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Abstract

We establish features of so-called Yangian secret symmetries for AdS3 type IIB

superstring backgrounds thus verifying the persistence of such symmetries to this

new instance of the AdS/CFT correspondence. Specifically, we find two a priori

different classes of secret symmetry generators. One class of generators, anticipated

from the previous literature, is more naturally embedded in the algebra governing

the integrable scattering problem. The other class of generators is more elusive,

and somewhat closer in its form to its higher-dimensional AdS5 counterpart. All

of these symmetries respect left-right crossing. In addition, by considering the

interplay between left and right representations, we gain a new perspective on the

AdS5 case. We also study the RT T -realisation of the Yangian in AdS3 backgrounds

thus establishing a new incarnation of the Beisert–de Leeuw construction.
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1. Introduction, summary, and outlook

1.1. Introduction

Secret symmetries. The integrable structure permeating the AdS/CFT correspondence (see

e.g. [1] for reviews) keeps revealing new surprising features that extend our algebraic under-

standing of scattering problems and uncover new structures in supersymmetric quantum groups.

For instance, the Hopf superalgebra which controls the AdS5/CFT4 integrable system is a

rather unconventional infinite-dimensional Yangian-type symmetry [2], whose level-0 Lie algebra

sector is Beisert’s three-fold centrally-extended psu(2|2) superalgebra [3, 4]. At level 1, the

Yangian generators1 come each as partners to the level-0 ones, except for the presence of an

additional symmetry [6, 7], which has no analog at level 0. This secret generator corresponds

to a hypercharge, and acts as a fermion number on the scattering particles, counting the total

number of fermions. Specific entries in Beisert’s S-matrix [3] of the form |boson〉⊗ |boson〉 7→
|fermion〉⊗|fermion〉 and vice versa, for example, break the fermion number (−)F⊗1+1⊗(−)F ;

here, F denotes the fermion number operator. This is restored at level 1 by means of the non-

trivial coproduct characteristic of the secret symmetry.

The presence of the hypercharge at level 0 would automatically extend the algebra, which

transforms the scattering excitations, to gl(2|2), but this is not straightforwardly compatible

with the central extension. Nevertheless, recent progress [8] based on the so-called RT T -

formulation of the Yangian has revealed how the secret symmetry is non-trivially embedded in

the algebra. However, it is still a challenge to obtain a translation to Drinfeld’s picture of this

discovery. Moreover, the issue of crossing symmetry is particularly delicate.

It is also not clear how much of this secret symmetry is accidental to AdS5 and to the special

features of the Lie superalgebra psu(2|2) [9]. The fact that a similar effect has been observed by

1For supersymmetric Yangians, the reader is referred e.g. to [5].
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now in a variety of (a priori unrelated) sectors of the AdS/CFT correspondence2 is an indication

that this is not an isolated feature of the spectral problem. Nevertheless, all these other sectors

still lie within AdS5 or close relatives. To see if this phenomenon is a truly universal feature of

integrability within the AdS/CFT framework, it is crucial to extend the analysis beyond AdS5

to other dimensions.3 At the same time, the deeper physical nature of the secret symmetry

remains quite mysterious, and we hope that investigating it in other instances of the AdS/CFT

correspondence might shed light on some of its most elusive properties.

This is the direction we wish to pursue in this paper. Specifically, we find secret symmetries

in the AdS3 spectral problem and analyse their features. Our present analysis also yields

interesting information about the AdS5 case, when looking back in perspective, as we will

explain next.

AdS3 integrable scattering. Recently, a new example of the AdS/CFT correspondence

has become amenable to integrability methods. This involves type IIB backgrounds with an

AdS3 factor in the metric, and the two most studied examples with 16 supersymmetries are

AdS3×S3×T 4 and AdS3×S3×S3×S1. The latter background is characterised by a continuum

parameter α related to the radii of the two 3-spheres, and which has a reflection in the appear-

ance of the exceptional Lie superalgebra D(2, 1;α)×D(2, 1;α) as a superconformal algebra.4

Notice that in the contracting limit α → 0, the algebra reduces to psu(1, 1|2) × psu(1, 1|2),

which, in turn, corresponds to the aforementioned background with the 4-torus factor.

