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Abstract: We study locally conformally balanced metrics on almost abelian Lie algebras, namely solvable
Lie algebras admitting an abelian ideal of codimension one, providing characterizations in every dimension.
Moreover, we classify six-dimensional almost abelian Lie algebras admitting locally conformally balanced
metrics and study some compatibility results between di�erent types of special Hermitian metrics on almost
abelian Lie groups and their compact quotients. We end by classifying almost abelian Lie algebras admitting
locally conformally hyperkähler structures.
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1 Introduction
Let (M, J) be a complex manifold of real dimension 2n, n ≥ 2, equipped with a Hermitian metric g with
associated fundamental 2-form ω = g(J·, ·). Its Lee form, de�ned by θ = −d*ω ◦ J, is the unique 1-form
satisfying dωn−1 = θ ∧ ωn−1.

A fundamental class of Hermitian metrics is provided by Kähler metrics, satisfying dω = 0. In litera-
ture, many generalizations of the Kähler condition have been introduced: two of them are the balanced (or
semi-Kähler) condition, characterized by d*ω = 0 (or equivalently θ = 0 or dωn−1 = 0) and the locally confor-
mally Kähler (LCK) condition, namely (M, J) admits an open cover {Ui} and smooth maps fi ∈ C∞(Ui) such
that e−fig|Ui is a Kähler metric on (Ui , J|Ui ), where g denotes the LCK metric. The LCK condition is equiva-
lently characterized by the conditions dω = 1

n−1 θ ∧ ω, dθ = 0. If θ is parallel with respect to the Levi-Civita
connection, the LCK metric is called Vaisman. For general results about LCK metrics, we refer the reader to
[3, 14, 26, 28].

A further weakening of both the balanced and the LCK conditions is given by the locally conformally
balanced (LCB) condition, whose de�nition is analogous to the one for the LCK condition and which is equiv-
alently de�ned by dθ = 0. LCBmetrics have been studied, for instance, in [5, 6, 18, 25, 27, 29, 31, 32, 34].When
n = 2, balanced metrics are Kähler and LCB metrics are LCK.

Recall also that a Hermitian metric is called strong Kähler with torsion (SKT, also known as pluriclosed) if
∂∂ω = 0 or, equivalently, if the torsion of the associated Bismut connection vanishes. The Bismut connection
∇B of a Hermitian manifold (M, J, g) is the unique linear connection on M having totally skew-symmetric
torsion and satisfying∇Bg = 0,∇BJ = 0 (see [11, 21]). Its associated Bismut-Ricci form ρB is the 2-form locally
de�ned by

ρB(X, Y) = −12

2n∑
i=1

g(RB(X, Y)fi , Jfi), X, Y ∈ Γloc(TM),
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where {f1, . . . , f2n} is a local g-orthonormal frame and RB(X, Y) = [∇BX ,∇BY ] − ∇B[X,Y] denotes the curvature
of∇B.

A hypercomplex structure on a smooth 4m-dimensional manifold M is given by a triple of (integrable)
complex structures (I1, I2, I3) satisfying I1I2I3 = −IdTM. A Riemannian metric on M is called (locally confor-
mally) hyperkähler (LCHK) if it is (locally conformally) Kählerwith respect to the three complex structures and
the three induced Lee forms coincide. Hypercomplex and hyperkähler structures on Lie groupswhere studied
for instance in [8], where four-dimensional Lie groups admitting left-invariant hypercomplex structures are
classi�ed, and [9], where, in particular, it is shown that left-invariant hyperkähler metrics on Lie groups are
�at.

We are interested in the case where M is a simply connected almost abelian Lie group G or a compact
almost abelian solvmanifold, namely a quotient Γ\G, with G a simply connected almost abelian Lie group
and Γ a lattice of G, i.e., a discrete subgroup of G. A connected (solvable) Lie group G is called almost abelian
if it admits an abelian normal subgroup of codimension one, or equivalently if the Lie algebra g of G admits
an abelian ideal n of codimension one, so that g is isomorphic to the semi-direct product Rk oD R for some
D ∈ glk. If g is non-nilpotent, such an ideal is unique and coincides with the nilradical of g.

A left-invariant Hermitian structure (J, g) on G or Γ\G descends to a structure on the Lie algebra g of G,
so that one can speak of Hermitian structures on g. When g is almost abelian of real dimension 2n, as shown
in [24], these can be fully characterized in terms of the matrix associated with ade2n |n with respect to some
�xed unitary basis {e1, . . . , e2n} adapted to the splitting g = Jk⊕ n1 ⊕ k, where k := n⊥g and n1 := n∩ Jn, and
such that Jei = e2n+1−i, i = 1, . . . , n.

Kähler, SKT, balanced and LCK almost abelian Lie algebras were studied in terms of the data (a, v, A) in
[2, 7, 16, 17, 24]. Six-dimensional almost abelian Lie algebras admitting SKT structures were classi�ed in [16],
and in [20] the result was extended to a wider class of two-step solvable Lie algebras. For the classi�cation of
six-dimensional almost abelian Lie algebras carrying balanced structures, see [17].

In Section 2 we characterize LCB almost abelian Lie algebras in terms of the aforementioned algebraic
data and in terms of the behaviour of the associated Bismut-Ricci form.

