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS 
analyses of crude residues always showed the presence of triazenes 4, arenes and symmetrical biar-
yls as by-products. 11 The only product was corresponding triazene 4. 

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such 
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous 
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were 
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitro-
benzene, 4,4'-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cu-
prous oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, 
namely tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 
and Cu powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the 
classic Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired 
coupling adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results 
were obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 
1; entry 11) was then added, in a stoichiometric amount; to our delight, the main product 
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nitrobenzene. 5 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl, nitrobenzene
and 1-iodo-4-nitrobenzene. 6 GC-MS analyses of crude residues showed the presence of 4a, 4,4′-dinitrobiphenyl,
nitrobenzene and 3a. 7 GC-MS analyses of crude residues showed, as well as 3a as the main product, the
presence of 4a, 4,4′-dinitrobiphenyl, and nitrobenzene. 8 Decomposition of 1a occurred. 9 Lower amounts of
[(MeCN)4Cu]PF6 and 1,10-phenanthroline led to significantly lower yields. 10 GC-MS analyses of crude residues
always showed the presence of triazenes 4, arenes and symmetrical biaryls as by-products. 11 The only product
was corresponding triazene 4.

In order to favor the hetero-Ullmann coupling, a number of copper derivatives such
as powdered Cu (Table 1; entry 2) or Cu (I) (copper chloride, copper iodide or cuprous
oxide) were added (Table 1; entries 3−5) in stoichiometric amounts. The products were
triazene 4a, together with variable amounts of 1-chloro or 1-iodo-4-nitrobenzene, nitroben-
zene, 4,4′-dinitrobiphenyl. Traces of target 3a were formed only in the presence of cuprous
oxide (Table 1; entry 6). At this point we decided to use another Cu (I) adduct, namely
tetrakis(acetonitrile)copper hexafluorophosphate (easily prepared from Cu(II)SO4 and Cu
powder, in the presence of KPF6 and NCMe [52]), which was unable to favor the classic
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Sandmeyer reaction [53,54]. GC-MS analyses showed the formation of the desired coupling
adduct 3a. (Table 1; entry 6). Other solvents were then tested and the best results were
obtained in DMSO (Table 1; entry 10). A suitable ligand (1,10-phenanthroline: Table 1;
entry 11) was then added, in a stoichiometric amount; to our delight, the main product of
the reaction was 3a, obtained with a good yield (87%), after carrying out the reaction at
room temperature and in a relatively short time. It is interesting to note that the reactions
were carried out without additional bases and that lower amounts of [(MeCN)4Cu]PF6 and
1,10-phenanthroline led to significantly lower yields (Table 1, entry 11: footnote 9).

The amine 2a was then reacted with other diazonium salts, 1a–f, which were variously
substituted with electron donor groups or electron-withdrawing groups. The target com-
pounds, 3b–j (Table 1; entries 12–20), were obtained in fair to good yields and selectivity
while producing relatively low amounts of by-products, among which, the main one is
always the triazene. The reaction was chemoselective; diazonium salt 1g, bearing a iodine
atom that could potentially react as a diazonium group, only furnished target product 3i
(Table 1; entry 19); no traces of possible diamine were detected. The reaction was also
regioselective; in fact, where the amino group and the hydroxyl group are present in the
same structure 2c, only the first reacted, with the formation of compound 3j. (Table 1;
entry 20) Good results were also achieved with another primary amine, such as benzy-
lamine (2b: Table 1; entries 13 and 14). Finally, we decided to change the type of amine and
use a secondary amine, namely, diethylamine (2d). The reaction failed; the only obtained
product, even in the presence of catalyst and ligands, was triazene (Table 1; entry 21). The
same results were obtained using aniline (2e: Table 1; entry 22).

In order to expand the scope of our research, we also decided to study C-O and C-S
Ullmann coupling.

It is well known that arenediazonium salts undergo the O-coupling reaction with
alcohols, mainly under acidic conditions [53,54]. The products of this coupling, namely,
diazo ethers, (Ar-N=N-O-R), initiate a radical mechanism, which, through the formation of
aryl radicals, yield reduction products (arenes).

However, some synthetic protocols, allow aryl alkyl ethers to be obtained via the
reaction (usually at high temperature) of diazonium salts with various alcohols, are reported
in the literature [62,63].

On this basis, a model reaction between 4-nitrobenzenediazonium (1a) and hexan-1-ol
was studied (Table 2). Unfortunately, the hexan-1-ol did not react under the optimum
conditions set up above (Table 2; entries 2 and 3).