Such configurations provide instances of the AdS3/CFT2 correspondence. This was trans-

ferred into the framework of integrable systems by [14], in which classical integrability was

demonstrated (see also [16]), a set of semiclassical finite gap equations for the spectrum were

formulated, and a conjecture was put forward for an all-loop quantum Bethe ansatz. The latter

was also fully elaborated into a spin chain picture [17]. The initial focus has been primarily on

the massive BMN modes [18], leaving aside the massless modes that now appear in contrast

with the AdS5 case (see however [19]). The problem of a fully consistent treatment of such

massless modes has recently been investigated from a world-sheet perspective, paving the way

to incorporate these excitations into the scaffolding of integrability [20–22]. Our motivation

for pursuing an analysis of the quantum group symmetry algebra is dictated by the desire of

eventually elucidating the role the massless modes in the full quantum group behind the scat-

tering problem, building up on the Hopf algebra analysis of [21]. One is interested in seeing

if the algebra can help achieving the full description of the massless modes at the level of the

universal R-matrix. We hope this paper’s findings can provide a further step in that direction.

To this end, we resort to the scattering theory developed in [23]. Specifically, the authors

of [23] derived an S-matrix and Bethe ansatz for the AdS3×S3×S3×S1 case from a centrally-

2This includes the boundary problem [10], n-point amplitudes [11], pure-spinor formalism [12], and quantum-

affine deformations [13].
3The AdS4 background, for its nature of having a very similar S-matrix structure, does not seem to reveal

much further on the secret symmetry issue.
4Recall from [14] that the corresponding Metsaev–Tseytlin action [15] is modelled on the supercoset space

[D(2, 1;α)×D(2, 1;α)]/[SU(1, 1)× SU(2)× SU(2)], where D(2, 1;α) is the Lie supergroup corresponding to

D(2, 1;α).
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extended algebra of the Beisert type [3, 4], adapted to a much smaller residual symmetry

transforming the excitations. In a way, the smaller components of the algebra proliferate into

several factors, only transferring the complication of a large single multiplet to many smaller

ones instead. In particular, one has left and right components to worry about in the present

case. We will describe this symmetry at length in the main text of the paper.

In [24], both the exact S-matrix and the Bethe ansatz for the AdS3 × S3 × T 4 case were

constructed.5 This S-matrix received a series of confirmations from perturbative computations

performed using the string sigma model [26,16,27]. Suitable dressing phases to supplement the

S-matrix and making it into a solution of the crossing equation were proposed in [28]. More

studies have followed addressing various aspects of the spectral problem [29]. Furthermore,

AdS3×S3×T 4 theories with mixed R-R and NS-NS flux have been analysed, and they provide

in principle an interesting setup for the study of the conformal limit of a combined massive-

massless integrable structure [30–32], cf. [33]. As a remark, we should say that it is quite

crucial to test the dressing-phase solutions with new methods, and the algebraic one—via the

universal R-matrix—could be a potential tool, as we will comment upon in the conclusions.

The present treatment may therefore have a bearance on the problem of the dressing phases as

well, as the inclusion of all symmetries of the system is essential to understand how to formulate

the universal R-matrix for the complete centrally-extended algebra.6

Our algebraic treatment is general enough to encompass both backgrounds, hence we study

the sphere case from the beginning. In fact, the only difference is that one is dealing with two

copies of the fundamental gl(1|1)l×gl(1|1)r rather than only one copy, and having a parameter

s ∈ R (s = α for the modes we study in this paper) equal to 1 in the torus case (α → 1).

The two copies factorise anyway, and all our formulæ just go through for arbitrary s (we will

only need to remember to keep s non-zero, to remain inside the massive sector for the current

concern of this paper).

1.2. Summary and outlook

Summary. In the first part of the paper, we find a complete realisation of the secret Yangian

symmetries for AdS3 backgrounds, including their crossing symmetry condition. We will find

two classes of secret generators. One class is embedded in the gl(1|1) Yangian while the other

one is not and at the same time more reminiscent of its higher-dimensional AdS5 analog. Due to

this embedding (i.e. the presence of a level-0 generator), we are able to relate these two classes

by a quadratic map in the generators abstractly.7 For the embedded level-1 secret symmetry, an

interpretation within the superconformal algebra of the theory (before the symmetry-breaking

implemented by the choice of the spin-chain vacuum) is likely to occur in the T 4 case, where

5See also the earlier attempts [25].
6Let us remark that the universal R-matrix in [24] reproduces the matrix form of the individual gl(1|1)