In the following section, we classify six-dimensional almost abelian Lie algebras admitting LCK struc-
tures and those admitting LCB structures, building on the classi�cation of six-dimensional almost abelian
Lie algebras admitting complex structures in [16], and remark which of the corresponding Lie groups admit
compact quotients by lattices.

In [27], the authors investigate the existence of two di�erent types of special Hermitianmetrics on a �xed
compact complex nilmanifold (namely, the quotient of a simply connected nilpotent Lie group by a lattice):
in Section 4,we consider analogous questions for almost abelian solvmanifolds, highlighting similarities and
di�erences with respect to the nilpotent setting.

Finally, in Section 5we studyLCHKstructures on almost abelian Lie algebras, giving a classi�cation result
in every dimension.

Acknowledgements. The authorwould like to thankAnna Fino for suggesting the subject of this paper and
for many useful comments and discussions. The author is also grateful to an anonymous referee for useful
comments. The author was supported by GNSAGA of INdAM.

2 Locally conformally balanced metrics
Let g be a 2n-dimensional almost abelian Lie algebrawith a �xed abelian ideal n of codimension one. Assume
(J, g) is a Hermitian structure on g and denote by n1 := n ∩ Jn the maximal J-invariant subspace of n, which
does not depend on the metric g. Then, as shown in [24], with respect to a unitary basis {e1, . . . , e2n} for
g such that n = span 〈e1, . . . , e2n−1〉, n1 = span 〈e2, . . . , e2n−1〉, Jei = e2n+1−i, i = 1, . . . , n, the matrix B
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associated with ade2n |n is of the form

B =
(
a 0
v A

)
, a ∈ R, v ∈ n1, A ∈ gl(n1, J1), (2.1)

where J1 := J|n1 and gl(n1, J1) denotes endomorphisms of n1 commuting with J1. We denote k := n⊥g = Re2n
and we say that the basis {e1, . . . , e2n} is adapted to the splitting g = Jk⊕ n1 ⊕ k. The algebraic data (a, v, A)
fully characterizes the Hermitian structure (J, g) andwewe shall often denote the resulting Hermitian almost
abelian Lie algebra by (g(a, v, A), J, g).

Before studying the LCB condition, we recall the known characterizations for special Hermitian almost
abelian Lie algebras.

Proposition 2.1. A Hermitian almost abelian Lie algebra (g(a, v, A), J, g) is

• Kähler, if v = 0, A ∈ u(n1, J1, g) (see [24]),
• LCK, if v = 0, A ∈ RIdn1 ⊕ u(n1, J1, g) or n = 2, A = 0 (see [2]),
• balanced, if v = 0, trA = 0 (see [17]),
• SKT, if [A, At] = 0 and the eigenvalues of A have real part − a2 or 0 (see [7]),

where u(n1, J1, g) = so(n1, g) ∩ gl(n1, J1).

We also recall that, in terms of an adapted unitary basis, the Lee form of a Hermitian almost abelian Lie
algebra (g(a, v, A), J, g) is given by

θ = (Jv)[ − (trA)e2n , (2.2)

where the isomorphism (·)[ : g→ g* is de�ned by X[ := g(X, ·), X ∈ g. See [17] for details.
We are ready to prove the analogous characterization for LCB structures.

Theorem 2.2. A Hermitian almost abelian Lie algebra (g(a, v, A), J, g) is LCB if and only if Atv = 0.

Proof. Observe that, given any 1-form α ∈ g*, since dα(X, e2n) = α([e2n , X]), X ∈ g, one has

dα = (ad*e2nα) ∧ e2n = (aα(e1) + α(v)) e1 ∧ e2n + A*(α|n1 ) ∧ e2n ,

with respect to the �xed adapted unitary basis {e1, . . . , e2n}. Then the exterior derivative of the Lee form (2.2)
satis�es

dθ = g(v, Jv) e1 ∧ e2n + (AtJv)[ ∧ e2n = (AtJv)[ ∧ e2n ,

where At ∈ gl(n1) is de�ned by AtX := (A*(X[))], X ∈ n1, (·)] denoting the inverse of (·)[. Then dθ vanishes if
and only if AtJv = 0. J1 commutes with A and we have Jt1 = −J1, so J1 commutes with At as well. The previous
condition then reads JAtv = 0, which is equivalent to Atv = 0.

We note that the condition Atv = 0 is equivalent to g(v, AX) = 0 for all X ∈ n1. In particular, when v = ̸ 0, it
implies v ∈ ̸ imA, so that rank(v|A) = rank(A) + 1, where v|A denotes the matrix obtained by juxtaposing v
and A.

In [7], the authors determined a formula for the Bismut-Ricci form of a Hermitian almost abelian Lie
algebra (g(a, v, A), J, g), obtaining

ρB = −
(
a2 − 1

2a trA + ‖v‖2
)
e1 ∧ e2n − (Atv)[ ∧ e2n , (2.3)

in terms of the �xed adapted unitary basis {e1, . . . , e2n} (cf. also [16]).
The next result is a straightforward consequence of Theorem 2.2 and formula (2.3).

Proposition 2.3. A Hermitian almost abelian Lie algebra (g(a, v, A), J, g) is LCB if and only if ρB is of type
(1, 1) (namely, JρB = ρB), or equivalently if ρB(X, Y) = 0 for every X ∈ n1, Y ∈ g.