Moreover, we decided to previously treat the hexanol with sodium hydride to trans-
form it into the corresponding alcoholate, 5a. To our surprise, we obtained the target
product, 7a, with a good yield (Table 2; entry 4). It must be stressed that the reaction that
was carried out with a secondary alkoxide (Table 2; entries 12 and 13) did not lead to
significant results. In this case, the only product was nitrobenzene.

Heteroarene tetrafluoroborate is rather unstable and sometimes are difficult to iso-
late [34]; in the light of this, we synthesized three, more stable and easy to handle, het-
eroarene diazonium o-benzenedisulfonimides, 1i–k, and, as reported in Table 2, the reac-
tions carried out in the presence of these salts and sodium ethoxide (5b) in ethanol provided
ethers 7d–f in fairly good yields (Table 2; entries 9–11).
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Table 2. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and alcoholates 5
and thiolate 6.
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one is always the triazene. The reaction was chemoselective; diazonium salt 1g, bearing a 
iodine atom that could potentially react as a diazonium group, only furnished target prod-
uct 3i (Table 1; entry 19); no traces of possible diamine were detected. The reaction was 
also regioselective; in fact, where the amino group and the hydroxyl group are present in 
the same structure 2c, only the first reacted, with the formation of compound 3j. (Table 1; 
entry 20) Good results were also achieved with another primary amine, such as benzyla-
mine (2b: Table 1; entries 13 and 14). Finally, we decided to change the type of amine and 
use a secondary amine, namely, diethylamine (2d). The reaction failed; the only obtained 
product, even in the presence of catalyst and ligands, was triazene (Table 1; entry 21). The 
same results were obtained using aniline (2e: Table 1; entry 22). 

In order to expand the scope of our research, we also decided to study C-O and C-S 
Ullmann coupling. 

It is well known that arenediazonium salts undergo the O-coupling reaction with 
alcohols, mainly under acidic conditions [53,54]. The products of this coupling, namely, 
diazo ethers, (Ar-N=N-O-R), initiate a radical mechanism, which, through the formation 
of aryl radicals, yield reduction products (arenes). 

However, some synthetic protocols, allow aryl alkyl ethers to be obtained via the 
reaction (usually at high temperature) of diazonium salts with various alcohols, are re-
ported in the literature [62,63]. 

On this basis, a model reaction between 4-nitrobenzenediazonium (1a) and hexan-1-
ol was studied (Table 2). Unfortunately, the hexan-1-ol did not react under the optimum 
conditions set up above (Table 2; entries 2 and 3). 

Table 2. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and 
alcoholates 5 and thiolate 6. 

 

 

Entry Salt 1 
Alcolholates 

5 or 
Thiolate 6 

Cu(I) and Ligand 
(L) Solvent 

T 
(°C) 

Time 
(h) 

Products 7 and 8 
and Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13OH - DMSO rt 24 - 2  

2 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO rt 24 - 3  
3 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO 50 3 - 4  

4 1a  
5a 

[(MeCN)4Cu]PF6 DMSO rt 24  
7a; 34 3 

 

5 1a 5a [(MeCN)4Cu]PF6/L DMSO rt 3 7a; 67 5,6  

6  
1b 

5a [(MeCN)4Cu]PF6/L DMSO rt 6  
7b; 49 7 

78 [19] 

1a

n-C6H13OH - DMSO rt 24 - 2

2 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO rt 24 - 3

3 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO 50 3 - 4

4 1a
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of the reaction was 3a, obtained with a good yield (87%), after carrying out the reaction at 
room temperature and in a relatively short time. It is interesting to note that the reactions 
were carried out without additional bases and that lower amounts of [(MeCN)4Cu]PF6 
and 1,10-phenanthroline led to significantly lower yields (Table 1, entry 11: footnote 9). 

The amine 2a was then reacted with other diazonium salts, 1a–f, which were vari-
ously substituted with electron donor groups or electron-withdrawing groups. The target 
compounds, 3b-j (Table 1; entries 12–20), were obtained in fair to good yields and selec-
tivity while producing relatively low amounts of by-products, among which, the main 
one is always the triazene. The reaction was chemoselective; diazonium salt 1g, bearing a 
iodine atom that could potentially react as a diazonium group, only furnished target prod-
uct 3i (Table 1; entry 19); no traces of possible diamine were detected. The reaction was 
also regioselective; in fact, where the amino group and the hydroxyl group are present in 
the same structure 2c, only the first reacted, with the formation of compound 3j. (Table 1; 
entry 20) Good results were also achieved with another primary amine, such as benzyla-
mine (2b: Table 1; entries 13 and 14). Finally, we decided to change the type of amine and 
use a secondary amine, namely, diethylamine (2d). The reaction failed; the only obtained 
product, even in the presence of catalyst and ligands, was triazene (Table 1; entry 21). The 
same results were obtained using aniline (2e: Table 1; entry 22). 