S-matrix blocks, and it is virtually insensitive to the central extension—were it not for the constraint on the

representation parameters. It is still an open problem to find a global universal R-matrix incorporating all the

blocks and accounting for the central extension.
7 Because of their Yangian-like coproducts with the typical quadratic tail, a quadratic map is the most one

would be allowed to have, to map not only the generators to each other but their coproducts as well.
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the level zero counterpart preserves the vacuum [24]. This is, however, not the case for the

secret generator. By discussing the crossing symmetry relation of the latter, we gain a new

perspective that might be useful in interpreting a recent observation of [8]. In this paper,

the secret symmetry was accommodated within crossing by allowing a shift in the multiplying

parameter. Our results seem to suggest that even in the AdS5 case one might find it useful

to think of the crossed secret generator as a right generator, to a left one being the secret

symmetry originally found.

In the second part of the paper, we find an incarnation of the RT T -construction of Beisert

and de Leeuw’s [8] in the AdS3 case. We see that we can reproduce the Yangian from the R-

matrix via the RT T -construction, both for the left and the right scattering problem, extending

the validity of their framework to the lower-dimensional case at hand.

Outlook. Let us point out a few open problems which deserve further investigation, and serve

as future direction of research.

Firstly, all our conclusions are extrapolated from specific representations. Therefore, one

should study general representations to assess the universality of our results.

Secondly, the universal R-matrix for the complete centrally-extended algebra is still un-

known. The same problem still plagues the AdS5 case, although the recent result of [8] opened

up the problem to a new promising approach. It has also been becoming clear that a signi-

ficant re-interpretation of the Khoroshkin–Tolstoy formula has to occur for superalgebras with

vanishing Killing form8 [34], and we hope that our analysis will provide further input to tackle

the problem.

Finally, a world-sheet realisation of the secret symmetry in terms of non-local charges is

still missing in any dimension, and we believe it is absolutely crucial to close this gap. This

would be particularly important in view of the off-shell symmetry algebra approach of [4, 20].

We leave this fascinating problem to future investigations.

2. Yangian of gl(1|1)l × gl(1|1)r

In this section, we first review the features of Hopf superalgebras salient to the description of

integrable scattering problems. For reviews, we refer the reader to [35] and references therein.

We then move on and summarise the relevant findings of [24] for the reader’s convenience.

Finally, we provide the details of the secret symmetries.

2.1. Hopf superalgebra generalities

One first has to fix an algebra of symmetries of the system which one wishes to describe.

In the superstring case, this turns out to be quite systematically a certain Lie superalgebra

g. To be able to deal with multiparticle states, one needs two additional maps which turn

the algebra into a bi-superalgebra A. One is the coproduct, ∆ : A → A ⊗ A, that encodes

how the symmetry acts on two-particle states. The other map is the counit, ε : A → C. A

8We thank T.  Lukowski for discussions on this point.
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series of compatibility relations, most of which of immediate physical intuition, guarantee the

consistency of the mathematical structure.

To go from a bi-superalgebra to a Hopf superalgebra, one equips the former with an antipode

map, S : A → A, which is used to define the antiparticle (conjugated) representation to any

given representation of the Lie superalgebra. The antipode is also subject to compatibility with

the other maps, as we will have a chance to revisit in the main text. For its nature, the antipode

is an anti-morphism, that is, S (ab) = (−)|a||b|S (b)S (a) for all a, b ∈ A; here |a| denotes the

Graßmann-parity of a ∈ A. Moreover, one can prove that, if a bi-superalgebra has an antipode

then the latter is unique.

To obtain the two-particle S-matrix, one first defines the action of symmetry on in states

by means of the coproduct, as we stated above. On the other hand, the permuted map

P ◦∆ =: ∆op, with P the graded permutation map, will be declared the action on out states.

These two actions can differ, in general, extending standard textbook quantum mechanics

where the Leibniz rule ∆(a) = a ⊗ 1 + 1 ⊗ a for all a ∈ A guarantees the cocommutativity

of the Hopf superalgebra, that is, ∆op = ∆. Since, nevertheless, ∆ and ∆op generate tensor

product representations with the same dimension, the two may be related by conjugation via

an invertible element in the tensor product algebra, and this is the S-matrix or the R-matrix

in mathematical literature:

R ∈ A⊗A with ∆op(a)R = R∆(a) for all a ∈ A . (2.1)

When this happens, the Hopf superalgebra is dubbed quasi-cocommutative, and, if the R-

matrix satisfies an additional property which we will loosely relate to the physical bootstrap

principle [36], it is also called quasi-triangular. The S-matrix needs to be compatible with

the antipode, ensuring the physical crossing symmetry. A theorem of Drinfeld’s shows that

quasi-triangularity implies the Yang–Baxter equation and the crossing condition.