Locally conformally balanced metrics on almost abelian Lie algebras | 199

3 Classi�cation in dimension six
We now focus on the six-dimensional case, with the goal of classifying almost abelian Lie algebras admitting
LCB structures. As recalled in the introduction, LCB structures generalize Kähler, balanced and LCK struc-
tures. Six-dimensional almost abelian Lie algebras carrying Kähler structures and balanced structures were
classi�ed in [16] and [17] respectively. Therefore, before considering strictly LCB structures, we focus on the
LCK condition.

In the following, we denote a Lie algebra via its structure equations: for example, the notation

g4 = (f 16, f 26, f 36, f 46, 0, 0)

means that the Lie algebra g4 is determined by a �xed basis {f1, . . . , f6} whose dual coframe {f 1, . . . , f 6}
satis�es df 1 = f 16, df 2 = f 26, df 3 = f 36, df 4 = f 46, df 5 = df 6 = 0, where f ij is a shorthand for the wedge
product f i ∧ f j.

In [30], it was proven that a nilpotent Lie algebra admits an LCK structure if and only if it is isomorphic
to h2n+1 ⊕R, for some n ≥ 1, where

h2n+1 =
(
0, . . . , 0,

n∑
i=1

f 2i−1 ∧ f 2i
)

denotes the 2n + 1-dimensional real Heisenberg algebra. In particular, the four-dimensional h3 ⊕ R =
(0, 0, 0, f 12) is the only one which is also almost abelian and, by [2, Remark 3.4 (ii)] and [4, Remarks 2.1, 2.3],
one of the only two almost abelian Lie algebras admitting non-Kähler Vaisman metrics, up to isomorphism,
the other one being aff2 ⊕ 2R, where aff2 = (0, f 12) denotes the two-dimensional real a�ne Lie algebra. In
fact, every Hermitian metric on h3 ⊕R and aff2 ⊕ 2R is Vaisman.

Theorem 3.1. Let g be a six-dimensional almost abelian Lie algebra. Then g admits an LCK structure (J, g), but
no Kähler structures, if and only if it is isomorphic to one of the following:

g1 = (f 16, pf 26, pf 36, pf 46, pf 56, 0), p ≠ 0,
g2 = (pf 16, qf 26, qf 36, qf 46 + f 56, −f 46 + qf 56, 0), pq = ̸ 0,
g3 = (pf 16, qf 26 + f 36, −f 26 + qf 36, qf 46 + rf 56, −rf 46 + qf 56, 0), pq = ̸ 0, r = ̸ 0,
g4 = (f 16, f 26, f 36, f 46, 0, 0),
g5 = (f 16, f 26, f 36 + rf 46, −rf 36 + f 46, 0, 0), r ≠ 0,
g6 = (pf 16 + f 26, −f 16 + pf 26, pf 36 + rf 46, −rf 36 + pf 46, 0, 0), pr ≠ 0.

Among these, only the indecomposable Lie algebras gp=−
1
4

1 , gp=−4q2 and gp=−4q3 are unimodular. None of the cor-
responding Lie groups admit compact quotients by lattices, by [2, Theorem 3.7].

Proof. Let (J, g)be anLCK structure on g. Let {e1, . . . , e6}be aunitary basis of (g, J, g) adapted to the splitting
g = Jk⊕ n1 ⊕ k, so that, by [2], the matrix B associated with ade6 |n is of the form (2.1), with

v = 0, A = λ Idn1 + U, λ ∈ R, U ∈ u(n1, J1, g). (3.1)

Since U is traceless, one must have λ = tr A
4 . Following [16, Theorem 3.2], up to taking a di�erent basis

{e2, . . . , e5} for n1 and rescaling e6, the fact that A commutes with J1 forces A to be represented by a real
4 × 4matrix of one of the following types:

A1 =
( p 0 0 0

0 p 0 0
0 0 q 0
0 0 0 q

)
, A2 =

( p 1 0 0
−1 p 0 0
0 0 q 0
0 0 0 q

)
, A3 =

( p 1 0 0
−1 p 0 0
0 0 q r
0 0 −r q

)
, A4 =

( p 1 0 0
0 p 0 0
0 0 p 1
0 0 0 p

)
, A5 =

( p 1 −1 0
−1 p 0 −1
0 0 p 1
0 0 −1 p

)
, (3.2)

p, q, r ∈ R, with r ≠ 0 to avoid redundancy. All we need to do is determine which matrices Ai in (3.2) can be
decomposed as λ Id +U for some λ ∈ R, U ∈ u(n1, J1, g). For each i = 1, 2, 3, 4, 5, consider the matrix Ui =
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Ai− tr A
4 Id: for i = 4, 5, Ui is never complex-diagonalizable (namely, diagonalizable as a complexmatrix), so it

cannot be skew-symmetric with respect to any metric; for i = 1, 2, 3, the requirement that all the eigenvalues
of Ui should be pure imaginary imposes p = q, so that one is left with

U1 =
( 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

)
, U2 =

( 0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

)
, U3 =

( 0 1 0 0
−1 0 0 0
0 0 0 r
0 0 −r 0

)
,

all of which are skew-symmetric with respect to the standard metric and commute with

J1 =
( 0 −1 0 0

1 0 0 0
0 0 0 −1
0 0 1 0

)
.

Completing the corresponding Ai to the full matrix

B =
(
a 0
0 Ai

)

representing ade6 |n and assuming trAi = ̸ 0 to discard the Kähler cases, one can easily see which algebras can
be obtained:

A1 yields g1 and g4,
A2 yields g2 and g5,
A3 yields g3 and g6.