In order to expand the scope of our research, we also decided to study C-O and C-S 
Ullmann coupling. 

It is well known that arenediazonium salts undergo the O-coupling reaction with 
alcohols, mainly under acidic conditions [53,54]. The products of this coupling, namely, 
diazo ethers, (Ar-N=N-O-R), initiate a radical mechanism, which, through the formation 
of aryl radicals, yield reduction products (arenes). 

However, some synthetic protocols, allow aryl alkyl ethers to be obtained via the 
reaction (usually at high temperature) of diazonium salts with various alcohols, are re-
ported in the literature [62,63]. 

On this basis, a model reaction between 4-nitrobenzenediazonium (1a) and hexan-1-
ol was studied (Table 2). Unfortunately, the hexan-1-ol did not react under the optimum 
conditions set up above (Table 2; entries 2 and 3). 

Table 2. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and 
alcoholates 5 and thiolate 6. 

 

 

Entry Salt 1 
Alcolholates 

5 or 
Thiolate 6 

Cu(I) and Ligand 
(L) Solvent 
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(°C) 

Time 
(h) 

Products 7 and 8 
and Yields (%) 1 

Literature 
Yields (%) 
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1a 

n-C6H13OH - DMSO rt 24 - 2  

2 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO rt 24 - 3  
3 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO 50 3 - 4  

4 1a  
5a 

[(MeCN)4Cu]PF6 DMSO rt 24  
7a; 34 3 

 

5 1a 5a [(MeCN)4Cu]PF6/L DMSO rt 3 7a; 67 5,6  

6  
1b 

5a [(MeCN)4Cu]PF6/L DMSO rt 6  
7b; 49 7 

78 [19] 

5a
[(MeCN)4Cu]PF6 DMSO rt 24
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of the reaction was 3a, obtained with a good yield (87%), after carrying out the reaction at 
room temperature and in a relatively short time. It is interesting to note that the reactions 
were carried out without additional bases and that lower amounts of [(MeCN)4Cu]PF6 
and 1,10-phenanthroline led to significantly lower yields (Table 1, entry 11: footnote 9). 

The amine 2a was then reacted with other diazonium salts, 1a–f, which were vari-
ously substituted with electron donor groups or electron-withdrawing groups. The target 
compounds, 3b-j (Table 1; entries 12–20), were obtained in fair to good yields and selec-
tivity while producing relatively low amounts of by-products, among which, the main 
one is always the triazene. The reaction was chemoselective; diazonium salt 1g, bearing a 
iodine atom that could potentially react as a diazonium group, only furnished target prod-
uct 3i (Table 1; entry 19); no traces of possible diamine were detected. The reaction was 
also regioselective; in fact, where the amino group and the hydroxyl group are present in 
the same structure 2c, only the first reacted, with the formation of compound 3j. (Table 1; 
entry 20) Good results were also achieved with another primary amine, such as benzyla-
mine (2b: Table 1; entries 13 and 14). Finally, we decided to change the type of amine and 
use a secondary amine, namely, diethylamine (2d). The reaction failed; the only obtained 
product, even in the presence of catalyst and ligands, was triazene (Table 1; entry 21). The 
same results were obtained using aniline (2e: Table 1; entry 22). 

In order to expand the scope of our research, we also decided to study C-O and C-S 
Ullmann coupling. 

It is well known that arenediazonium salts undergo the O-coupling reaction with 
alcohols, mainly under acidic conditions [53,54]. The products of this coupling, namely, 
diazo ethers, (Ar-N=N-O-R), initiate a radical mechanism, which, through the formation 
of aryl radicals, yield reduction products (arenes). 

However, some synthetic protocols, allow aryl alkyl ethers to be obtained via the 
reaction (usually at high temperature) of diazonium salts with various alcohols, are re-
ported in the literature [62,63]. 

On this basis, a model reaction between 4-nitrobenzenediazonium (1a) and hexan-1-
ol was studied (Table 2). Unfortunately, the hexan-1-ol did not react under the optimum 
conditions set up above (Table 2; entries 2 and 3). 

Table 2. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and 
alcoholates 5 and thiolate 6. 