Hopf superalgebras provide a particularly suitable framework to formulate integrable scatter-

ing problems. Moreover, they unify the treatment of arbitrary representations of the symmetry

algebra (not only the fundamental particles but also the bound states transforming in higher

irreducible representations) in one single language. The so-called universal R-matrix R (that

is, the abstract solution to the quasi cocommutativity condition) has a special importance and

may sometimes be seen as an alternative to other approaches to the inverse scattering method.

2.2. Lie algebra, representations, and R-matrices

Let us begin by writing the action of the symmetry generators on the elementary scattering

excitations, by focusing on one of the two copies of gl(1|1)l×gl(1|1)r, say the left copy gl(1|1)l.

The right copy can be studied in complete analogy [24], and we will connect the two in section

3.3. Each of these copies is further split into left and right representations that are related

by crossing symmetry. The non-vanishing (anti-)commutation relations of the generators9 of

gl(1|1)l := 〈B,H,Q,S〉 read as

[B,Q] = −2Q , [B,S] = 2S , and {Q,S} = −H . (2.2)

9For the sake of brevity, we shall omit the subscript ‘l’ on the generators.
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Here, B and H are Graßmann-parity even (bosonic) and Q and S are Graßmann-parity odd (fer-

mionic), respectively. Moreover, [·, ·] denotes the commutator and {·, ·} the anti-commutator.

We will directly put ourselves into what was dubbed the most symmetric frame in [24]. The

coproduct is obtained as (cf. [37] for the AdS5 case)10

∆(B) := B⊗ 1+ 1⊗B and ∆(H) := H⊗ 1+ 1⊗ H ,

∆(Q) := Q⊗ e−i
p
4 + ei

p
4 ⊗Q and ∆(S) := S⊗ ei

p
4 + e−i

p
4 ⊗S ,

∆(eip) := eip ⊗ eip and ∆(1) := 1⊗ 1 ,

(2.3)

where i :=
√
−1 and p ∈ R. Due to the centrality of eip, this coproduct is a Lie superalgebra

homomorphism.11

Left representation. The left representation of gl(1|1)l is described by a left doublet (|φ〉 , |ψ〉)
with symmetry action given by

BL :=

(
1 0

0 −1

)
HL := −γ2h

2

(
1 0

0 1

)
,

QL := γ

√
h

2

(
0 0

1 0

)
, SL := γ

√
h

2

(
0 1

0 0

)
,

(2.4a)

where

γ :=
√

i(x− − x+) ,
2is

h
=: x+ +

1

x+
− x− − 1

x−
, and eip =

x+

x−
, (2.4b)

with x± ∈ C and s, h ∈ R.12 Notice that h is a function of the ’t Hooft coupling. There is no

need to specify the momentum generator p as being left or right, as it will be common to the

two representations. Letting ΦLL ∈ C be an overall scalar factor (determined shortly), it can

be checked that the left-left R-matrix denoted by RLL and defined by

RLL(|φ〉 ⊗ |φ〉) := ΦLL

x+
2 − x

−
1

x−2 − x
+
1

ei
(p1−p2)

4 |φ〉 ⊗ |φ〉 ,

RLL(|φ〉 ⊗ |ψ〉) := ΦLL

x+
2 − x

+
1

x−2 − x
+
1

e−i
(p1+p2)

4 |φ〉 ⊗ |ψ〉+ ΦLL

x+
2 − x

−
2

x−2 − x
+
1

γ1

γ2
|ψ〉 ⊗ |φ〉 ,

RLL(|ψ〉 ⊗ |φ〉) := ΦLL

x−2 − x
−
1

x−2 − x
+
1

ei
(p1+p2)

4 |ψ〉 ⊗ |φ〉+ ΦLL

x+
1 − x

−
1

x−2 − x
+
1

γ2

γ1
|φ〉 ⊗ |ψ〉 ,

RLL(|ψ〉 ⊗ |ψ〉) := ΦLL ei
(p2−p1)

4 |ψ〉 ⊗ |ψ〉 ,

(2.5)

10We have included the unit element 1 in the description of the coproduct, since we will be dealing with the

universal enveloping algebra (formed by arbitrary products and powers of the basic algebra generators) which

has a unit. The element eip is central.
11See also [31, 38].
12The choice of a branch for the square root in γ is not essential for the algebraic purposes of this paper, but

it would matter for discussions on the analytic properties of the dressing phases.
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where the indices 1 and 2 refer to the two scattering particles (first and second factor of the

tensor product), indeed satisfies (2.1), that is,

∆op
LL (J)RLL = RLL ∆LL(J) for all J ∈ gl(1|1)l . (2.6)

The subscript in ∆op
LL and ∆LL means taking both factors of the coproduct (2.3) in the left

representation (2.4a).