Theorem 3.2. Let g be a six-dimensional almost abelian Lie algebra which does not admit balanced or LCK
structures. If g is nilpotent, then it admits an LCB structure (J, g) if and only if it is isomorphic to one of the
following:

(0, 0, 0, 0, 0, f 12),
(0, 0, 0, f 12, f 13, f 14).

If g is non-nilpotent, then it admits an LCB structure (J, g) if and only if it is isomorphic to one of the following:

l1 = (f 16, pf 26, pf 36, qf 46, qf 56, 0), pr ≠ 0, p = ̸ ±q,
l2 = (f 16, pf 26 + f 36, pf 36, pf 46 + f 56, pf 56, 0), p ≠ 0,
l3 = (pf 16, qf 26, qf 36, rf 46 + f 56, −f 46 + rf 56, 0), pq ≠ 0, q ≠ ±r,
l4 = (pf 16, qf 26 + f 36, −f 26 + qf 36, rf 46 + sf 56, −sf 46 + rf 56, 0), pqs ≠ 0, q ≠ ±r,
l5 = (pf 16, qf 26 + f 36 − f 46, −f 26 + qf 36 − f 56, qf 46 + f 56, −f 46 + qf 56, 0), pq ≠ 0,
l6 = (f 16, f 26, 0, 0, 0, 0),
l7 = (f 16, f 26 + f 36, f 36, 0, 0, 0),
l8 = (pf 16 + f 26, −f 16 + pf 26, 0, 0, 0, 0), p ≠ 0,
l9 = (f 16, pf 26, pf 36, 0, 0, 0), p ≠ 0,
l10 = (pf 16, qf 26 + f 36, −f 26 + qf 36, 0, 0, 0), pq = ̸ 0,
l11 = (f 16, f 26, pf 36, pf 46, 0, 0), p ≠ 0, ±1,
l12 = (f 16, f 26, f 46, 0, 0, 0),
l13 = (f 16, f 26, qf 36 + rf 46, −rf 36 + qf 46, 0, 0), q = ̸ ±1, r ≠ 0,
l14 = (pf 16 + f 26, −f 16 + pf 26, f 46, 0, 0, 0),
l15 = (f 16 + f 26, f 26, f 36 + f 46, f 46, 0, 0),
l16 = (pf 16 + f 26, −f 16 + pf 26, qf 36 + rf 46, −rf 36 + qf 46, 0, 0), r = ̸ 0, p2 + q2 ≠ 0, p ≠ ±q,
l17 = (pf 16 + f 26 − f 36, −f 16 + pf 26 − f 46, pf 36 + f 46, −f 36 + pf 46, 0, 0), p = ̸ 0.
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Among these, only lq=−
1
2−p

1 , lp=−
1
4

2 , lr=−
p
2 −q

3 , lr=−
p
2 −q

4 , lq=−
p
4

5 , lp=−
1
2

9 , lq=−
p
2

10 and lp=014 are unimodular.

Proof. Let (J, g) be an LCB structure on g. As in Theorem 3.1, we need to examine each matrix Ai in (3.2) to
see whether they can satisfy the LCB condition Ati v = 0 for some suitable metric and vector v. Of course v = 0
is a su�cient condition and, in this case, after discarding the algebras admitting balanced or LCK structures
(including the nilpotent (0, 0, 0, 0, f 12, f 13), which admits balanced structures, by [33]), we have that

A1 yields l1, l6, l9 and l11,
A2 yields l3, l8, l10 and l13,
A3 yields l4 and l16,
A4 yields l2 and l15,
A5 yields l5 and l17.

To complete the classi�cation, we now assume v = ̸ 0. Then Atv = 0 forces A to be degenerate: we are then
left with Aq=01 , Aq=02 (both with p possibly vanishing) and Ap=04 . If a = g([e6, e1], e1) is not an eigenvalue of
Ai, then im(A − a Idn1 ) = n1, so that v = AX − aX for some X ∈ n1 and the matrix B corresponding to ade6 |n
can be brought into the form

B =
(
a 0
0 Ai

)
,

simply by replacing e1 with e′1 = e1 − X, so that eventually we get some of the previously found Lie algebras.
Otherwise, if a is an eigenvalue of Ai, the algebraic multiplicity of a as an eigenvalue of B (namely, its mul-
tiplicity as a root of the characteristic polynomial) might exceed its algebraic multiplicity for Ai by one: this
happens exactly when v ∉ im(A − a Idn1 ) and, in this case, B is similar to a 5 × 5matrix obtained by taking
Ai and raising the rank of a Jordan block relative to the eigenvalue a by one: this can occur for Aq=01 , when
a = p or a = 0, for Aq=02 when a = 0 and for Ap=04 , a = 0.

For the cases Aq=0i , i = 1, 2, with a = 0, one can simply assume that the basis {e2, . . . , e5} with respect
to which Ai is in the form (3.2) is orthonormal, with Je2 = e3, Je4 = e5, and take v = e4, for instance.

For Ap=04 , assume again that {e2, e3, e4, e5} is orthonormal, this time satisfying Je2 = e4, Je3 = e5 and
take v = e3, for example.