 

 

Entry Salt 1 
Alcolholates 

5 or 
Thiolate 6 

Cu(I) and Ligand 
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(°C) 

Time 
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Products 7 and 8 
and Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13OH - DMSO rt 24 - 2  

2 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO rt 24 - 3  
3 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO 50 3 - 4  

4 1a  
5a 

[(MeCN)4Cu]PF6 DMSO rt 24  
7a; 34 3 

 

5 1a 5a [(MeCN)4Cu]PF6/L DMSO rt 3 7a; 67 5,6  

6  
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5a [(MeCN)4Cu]PF6/L DMSO rt 6  
7b; 49 7 
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7a; 34 3

5 1a 5a [(MeCN)4Cu]PF6/L DMSO rt 3 7a; 67 5,6
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of the reaction was 3a, obtained with a good yield (87%), after carrying out the reaction at 
room temperature and in a relatively short time. It is interesting to note that the reactions 
were carried out without additional bases and that lower amounts of [(MeCN)4Cu]PF6 
and 1,10-phenanthroline led to significantly lower yields (Table 1, entry 11: footnote 9). 

The amine 2a was then reacted with other diazonium salts, 1a–f, which were vari-
ously substituted with electron donor groups or electron-withdrawing groups. The target 
compounds, 3b-j (Table 1; entries 12–20), were obtained in fair to good yields and selec-
tivity while producing relatively low amounts of by-products, among which, the main 
one is always the triazene. The reaction was chemoselective; diazonium salt 1g, bearing a 
iodine atom that could potentially react as a diazonium group, only furnished target prod-
uct 3i (Table 1; entry 19); no traces of possible diamine were detected. The reaction was 
also regioselective; in fact, where the amino group and the hydroxyl group are present in 
the same structure 2c, only the first reacted, with the formation of compound 3j. (Table 1; 
entry 20) Good results were also achieved with another primary amine, such as benzyla-
mine (2b: Table 1; entries 13 and 14). Finally, we decided to change the type of amine and 
use a secondary amine, namely, diethylamine (2d). The reaction failed; the only obtained 
product, even in the presence of catalyst and ligands, was triazene (Table 1; entry 21). The 
same results were obtained using aniline (2e: Table 1; entry 22). 

In order to expand the scope of our research, we also decided to study C-O and C-S 
Ullmann coupling. 

It is well known that arenediazonium salts undergo the O-coupling reaction with 
alcohols, mainly under acidic conditions [53,54]. The products of this coupling, namely, 
diazo ethers, (Ar-N=N-O-R), initiate a radical mechanism, which, through the formation 
of aryl radicals, yield reduction products (arenes). 

However, some synthetic protocols, allow aryl alkyl ethers to be obtained via the 
reaction (usually at high temperature) of diazonium salts with various alcohols, are re-
ported in the literature [62,63]. 

On this basis, a model reaction between 4-nitrobenzenediazonium (1a) and hexan-1-
ol was studied (Table 2). Unfortunately, the hexan-1-ol did not react under the optimum 
conditions set up above (Table 2; entries 2 and 3). 

Table 2. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and 
alcoholates 5 and thiolate 6. 

 

 

Entry Salt 1 
Alcolholates 

5 or 
Thiolate 6 

Cu(I) and Ligand 
(L) Solvent 

T 
(°C) 

Time 
(h) 

Products 7 and 8 
and Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13OH - DMSO rt 24 - 2  

2 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO rt 24 - 3  
3 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO 50 3 - 4  

4 1a  
5a 

[(MeCN)4Cu]PF6 DMSO rt 24  
7a; 34 3 

 

5 1a 5a [(MeCN)4Cu]PF6/L DMSO rt 3 7a; 67 5,6  

6  
1b 

5a [(MeCN)4Cu]PF6/L DMSO rt 6  
7b; 49 7 

78 [19] 
1b

5a [(MeCN)4Cu]PF6/L DMSO rt 6
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of the reaction was 3a, obtained with a good yield (87%), after carrying out the reaction at 
room temperature and in a relatively short time. It is interesting to note that the reactions 
were carried out without additional bases and that lower amounts of [(MeCN)4Cu]PF6 
and 1,10-phenanthroline led to significantly lower yields (Table 1, entry 11: footnote 9). 