Right representation. Crossing symmetry relates left and right representations of gl(1|1)l.

The action of the right representation on the right doublet of excitations (|φ̄〉 , |ψ̄〉) is described

by

BR := −

(
1 0

0 −1

)
, HR := − γ2

x+x−
h

2

(
1 0

0 1

)
,

QR := − γ√
x+ x−

√
h

2

(
0 1

0 0

)
, SR := − γ√

x+ x−

√
h

2

(
0 0

1 0

) (2.7)

with γ and h as in (2.4b). The antipode S performing the connection is easily found applying

the defining rule

µ ◦ (S ⊗ 1) ◦∆ = η ◦ ε (2.8)

to the coproduct (2.3); the map µ multiplies together two generators of the symmetry algebra,

while ε is the counit and η the unit map. Both η and ε have to satisfy certain Hopf algebra

consistency conditions with the multiplication and the coproduct map. In our case, these

conditions amount to

ε(J) = 0 for all J ∈ gl(1|1)l and ε(1) = 1 , (2.9)

and the antipode acts simply as

S (J) = −J for all J ∈ gl(1|1)l , S (eip) = e−ip , and S (1) = 1 . (2.10)

Hence, the antipode map is idempotent and thus the same as its inverse. It was found in [24]

that the left-right relation for any generator J can be written as

S
(
JL(x

±)
)

= C−1

[
JR

(
1

x±

)]str

C , (2.11a)

where C is the matrix of charge conjugation

C :=

(
1 0

0 i

)
, (2.11b)

and the apex str denotes supertransposition. Charge conjugation allows to convert the left

moving basis states into the right moving ones by means of |φ〉 7→ |φ̄〉 and |ψ〉 7→ i |ψ̄〉.
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Letting ΦRR ∈ C be an overall scalar factor (determined shortly), it can be checked that

the right-right R-matrix denoted by RRR and defined by

RRR(|φ̄〉 ⊗ |φ̄〉) := ΦRR

x+
2 − x

−
1

x−2 − x
+
1

e3i
(p1−p2)

4 |φ̄〉 ⊗ |φ̄〉 ,

RRR(|φ̄〉 ⊗ |ψ̄〉) := ΦRR

x+
2 − x

+
1

x−2 − x
+
1

ei
(p1−3p2)

4 |φ̄〉 ⊗ |ψ̄〉+ ΦRR

iγ1γ2

x−2 − x
+
1

ei
(p1−p2)

2 |ψ̄〉 ⊗ |φ̄〉 ,

RRR(|ψ̄〉 ⊗ |φ̄〉) := ΦRR

x−2 − x
−
1

x−2 − x
+
1

ei
(3p1−p2)

4 |ψ̄〉 ⊗ |φ̄〉+ ΦRR

iγ1γ2

x−2 − x
+
1

ei
(p1−p2)

2 |φ̄〉 ⊗ |ψ̄〉 ,

RRR(|ψ̄〉 ⊗ |ψ̄〉) := ΦRR ei
(p1−p2)

4 |ψ̄〉 ⊗ |ψ̄〉
(2.12)

satisfies the right-version of (2.1).

Mixed representations. One can now project the coproduct (2.3) into a mixed combination

of right representation in the first factor and left representation in the second, namely ∆RL, and

solve the equation for the scattering of a left mover with a right mover:

∆op
RL (J)RRL = RRL ∆RL(J) for all J ∈ gl(1|1)l . (2.13)

Letting ΦRL ∈ C be an overall scalar factor (determined shortly), the corresponding R-matrix

reads

RRL(|φ̄〉 ⊗ |φ〉) := ΦRL

x−2 x
+
1 − 1

x+
2 x

+
1 − 1

ei
(p1+p2)