For the remaining case Aq=01 , a = p ≠ 0, one can consider for example the Hermitian almost abelian Lie
algebra (g(a, v, A), J, g) determined by the data

a = p, v =
( 0

0
1
0

)
, A =

(
p 1 0 0
0 0 0 0
0 0 0 0
0 0 1 p

)
, p = ̸ 0,

with respect to an adapted unitary basis {e1, . . . , e6}, Jei = e7−i, i = 1, 2, 3. Then, it is easy to check that A
is similar to Aq=01 and that Atv = 0, v ∈ ̸ im(A − p Idn1 ), so that the structure is LCB and the whole matrix B is
similar to  p 1 0 0 0

0 p 0 0 0
0 0 p 0 0
0 0 0 0 0
0 0 0 0 0


as desired.

These new cases with v ≠ 0 yield Lie algebras isomorphic to l7, l12, l14 or one of the two nilpotent Lie
algebras of the statement, concluding the proof.

Remark 3.3. It can be shown that, among the unimodular Lie groups whose Lie algebra appears in Theorem
3.2, the ones with Lie algebra lq=−

1
2−p

1 , lp=−
1
4

2 , lr=−
p
2 −q

3 and l
p=− 1

2
9 do not admit any compact quotients by lattices.

We prove this only for lq=−
1
2−p

1 , since the discussion for the other two Lie algebras is analogous. Following
[12], a co-compact lattice exists on such Lie groups if and only if there exists a non-zero t0 ∈ R and a basis of
n such that the matrix associated with exp(t0adf6 )|n has integer entries. In the basis {f1, . . . , f5} one easily
computes

exp(t adf6 )|n = diag
(
et , ept , ept , e−pt− 1

2 t , e−pt− 1
2 t
)
. (3.3)
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Its minimal polynomial, namely the monic polynomial Pt of least degree such that Pt(exp(t adf6 )|n) = 0, is of
the form Pt(x) =

∑3
i=0 ai(t, p)xi, with coe�cients

a0 = −e
t
2 , a1 = et(1+p) + e−

t
2 + et( 12−p), a2 = −ept − et − e−t(

1
2+p), a3 = 1.

If (3.3) is conjugate to an integer matrix for some t0, then necessarily Pt0 (x) is an integer polynomial, so that
a0(t0, p) ∈ Z forces t0 = 2 log k, for some k ∈ Z>0. Assuming a2(t0, p) ∈ Z, one computes

k2
(
k2 + a2(t0, p)

)
+ a1(t0, p) = 1

k ,

which is integer if and only if k = 1, that is, t0 = 0, a contradiction.
Instead, for some choices of the parameters, the Lie groups with Lie algebra lr=−

p
2 −q

4 , lq=−
p
2

10 and lp=014 admit
co-compact lattices (see [16] and the references therein). Some results are known for the remainingLie groups,
namely theones corresponding to lq=−

p
4

5 (see [13]), but the existenceof lattices on them is still anopenproblem.

4 Compatibility results between Hermitian metrics
In this section, we ask whether a (unimodular) almost abelian Lie algebra endowed with a �xed complex
structure may admit two di�erent kinds of special Hermitian metrics.

In order to carry over the results to almost abelian solvmanifolds, we exploit the well-known “sym-
metrization” process. We summarize the results we need in the next lemma. Recall that a solvable Lie group
is called completely solvable if all the eigenvalues of adX are real, for every X in its Lie algebra.

Lemma 4.1. ([5, 10, 15, 30, 33]) Let Γ\G be a compact solvmanifold endowed with a left-invariant complex
structure (J, g). Then, the existence of a balanced (resp. SKT) metric implies the existence of a left-invariant
balanced (resp. SKT) metric. If G is completely solvable, the analogous results hold for LCK and LCB metrics.

4.1 SKT and LCB

The SKT condition and the balanced condition are two “transversal” generalizations of the Kähler condition.
Indeed, by [1] a Hermitian metric which is both SKT and balanced is Kähler and it has been conjectured in
[19] that a compact complex manifold admitting an SKT metric and a balanced metric necessarily admits a
Kähler metric as well. For almost abelian solvmanifolds, the conjecture was proven in [17].

The same transversality no longer holds when considering the weaker LCB condition instead of the bal-
anced condition, and the same Hermitian metric can even be SKT and LCB at the same time: in [18], it was
proven that every non-Kähler compact homogeneous complex surface admits a compact torus bundle carry-
ing an SKT and LCB metric; moreover, an example of compact nilmanifold in any even dimension admitting
a left-invariant metric which is both SKT and LCB with respect to a �xed left-invariant complex structure was
exhibited in [27].

In addition, recalling that LCKmetrics are particular instances of LCBmetrics, it is easy to see that a non-
Kähler LCK almost abelian Lie algebra (g(a, v, A), J, g) is also SKT if and only if it satis�es (3.1) with a = ̸ 0 and
λ = − a2 or if n = 2, g ∼= h3 ⊕R or g ∼= aff2 ⊕ 2R (cf. also [17]).

Proposition 4.2. Let g be an almost abelian Lie algebra endowed with a complex structure J. If (g, J) admits
an SKT metric, then it admits an LCB metric as well.

Proof. Let g denote the SKT metric. By [7], with respect a unitary basis {e1, . . . , e2n} of g adapted to the
splitting g = Jk ⊕ n1 ⊕ k, the matrix B associated with ade2n |n is of the form (2.1), with [A, At] = 0 and the
eigenvalues of A having real part equal to − a2 or 0.