The amine 2a was then reacted with other diazonium salts, 1a–f, which were vari-
ously substituted with electron donor groups or electron-withdrawing groups. The target 
compounds, 3b-j (Table 1; entries 12–20), were obtained in fair to good yields and selec-
tivity while producing relatively low amounts of by-products, among which, the main 
one is always the triazene. The reaction was chemoselective; diazonium salt 1g, bearing a 
iodine atom that could potentially react as a diazonium group, only furnished target prod-
uct 3i (Table 1; entry 19); no traces of possible diamine were detected. The reaction was 
also regioselective; in fact, where the amino group and the hydroxyl group are present in 
the same structure 2c, only the first reacted, with the formation of compound 3j. (Table 1; 
entry 20) Good results were also achieved with another primary amine, such as benzyla-
mine (2b: Table 1; entries 13 and 14). Finally, we decided to change the type of amine and 
use a secondary amine, namely, diethylamine (2d). The reaction failed; the only obtained 
product, even in the presence of catalyst and ligands, was triazene (Table 1; entry 21). The 
same results were obtained using aniline (2e: Table 1; entry 22). 

In order to expand the scope of our research, we also decided to study C-O and C-S 
Ullmann coupling. 

It is well known that arenediazonium salts undergo the O-coupling reaction with 
alcohols, mainly under acidic conditions [53,54]. The products of this coupling, namely, 
diazo ethers, (Ar-N=N-O-R), initiate a radical mechanism, which, through the formation 
of aryl radicals, yield reduction products (arenes). 

However, some synthetic protocols, allow aryl alkyl ethers to be obtained via the 
reaction (usually at high temperature) of diazonium salts with various alcohols, are re-
ported in the literature [62,63]. 

On this basis, a model reaction between 4-nitrobenzenediazonium (1a) and hexan-1-
ol was studied (Table 2). Unfortunately, the hexan-1-ol did not react under the optimum 
conditions set up above (Table 2; entries 2 and 3). 

Table 2. Ullmann-type coupling between arenediazonium o-benzenedisulfonimides 1 and 
alcoholates 5 and thiolate 6. 

 

 

Entry Salt 1 
Alcolholates 

5 or 
Thiolate 6 

Cu(I) and Ligand 
(L) Solvent 

T 
(°C) 

Time 
(h) 

Products 7 and 8 
and Yields (%) 1 

Literature 
Yields (%) 

1  
1a 

n-C6H13OH - DMSO rt 24 - 2  

2 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO rt 24 - 3  
3 1a n-C6H13OH [(MeCN)4Cu]PF6/L DMSO 50 3 - 4  

4 1a  
5a 

[(MeCN)4Cu]PF6 DMSO rt 24  
7a; 34 3 

 

5 1a 5a [(MeCN)4Cu]PF6/L DMSO rt 3 7a; 67 5,6  

6  
1b 

5a [(MeCN)4Cu]PF6/L DMSO rt 6  
7b; 49 7 

78 [19] 
7b; 49 7

78 [19]
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7  
1h 

 
5b 

[(MeCN)4Cu]PF6/L DMSO rt 4  
7c; 64 7 

 

8 1h 5b [(MeCN)4Cu]PF6/L EtOH rt 2 7c; 67 7 74 [64] 

9  
1i 

5b [(MeCN)4Cu]PF6/L EtOH rt 4  
7d; 66 7 

100 [65] 

10  
1j 

5b [(MeCN)4Cu]PF6/L EtOH rt 4 
 

7e; 51 7 

 

11  
1k 

5b [(MeCN)4Cu]PF6/L EtOH rt 3  
7f; 60 7 

 

12 1a  
5c 

[(MeCN)4Cu]PF6/L DMSO rt 24 - 8  

13 1a 5c [(MeCN)4Cu]PF6/L DMSO 50 4 - 8  
14 1a 5c [(MeCN)4Cu]PF6/L iPrOH rt 24 - 8  
15 1a n-C4H9SH - DMSO rt 24 - 2  
16 1a n-C4H9SH [(MeCN)4Cu]PF6/L DMSO 50 8 - 3  

17 1a  
6a 

[(MeCN)4Cu]PF6/L DMSO rt 2  
8a; 65 7 

 

18 1b 6a [(MeCN)4Cu]PF6/L DMSO rt 6  
8b; 48 7 

65 [66] 

1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 5 and 6, 2 mmol of Cu(I) adduct, and 
2 mmol of ligand. Yields refer to pure and chromatographic column isolated, 7,8. 2 After 24 h, 1a 
had not reacted. GC-MS analyses of a sample showed the presence of nitrobenzene. 3 After 24 h, 1a 
had still not reacted. GC-MS analyses of a sample showed the presence of nitrobenzene and 7a. 4 
Decomposition of 1a occurred. 5 GC-MS analyses of crude residues also showed the presence of 
nitrobenzene and 4,4′-dinitrobiphenyl. 6 Lower amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthro-
line, which led to significantly lower yields.7 GC-MS analyses of crude residues always showed the 
presence of arenes and symmetrical biaryls as by-products. 8 Only traces of isopropyl phenyl ether 
were detected. The main product was nitrobenzene. 