4 |φ̄〉 ⊗ |φ〉+ ΦRL

iγ1γ2

(x+
2 x

+
1 − 1)

ei
p1
2 |ψ̄〉 ⊗ |ψ〉 ,

RRL(|φ̄〉 ⊗ |ψ〉) := ΦRL

x−2 x
−
1 − 1

x+
2 x

+
1 − 1

ei
(3p1+p2)

4 |φ̄〉 ⊗ |ψ〉 ,

RRL(|ψ̄〉 ⊗ |φ〉) := ΦRLe
i
(p1−p2)

4 |ψ̄〉 ⊗ |φ〉 ,

RRL(|ψ̄〉 ⊗ |ψ〉) := ΦRL

x+
2 x
−
1 − 1

x+
2 x

+
1 − 1

ei
(3p1−p2)

4 |ψ̄〉 ⊗ |ψ〉+ ΦRL

iγ1γ2

x+
2 x

+
1 − 1

ei
p1
2 |φ̄〉 ⊗ |φ〉 ,

(2.14)

and satisfies the crossing equation13 (cf. [39])

(C−1 ⊗ 1)R str1
RL

( 1

x±1
, x±2

)
(C ⊗ 1)RLL(x

±
1 , x

±
2 ) = 1⊗ 1 (2.15)

(stri meaning supertransposition in the factor i), provided the scalar factors are related by a

specific condition. Such a condition was the object of the analysis in [28].

The other possible combination of mixed scattering is obtained in [24] by solving the analog

of the coproduct relations (2.6) and (2.13) projected into the appropriate representations, the

13This equation is derived from the Hopf superalgebra universal relation (S ⊗ 1)R = R−1 = (1⊗S−1)R.
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result being

RLR(|φ〉 ⊗ |φ̄〉) := ΦLR

x−2 x
+
1 − 1

x−2 x
−
1 − 1

e−i
(p1+p2)

4 |φ〉 ⊗ |φ̄〉+ ΦLR

iγ1γ2

x−2 x
−
1 − 1

e−i
p2
2 |ψ〉 ⊗ |ψ̄〉 ,

RLR(|φ〉 ⊗ |ψ̄〉) := ΦLR ei
(p1−p2)

4 |φ〉 ⊗ |ψ̄〉 ,

RLR(|ψ〉 ⊗ |φ̄〉) := ΦLR

x+
1 x

+
2 − 1

x−1 x
−
2 − 1

e−i
(p1+3p2)

4 |ψ〉 ⊗ |φ̄〉 ,

RLR(|ψ〉 ⊗ |ψ̄〉) := ΦLR

x+
2 x
−
1 − 1

x−2 x
−
1 − 1

ei
(p1−3p2)

4 |ψ〉 ⊗ |ψ̄〉+ ΦLR

iγ1γ2

x−2 x
−
1 − 1

e−i
p2
2 |φ〉 ⊗ |φ̄〉 ,

(2.16)

where ΦLR ∈ C is an overall scalar factor (determined shortly).

The remaining crossing equations analogous to (2.15), and similarly dealt with in [28], read

(C−1 ⊗ 1)R str1
RR

( 1

x±1
, x±2

)
(C ⊗ 1)RLR(x±1 , x

±
2 ) = 1⊗ 1 ,

(1⊗ C−1)R str2
LR

(
x±1 ,

1

x±2

)
(1⊗ C )RLL(x

±
1 , x

±
2 ) = 1⊗ 1 ,

(1⊗ C−1)R str2
RR

(
x±1 ,

1

x±2

)
(1⊗ C )RRL(x

±
1 , x

±
2 ) = 1⊗ 1 .

(2.17)

Let us notice the the above R-matrices have the following property:

RRR =
ΦRR

ΦLL

ei
(p1−p2)

2 RLL and RLR =
ΦLR

ΦRL

e−i
(p1+p2)

2
x+

2 x
+
1 − 1

x−2 x
−
1 − 1

RRL . (2.18)

Scalar factors. We report for completeness the equations imposed on the scalar factors by

the crossing equations, together with the requirements of unitarity14

[RLL]12 [RLL]21 = 1⊗ 1 , [RRL]12 [RLR]21 = 1⊗ 1 ,
[RLR]12 [RRL]21 = 1⊗ 1 , [RRR]12 [RRR]21 = 1⊗ 1 .