Decompose v ∈ n1 = im(A − a Idn1 ) ⊕
(
im(A − a Idn1 )

)⊥g as v = AX − aX + v′ for some X ∈ n1 and
v′ ∈

(
im(A − a Idn1 )

)⊥g , that is, (A − a Idn1 )tv′ = 0.
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Consider the new J-Hermitian metric g′ = g|n1 + (e1
′)2 + (e2n ′)2, with e′1 = e1 − X, e′2n = Je′1. Then, the

matrix B′ associated with ade′2n |n with respect to the new adapted unitary basis {e′1, e2, . . . , e2n−1} for n is of
the form

B′ =
(
a 0
v′ A

)
,

with A as above and (A − a Idn1 )tv′ = 0. If a ≠ 0, a is not an eigenvalue of A, so that v′ = 0. Instead, if a = 0,
we have Atv′ = 0. In either case, the metric g′ is LCB.

Using Lemma 4.1, we get

Corollary 4.3. Let Γ\G be a compact almost abelian solvmanifold endowedwith a left-invariant complex struc-
ture J. If (Γ\G, J) admits an SKT metric, then it admits an LCB metric as well.

Example 4.4. We now exhibit an example of compact almost abelian solvmanifold in any even dimension
admitting a (left-invariant)Hermitian structurewhich is at the same timeSKTandLCB. For any n ≥ 2, consider
the 2n-dimensional simply connected unimodular almost abelian Lie group S2n having indecomposable Lie
algebra s2n endowed with a �xed coframe {e1, . . . , e2n} satisfying the structure equations

de1 = a e1 ∧ e2n , de2 = − a2 e
2 ∧ e2n + e3 ∧ e2n , de3 = −e2 ∧ e2n − a

2 e
3 ∧ e2n , de2n = 0,

de2i = c e2i+1 ∧ e2n , de2i+1 = −c e2i ∧ e2n , i = 2, . . . , n − 1,

for some a, c ∈ R − {0}, with c depending on a in a way which we shall explain. Now, it is easy to check that
the left-invariant Hermitian structure (J, g) on S2n de�ned by

Je1 = e2n , Je2i = e2i+1, i = 1, . . . , n − 1, g =
2n∑
i=1

(ei)2,

is both SKT and LCB, satisfying in particular v = 0.
As we shall now show, S2n admits compact quotients by lattices, for all n, for some values of a and c: by

[12], this is equivalent to proving that there exists t0 ∈ R − {0} such that exp(t0B2n) is similar to an integer
matrix, B2n being the (2n − 1) × (2n − 1) matrix representing ade2n |n in the �xed basis. The claim is true
for n = 2 for countably many values of a ∈ R − {0}, with compact quotients of S4 biholomorphic to Inoue
surfaces (see [2, Section 3.2.2] for a detailed discussion). Fixing a ∈ R such that S4 admits co-compact lattices,
let t0 ∈ R − {0} be such that exp(t0B4) is similar to an integer matrix and set c := 2π

t0 , so that

exp
(
t0
( 0 c
−c 0

))
=
(
1 0
0 1

)
is an integer matrix. The claim then easily follows in any dimension by induction.

4.2 Balanced and LCK

By [2], almost abelian Lie groups which admit left-invariant LCK structures and compact quotients by lattices
only exist in real dimension four. The resulting solvmanifolds are biholomorphic to primary Kodaira surfaces,
Inoue surfaces, hyperelliptic surfaces or complex tori: out of these, the only ones admitting Kähler metrics
(recall that Kähler is equivalent to balanced, in real dimension four) are complex tori or hyperellyptic sur-
faces, which, by [23], cannot admit non-Kähler LCK metrics. Thus, we phrase the next result only in terms of
structures on Lie algebras and not on compact almost abelian solvmanifolds, where the situation is already
completely understood.

It was proven in [27] that a nilpotent Lie algebra cannot admit a balanced metric and a non-Kähler LCK
metric both compatible with the same complex structure. In the almost abelian setting, the situation is anal-
ogous, apart from one exception in the non-unimodular case.
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Proposition 4.5. Let g be an almost abelian Lie algebra endowed with a complex structure J. If (g, J) admits a
balanced metric, then it does not admit any non-Kähler LCK metrics, unless g ∼= aff2 ⊕ 2R.

Proof. As we have recalled in Proposition 2.1, an LCK almost abelian Lie algebra (g(a, v, A), J, g) can either
satisfy (3.1) or n = 2, A = 0, which corresponds to g ∼= h3 ⊕ R (if a = 0, v = ̸ 0), g ∼= aff2 ⊕ 2R (if a = ̸ 0) or to
4R (if a = 0, v = 0).

Let g denote an LCK metric and assume (3.1). The result readily follows by observing that, in order to
admit a balanced metric, (g, J) must satisfy trA = tr adX|n1 = 0 for all X ∈ g, so that A ∈ u(n1, J1, g). This
implies that g is Kähler.