Moreover, we decided to previously treat the hexanol with sodium hydride to trans-
form it into the corresponding alcoholate, 5a. To our surprise, we obtained the target prod-
uct, 7a, with a good yield (Table 2; entry 4). It must be stressed that the reaction that was 
carried out with a secondary alkoxide (Table 2; entries 12 and 13) did not lead to signifi-
cant results. In this case, the only product was nitrobenzene. 

Heteroarene tetrafluoroborate is rather unstable and sometimes are difficult to isolate 
[34]; in the light of this, we synthesized three, more stable and easy to handle, heteroarene 
diazonium o-benzenedisulfonimides, 1i–k, and, as reported in Table 2, the reactions car-
ried out in the presence of these salts and sodium ethoxide (5b) in ethanol provided ethers 
7d–f in fairly good yields (Table 2; entries 9–11). 

Finally, under the same conditions as the primary alcoholates, primary thiolate 6a 
was prepared and gave good yields of the C-S coupling product, aryl alkyl sulfide 8a,b 
(Table 2; entries 17 and 18). 

In conclusion, the target products, 3,7,8, were obtained in discrete yields, but some-
times, the yields were lower than those reported in the literature for the same products 
obtained with different Ullmann-type reactions, using aryl halides as electrophiles (Tables 
1 and 2); however, it is necessary to highlight that generally, these latter reactions are car-
ried out at high temperatures under strictly controlled conditions (e.g., in an inert 

1h
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[(MeCN)4Cu]PF6/L DMSO rt 4  
7c; 64 7 

 

8 1h 5b [(MeCN)4Cu]PF6/L EtOH rt 2 7c; 67 7 74 [64] 
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1i 

5b [(MeCN)4Cu]PF6/L EtOH rt 4  
7d; 66 7 

100 [65] 
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5b [(MeCN)4Cu]PF6/L EtOH rt 3  
7f; 60 7 

 

12 1a  
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[(MeCN)4Cu]PF6/L DMSO rt 24 - 8  

13 1a 5c [(MeCN)4Cu]PF6/L DMSO 50 4 - 8  
14 1a 5c [(MeCN)4Cu]PF6/L iPrOH rt 24 - 8  
15 1a n-C4H9SH - DMSO rt 24 - 2  
16 1a n-C4H9SH [(MeCN)4Cu]PF6/L DMSO 50 8 - 3  

17 1a  
6a 

[(MeCN)4Cu]PF6/L DMSO rt 2  
8a; 65 7 

 

18 1b 6a [(MeCN)4Cu]PF6/L DMSO rt 6  
8b; 48 7 

65 [66] 

1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 5 and 6, 2 mmol of Cu(I) adduct, and 
2 mmol of ligand. Yields refer to pure and chromatographic column isolated, 7,8. 2 After 24 h, 1a 
had not reacted. GC-MS analyses of a sample showed the presence of nitrobenzene. 3 After 24 h, 1a 
had still not reacted. GC-MS analyses of a sample showed the presence of nitrobenzene and 7a. 4 
Decomposition of 1a occurred. 5 GC-MS analyses of crude residues also showed the presence of 
nitrobenzene and 4,4′-dinitrobiphenyl. 6 Lower amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthro-
line, which led to significantly lower yields.7 GC-MS analyses of crude residues always showed the 
presence of arenes and symmetrical biaryls as by-products. 8 Only traces of isopropyl phenyl ether 
were detected. The main product was nitrobenzene. 

Moreover, we decided to previously treat the hexanol with sodium hydride to trans-
form it into the corresponding alcoholate, 5a. To our surprise, we obtained the target prod-
uct, 7a, with a good yield (Table 2; entry 4). It must be stressed that the reaction that was 
carried out with a secondary alkoxide (Table 2; entries 12 and 13) did not lead to signifi-
cant results. In this case, the only product was nitrobenzene. 

Heteroarene tetrafluoroborate is rather unstable and sometimes are difficult to isolate 
[34]; in the light of this, we synthesized three, more stable and easy to handle, heteroarene 
diazonium o-benzenedisulfonimides, 1i–k, and, as reported in Table 2, the reactions car-
ried out in the presence of these salts and sodium ethoxide (5b) in ethanol provided ethers 
7d–f in fairly good yields (Table 2; entries 9–11). 