(2.19)

We will not describe the solution proposed in [28], since we will not need such a solution for

the present algebraic purposes. The conditions are

ΦLL [ΦRL]1̄ =
x+

2 − x
+
1

x+
2 − x

−
1

, ΦLR [ΦRR]1̄ =
x+

1 − 1
x−2

x+
1 − 1

x+
2

,

ΦLL [ΦLR]2̄ =
x−2 − x

−
1

x+
2 − x

−
1

, ΦRL [ΦRR]2̄ =
x−2 − 1

x+
1

x−2 − 1
x−1

,

ΦLL [ΦLL]21 = 1 , ΦLR [ΦRL]21 = 1 , ΦRR [ΦRR]21 = 1 .

(2.20)

In the above, [Φ] ī denotes the antiparticle map in the variable i, namely x±i 7→ 1/x±i .

14In what follows, R21 =
[
P ◦ R

]
(x±2 , x

±
1 ) when we deal with R-matrices, while Φ21 = Φ(x±2 , x

±
1 ) when we

deal with scalar factors.
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2.3. Yangian secret symmetries

In this section, we display the R-matrix Yangian symmetry as found in [24], completing the

information that was missing there regarding the type B hypercharge generator at Yangian

level 1. We shall focus on the Yangian Y(gl(1|1)l) of gl(1|1)l.

Secret symmetry I. It can be shown that the left representation of the level-1 Yangian

generators of Y(gl(1|1)l)

e1L := uL QL , f1L := uL SL , h1L := uL HL , and b1L := uL BL , (2.21a)

with the left spectral parameter

uL := ih2 x
+ (2.21b)

and the corresponding right representation of the level-1 Yangian generators of Y(gl(1|1)l)

e1R := uR QR , f1R := uR SR , h1R := uR HR , and b1R :=

(
ω11 0

0 ω22

)
(2.22a)

with

ω11 := 1 + i
h

2x+
− i

h

x−
, ω22 := 1 + i

h

2x+
, and uR := i

h

2x−
, (2.22b)

are symmetries of the R-matrices which we displayed in the previous sections; here x± and

h are as in (2.4b). The novelty with respect to [24] is the expression for the right level-1

hypercharge.15 These generators being symmetries amounts to saying that by projecting one

and the same universal expression for each level-1 Yangian coproduct ∆(j1) each time in the

appropriate combination of representations, one satisfies all the relations

∆op
kl (j1)Rkl = Rkl ∆kl(j1), (2.23)

with k, l ∈ {L, R} and j1 ∈ {e1, f1, h1, b1}. After defining the level-0 generators simply as

e0R := QR , f0R := SR , h0R := HR , and b0R := BR , (2.24)

the coproducts for the generators of the sl(1|1) ideal, already given in [24], look like

∆(e1) := e1 ⊗ e−i
p
4 + ei

p
4 ⊗ e1 + ei

p
4 h0 ⊗ e0 ,

∆(f1) := f1 ⊗ ei
p
4 + e−i

p
4 ⊗ f1 + f0 ⊗ ei

p
4 h0 ,

∆(h1) := h1 ⊗ 1 + 1⊗ h1 + h0 ⊗ h0 ,

(2.25a)

15Notice that the generators of type Q, S, and H form an ideal inside the Yangian, since type B is never

produced by commuting any of the elements of the ideal. In view of this fact, in principle, one might like to

disregard a multiple of the identity added to b1. However, this would not agree with the crossing symmetry to

be described shortly.
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where we have here made explicit the braiding by the eip-type central element in the frame we

are using. The novelty is that we now have a level-1 canonical coproduct for the hypercharge

given by

∆(b1) := b1 ⊗ 1+ 1⊗ b1 − 2 f0 ei
p
4 ⊗ e0 ei

p
4 + b0 ⊗ b0 . (2.25b)

With these formulæ, one can prove that the level-0 and level-1 generators (both in the left

and the right representation), as well their coproducts (in all possible combinations of left and

right choices), are compatible with the so-called Drinfeld’s second realisation [40] of the gl(1|1)

Yangian:

[b0, en] = −2 en , [b0, fn] = 2 fn , {em, fn} = −hm+n ,

[bm, bn] = 0 , [hm, ·] = 0 , {em, en} = {fm, fn} = 0 ,

[bm+1, en]− [bm, en+1] + {bm, en} = 0 , [bm+1, fn]− [bm, fn+1]− {bm, fn} = 0
(2.26)

for m,n ∈ N0.