If n = 2 (in which case balanced implies Kähler) and we have A = 0, note that h3 ⊕ R does not admit
Kähler structures, while all Hermitian structures on 4R are Kähler. On aff2 ⊕ 2R = (f 12, 0, 0, 0), consider the
complex structure de�ned by Jf1 = f2, Jf3 = f4. The Hermitian metric g =∑4

i=1(f i)2 is Kähler, while, denoting
f i � f j = 1

2 (f i ⊗ f j + f j ⊗ f i),

g′ = 2(f 1)2 + 2(f 2)2 + (f 3)2 + (f 4)2 + 2 f 1 � f 3 + 2 f 2 � f 4

is non-Kähler and LCK,with fundamental formω′ = 2f 12+e14−e23+e34 satisfying dω′ = f 124 = (f 2+ f 4)∧ω′,
d(f 2 + f 4) = 0.

4.3 Balanced and LCB

Balanced metrics are trivially LCB. One could ask whether there exist non-Kähler compact solvmanifolds
endowed with a left-invariant complex structure admitting both balanced metrics and non-balanced LCB
metrics.

For nilmanifolds, the answer is a�rmative, as shown in [27]. As a corollary of the next proposition, the
analogous result is not true for completely solvable almost abelian solvmanifolds.

Proposition 4.6. Let g be a unimodular almost abelian Lie algebra endowed with a complex structure J. If
(g, J) carries a balanced metric, then it cannot admit any non-balanced LCB metrics.

Proof. By the characterization of unimodular balanced almost abelian Lie algebras, we know that [g, g] ⊂ n1,
since there exists an adapted unitary basis with respect to the balanced metric satisfying a = 0, v = 0. In
particular, rank(adX) = rank(A) for all X ∈ g transverse to n. Assume a non-balanced LCB metric g exists.
Then, any adapted unitary basis for (g, J, g) satis�es a = 0, trA = 0, Atv = 0, with v = ̸ 0 to ensure the metric
is non-balanced. Now, this implies rank(adX) = rank(A) + 1 for all X ∈ g transverse to n, since v ∈ ̸ imA, a
contradiction.

Recalling Lemma 4.1, we obtain

Corollary 4.7. Let Γ\G be a completely solvable almost abelian solvmanifold endowed with a left-invariant
complex structure J. If (Γ\G, J) carries a balanced metric, then it cannot admit any non-balanced LCB metrics.

Remark 4.8. We note that Proposition 4.6 is no longer true if one drops the hypothesis of unimodularity:
this is clear from the example on the four-dimensional Lie algebra aff2 ⊕ 2R in the proof of Proposition 4.5,
recalling that LCK implies LCB. However, one can easily �nd other examples of complex structures of higher-
dimensional almost abelian Lie algebras admitting both balanced and non-balanced LCB metrics: consider
the six-dimensional almost abelian Lie algebra (see [17])

b2 = (f 16, f 36, 0, f 56, 0, 0),

endowed with the complex structure de�ned by Jf1 = f6, Jf2 = f4, Jf3 = f5. On it, one has the balanced metric
g =∑6

i=1(f i)2 and the non-balanced and non-LCK LCB metric

g′ = 3(f 1)2 + (f 2)2 + (f 3)2 + (f 4)2 + (f 5)2 + 3(f 6)2 + 2(f 1 � f 2 + f 1 � f 3 + f 4 � f 6 + f 5 � f 6),
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whose associated Lee form is the closed 1-form θ′ = f 5 + f 6, as shown by a direct computation.

5 Locally conformally hyperkähler metrics
We now turn our attention to the study of (locally conformally) hyperkähler metrics on almost abelian Lie
algebras.

In the nilpotent setting, these structures were studied in [27], where it was proven that compact nilman-
ifolds never admit left-invariant LCHK structures, unless they are tori.

In the next theorem, we classify almost abelian Lie algebras admitting LCHK structures. Recall that the
spectrum of a matrix (or an endomorphism) D, denoted by Spec(D), is the set of its eigenvalues. Given z ∈ C,
we denote by mD(z) its algebraic multiplicity for D, namely its multiplicity as a root of the characteristic
polynomial of D. When D is complex-diagonalizable, mD(z) is also equal to the (complex) dimension of the
corresponding eigenspace.

Theorem 5.1. A 4m-dimensional almost abelian Lie algebra g = R4m−1 oD R admits an LCHK structure if and
only if D ∈ gl4m−1 is complex-diagonalizable and

(i) Spec(D) ⊂ a +Ri, for some a ∈ R,
(ii) mD(a) ≥ 3,
(iii) mD(a + ib) ∈ 2Z, for every b ∈ R − {0}.

The Lie algebra g admits a hyperkähler structure if and only if the above holds, with a = 0, in which case g is
unimodular and decomposable (g = g′ ⊕ (mD(0))R, with g′ indecomposable) and every LCHK structure on g is
hyperkähler. In particular, there do not exist unimodular almost abelian Lie algebras admitting non-hyperkähler
LCHK structures.

Proof. Assume g admits an LCHK structure (I1, I2, I3, g). In particular, (I1, g) is an LCK structure, so that there
exists an adapted (I1, g)-unitary basis {e1, . . . , e4m} of g such that the matrix B associated with ade4m |n is of
the form (2.1) with the conditions (3.1) or m = 1, A = 0, by [2]. Note that, up to conjugation, we obtain the
same B when considering a basis adapted to (I2, g) or (I3, g).