Finally, under the same conditions as the primary alcoholates, primary thiolate 6a 
was prepared and gave good yields of the C-S coupling product, aryl alkyl sulfide 8a,b 
(Table 2; entries 17 and 18). 

In conclusion, the target products, 3,7,8, were obtained in discrete yields, but some-
times, the yields were lower than those reported in the literature for the same products 
obtained with different Ullmann-type reactions, using aryl halides as electrophiles (Tables 
1 and 2); however, it is necessary to highlight that generally, these latter reactions are car-
ried out at high temperatures under strictly controlled conditions (e.g., in an inert 
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[(MeCN)4Cu]PF6/L DMSO rt 24 - 8  

13 1a 5c [(MeCN)4Cu]PF6/L DMSO 50 4 - 8  
14 1a 5c [(MeCN)4Cu]PF6/L iPrOH rt 24 - 8  
15 1a n-C4H9SH - DMSO rt 24 - 2  
16 1a n-C4H9SH [(MeCN)4Cu]PF6/L DMSO 50 8 - 3  
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[(MeCN)4Cu]PF6/L DMSO rt 2  
8a; 65 7 

 

18 1b 6a [(MeCN)4Cu]PF6/L DMSO rt 6  
8b; 48 7 

65 [66] 

1 The reactions were carried out with 2 mmol of 1, 2.2 mmol of 5 and 6, 2 mmol of Cu(I) adduct, and 
2 mmol of ligand. Yields refer to pure and chromatographic column isolated, 7,8. 2 After 24 h, 1a 
had not reacted. GC-MS analyses of a sample showed the presence of nitrobenzene. 3 After 24 h, 1a 
had still not reacted. GC-MS analyses of a sample showed the presence of nitrobenzene and 7a. 4 
Decomposition of 1a occurred. 5 GC-MS analyses of crude residues also showed the presence of 
nitrobenzene and 4,4′-dinitrobiphenyl. 6 Lower amounts of [(MeCN)4Cu]PF6 and 1,10-phenanthro-
line, which led to significantly lower yields.7 GC-MS analyses of crude residues always showed the 
presence of arenes and symmetrical biaryls as by-products. 8 Only traces of isopropyl phenyl ether 
were detected. The main product was nitrobenzene. 

Moreover, we decided to previously treat the hexanol with sodium hydride to trans-
form it into the corresponding alcoholate, 5a. To our surprise, we obtained the target prod-
uct, 7a, with a good yield (Table 2; entry 4). It must be stressed that the reaction that was 
carried out with a secondary alkoxide (Table 2; entries 12 and 13) did not lead to signifi-
cant results. In this case, the only product was nitrobenzene. 

Heteroarene tetrafluoroborate is rather unstable and sometimes are difficult to isolate 
[34]; in the light of this, we synthesized three, more stable and easy to handle, heteroarene 
diazonium o-benzenedisulfonimides, 1i–k, and, as reported in Table 2, the reactions car-
ried out in the presence of these salts and sodium ethoxide (5b) in ethanol provided ethers 
7d–f in fairly good yields (Table 2; entries 9–11). 

Finally, under the same conditions as the primary alcoholates, primary thiolate 6a 
was prepared and gave good yields of the C-S coupling product, aryl alkyl sulfide 8a,b 
(Table 2; entries 17 and 18). 

In conclusion, the target products, 3,7,8, were obtained in discrete yields, but some-
times, the yields were lower than those reported in the literature for the same products 
obtained with different Ullmann-type reactions, using aryl halides as electrophiles (Tables 
1 and 2); however, it is necessary to highlight that generally, these latter reactions are car-
ried out at high temperatures under strictly controlled conditions (e.g., in an inert 
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Finally, under the same conditions as the primary alcoholates, primary thiolate 6a
was prepared and gave good yields of the C-S coupling product, aryl alkyl sulfide 8a,b
(Table 2; entries 17 and 18).

In conclusion, the target products, 3, 7, 8, were obtained in discrete yields, but some-
times, the yields were lower than those reported in the literature for the same prod-
ucts obtained with different Ullmann-type reactions, using aryl halides as electrophiles
(Tables 1 and 2); however, it is necessary to highlight that generally, these latter reactions
are carried out at high temperatures under strictly controlled conditions (e.g., in an inert
atmosphere and/or in a sealed vial) with long reaction times. On the contrary, by us-
ing diazonium salts as an alternative to aryl halides, the reactions can be carried out in
milder conditions (for example, at room temperature, in open air vials and with shorter
reaction times)

It is worth noting that it was possible to recover o-benzenedisulfonimide at a yield of
more than 80% from all the reactions described above. It was also possible to recycle it for
the preparation of other salts 1, with economic and ecological benefits.