Assume (3.1) holds. It follows that B is complex-diagonalizable, hence D is. Moreover, Spec(B) ⊂ {a} ∪
λ + Ri. We claim that λ = a: if this were not the case, in order for (I2, g) to be LCK, one should have that
I1(e4m) = ±I2(e4m), implying I3(e4m) = I1I2(e4m) = ±e4m, contradicting I23 = −Idg. For the same reason, it
follows that mB(a) ≥ 3, to accommodate for the fact that I1(e4m), I2(e4m) and I3(e4m) should be eigenvectors
for B with real eigenvalue, hence equal to a.

Now, denote by Vz ⊂ n⊗C the eigenspace for B corresponding to the eigenvalue z ∈ C, and de�ne

m := n ∩ I1n ∩ I2n ∩ I3n = span
〈
e4m , I1(e4m), I2(e4m), I3(e4m)

〉⊥g .

We note that I1, I2, I3 must preserve Wz := (Vz + Vz) ∩ m, for all z ∈ Spec(B), since ade4m |m commutes with
the restriction of each of the three complex structures on m. Note that, when z is not real, we have that Wz
is the set of real elements of Vz ⊕ Vz. It follows that Wz inherits a hyperhermitian structure, so that its real
dimension is a multiple of four, which implies that the complex dimension of Vz is a multiple of 2, when z is
not real. Up to rescaling B to recover D, points (i), (ii) and (iii) of the statement follow.

Assume now that B satis�es A = 0, with m = 1. In particular we have that g is four-dimensional, with
dim[g, g] = 1, so, by [8, Proposition 3.2], g does not admit hypercomplex structures.

Conversely, assume g = R4m−1 oD R satis�es D being complex-diagonalizable and requirements (i), (ii)
and (iii). It follows that, up to a change of basis {e1, . . . , e4m−1} of R4m−1, D is of the form

D = diag (C1, C2, . . . , Cm−1, a, a, a) , (5.1)
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where, for i = 1, . . . ,m − 1, Ci is a 4 × 4matrix of the form

Ci =
( a bi 0 0
−bi a 0 0
0 0 a −bi
0 0 bi a

)
,

for some (possibly vanishing) bi ∈ R. Denoting by e4m the generator of the extraR, an explicit LCHK structure
on g is given by (I1, I2, I3, g), with g =

∑4m
i=1(ei)2 and, with respect to the �xed basis, Ii = diag(Ki , . . . , Ki),

i = 1, 2, 3, with
K1 =

( 0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

)
, K2 =

( 0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

)
, K3 =

( 0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

)
.

The three induced Lee forms are all equal to the closed 1-form θ = −(4m − 2)ae4m.
The part of the claim regarding hyperkähler structures easily follows from the fact that the Kähler con-

dition on almost abelian Lie algebras corresponds to (3.1), with λ = 0. In particular, in this case, we note
that, if D is of the form (5.1), with mD(0) = 3 + 4h, we can assume bi = 0, i = m − h, . . . ,m − 1, so that
span

〈
e4(m−h)−3, . . . , e4m−1

〉
is an abelian subalgebra of dimension mD(0) = 3 + 4h, while its complement,

span
〈
e1, . . . , e4(m−h−1), e4m

〉
, is an indecomposable almost abelian Lie algebra.

The previous theorem can be used to get a more precise list of almost abelian Lie algebras admitting hyper-
kähler or LCHK structures: in the next proposition, we cover dimensions 4, 8 and 12.

Proposition 5.2. Let g be a 4m-dimensional almost abelian Lie algebra.

• If m = 1, g admits a hyperkähler structure if and only if g = 4R, while it admits a non-hyperkähler LCHK
structure if and only if it is isomorphic to (f 14, f 24, f 34, 0).

• If m = 2, g admits a hyperkähler structure if and only if it is isomorphic to one among
8R = (0, 0, 0, 0, 0, 0, 0, 0),
(f 28, −f 18, f 48, −f 38, 0, 0, 0, 0),

while it admits a non-hyperkähler LCHK structure if and only if it is isomorphic to
(f 18, f 28, f 38, f 48, f 58, f 68, f 78, 0),
(f 18, f 28, f 38, f 48 + pf 58, −pf 48 + f 58, f 68 + pf 78, −pf 68 + f 78, 0), p = ̸ 0.

• If m = 3, g admits a hyperkähler structure if and only if it is isomorphic to one among
12R = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(f 2,12, −f 1,12, f 4,12, −f 3,12, 0, 0, 0, 0, 0, 0, 0, 0),
(f 2,12, −f 1,12, f 4,12, −f 3,12, pf 6,12, −pf 5,12, pf 8,12, −pf 7,12, 0, 0, 0, 0), p = ̸ 0,

while it admits a non-hyperkähler LCHK structure if and only if it is isomorphic to
(f 1,12, f 2,12, f 3,12, f 4,12, f 5,12, f 6,12, f 7,12, f 8,12, f 9,12, f 10,12, f 11,12, 0),
(f 1,12, f 2,12, f 3,12, f 4,12, f 5,12, f 6,12, f 7,12, f 8,12 + pf 9,12, −pf 8,12 + f 9,12, f 10,12 + pf 11,12,
− pf 10,12 + f 11,12, 0), p ≠ 0,

(f 1,12, f 2,12, f 3,12, f 4,12 + pf 5,12, −pf 4,12 + f 5,12, f 6,12 + pf 7,12, −pf 6,12 + f 7,12, f 8,12 + qf 9,12,
− qf 8,12 + f 9,12, f 10,12 + qf 11,12, −qf 10,12 + f 11,12, 0), pq ≠ 0.
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