In order to formulate a convincing hypothesis on the mechanism of this Ullmann-type
coupling, two reactions, reported in Table 1 (entry 11) and Table 2 (entry 5), were carried out
in the presence of TEMPO, a well-known radical scavenger; a sharp decrease in the yields
of 3a and 7a were observed. In light of this, and inspired by Kochi’s previous mechanistic
studies [1,67], we hypothesized a radical SRN1-type mechanism, as shown in Scheme 4.
It must be stressed that dediazoniations initiated by an electron transfer are well-known
reactions of diazonium salts [7,35,53].
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Scheme 4. Ullmann-type coupling: hypothesis of mechanism.

We believe that in step 1, there may be competition between the Cu (I) adduct and
the nucleophile (ammine, alcoholate or thiolate). This could explain why a stoichiometric
amount of Cu (I) adduct is needed, so that the coupling products 3, 7, 8 can be formed.
On the other hand, the ligand 1,10-phenanthroline, stabilizing the Cu (I) adduct, would
facilitate its interaction with the diazonium salt, and consequently step 3. Indeed, copper
catalysis is not necessary to produce aryl alkyl sulfides 8; they can be easily obtained
with the classic Stadler–Ziegler reaction [68]; however, this reaction is dangerous to carry
out as a result of the intermediate formation and accumulation of the highly explosive
diazosulfides. In our previous paper [68], we developed an efficient and safe modification
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of the Stadler–Ziegler reaction, in which the formation of disulfides always occurred as
by-products. Carrying out the reaction in the presence of Cu(I) as a catalyst, we never
observed the formation of disulfides. This leads us to believe that the reaction mechanism,
shown in Scheme 4, may also be plausible with thiolates 6.

4. Conclusions

We have proposed a mild, easy and efficient Ullmann-type coupling of arenediazonium
and heteroarenediazonium o-benzenedisulfonimides. The target products were generally
obtained in fairly good yields (18 positive examples, 66% average yield). To the best of our
knowledge, in this study, diazonium salts have been used as electrophilic partners in an
Ullmman-type protocol for the first time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/reactions3020022/s1, Physical and NMR data of anilines 3, NMR
spectra of anilines 3, Physical and NMR data of ethers 6, NMR spectra of ethers 6, Physical and NMR
data of thioethers 7, NMR spectra of thioethers 7. Figures S1–S18, such as Figure S1: NMR spectra
of N-(n-Hexyl)-4-Nitroaniline (3a). Figure S2: NMR spectra of N-(n-Hexyl)-4-Methoxyaniline (3b).
Figure S3: NMR spectra of N-(n-Benzyl)-4-Methoxyaniline (3c). Figure S4: NMR spectra of N-(n-
Benzyl)-4-Nitroaniline (3d). Figure S5: NMR spectra of N-(n-Hexyl)-2-Nitroaniline (3e). Figure S6: NMR
spectra of N-(n-Hexyl)-3-Nitroaniline (3f). Figure S7: NMR spectra of N-(n-Hexyl)-2-Toluidine (3g).
Figure S8: NMR spectra of N-(n-Hexyl)-3-Toluidine (3h). Figure S9: NMR spectra of NMR spectra of
N-(n-Hexyl)-4-Iodoaniline (3i). Figure S10: NMR spectra of 2-[(4-Nitrophenyl)amino]Ethan-1-ol (3j).
Figure S11: NMR spectra of 1-(n-Hexyloxy)-4-Nitrobenzene (7a). Figure S12: NMR spectra of
1-(n-Hexyloxy)-4-Methoxybenzene (7b). Figure S13: NMR spectra of 2-Ethoxynaphthalene (7c).
Figure S14: NMR spectra of 2-Ethoxybenzo[d]thiazole (7d). Figure S15: NMR spectra of Methyl
3-Ethoxythiophene-2-carboxylate (7e). Figure S16: NMR spectra of 3-Ethoxypyridine (7f).
Figure S17: n-Butyl 4-Nitrophenyl Sulfide (8a). Figure S18: n-Butyl 4-Tolyl Sulfide (8b). References [69–72]
are cited in the supplementary materials.
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