Furthermore, all these symmetries, including the hypercharge generator, satisfy the crossing

symmetry. This proceeds as already described in [24]. Firstly, one derives from the coproduct

the expression for the antipode utilising (2.8) (with ε annihilating all level-1 Yangian generators),

obtaining

S (e1) = −e1 + e0 h0 , S (f1) = −f1 + f0 h0 , S (h1) = −h1 + h2
0 ,

S (b1) = −b1 − 2 f0 e0 + b2
0 .

(2.27)

At this point, one can verify that the equation

S
(
j1L(x

±)
)

= C−1

[
j1R

(
1

x±

)]str

C , (2.28)

indeed holds with the same charge conjugation matrix (2.11b), and for all the generators

including the hypercharge, that is, for e1, f1, h1, and b1.

Secret symmetry II. In the previous paragraph, we have found a secret symmetry (hyper-

charge generator) which, in constract with the AdS5 case [41], is embedded in Drinfeld’s second

realisation of the relevant S-matrix Yangian. In fact, there is a whole class [b1] := b1 + s1 for

s ∈ R of secret generators preserving all desired relations.16 Next, we would like to show that,

in the case of AdS3, there exists another class of secret symmetry generators, not embedded

in Drinfeld’s second realisation of the Yangian, and related to the class [b1] by performing a

certain quadratic17 Drinfeld map of the form

[̂j] := ĵ + t1 for t ∈ R with [̂j] = c [j1] + cAB jA0 jB0 . (2.29)

16The coproduct on equivalence classes [j] := j + s1 is consistently defined up to multiples of 1⊗ 1.
17As anticipated in footnote 7, a quadratic transformation like (2.29) is the only one that has a chance of

mapping not only the generators, but also their coproducts.
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Here, ĵ is the level-1 Yangian generator in Drinfeld’s first realisation that is associated with j1,

(c, cAB) are some constant coefficients, and jA0 are the level-0 generators including b0. Such

map is used to switch between Drinfeld’s first and second realisations.

The generator we will now present is a symmetry of the R-matrix in all possible combinations

of left and right representations, and, similarly to the hypercharge in the previous section,

satisfies crossing symmetry. The expression for this alternative secret symmetry (which we call

b̂) is much closer to its AdS5 analog, and it may be the true AdS3 correspondent of that general

phenomenon.

The symmetry is given by

b̂L := δBL and b̂R :=

(
τ11 0

0 τ22

)
, (2.30a)

where

δ := −i
h

4
(x++x−) , τ11 := i

h

4

(
3

x−
− 1

x+

)
, and τ22 := −i

h

4

(
3

x+
− 1

x−

)
(2.30b)

and x± and h as in (2.4b). Its universal coproduct reads

∆(b̂) := b̂⊗ 1+ 1⊗ b̂ + e0 e−i
p
4 ⊗ f0 e−i

p
4 + f0 ei

p
4 ⊗ e0 ei

p
4 , (2.31)

implying an antipode

S (b̂) = −b̂− h0 . (2.32)

Crossing reads the same way as for all the other generators we have in this paper, that is,

S
(
b̂L(x

±)
)

= C−1

[
b̂R

(
1

x±

)]str

C , (2.33)

where C was given in (2.11b). Finally, the quadratic map (2.29) is given by

[b̂] = −[b1] + 1
2(e0f0 − f0e0 + b0b0) . (2.34)

The relation between the parameters s and t in [b1] = b1 + s1 and [b̂] = b̂ + t1 is fixed by

the choice of matrix representation of the generators. Note that we are making explicit use of

the level-0 generator b0 to establish the relation between the two classes of secret generators.

Because of this, it remains to be seen whether the two secret symmetries can, in fact, be

identified. We emphasise that this is in contrast with the AdS5 case where no such embedding

exists.

AdS5 versus AdS3 secret symmetries. Our above analysis in the AdS3 case yields a new

perspective on the AdS5 problem. In particular, our analysis provides a re-interpretation of the

observation made in [8] concerning how to incorporate the secret symmetry within crossing

(a problem that was observed in [6]). In fact, even in the AdS5 case we may accept that

the crossed generator is some sort of right generator, to a left one being the secret symmetry

originally found. Most of the AdS5 magnon multiplet is crossing self-dual, apart from the secret

12



generator, which indeed satifies a formula perfectly analogous to (2.32). Therefore, as noticed

in [8], the secret symmetry respects (2.33) by defining (in the notation of [6])

JR(AdS5) =

[
− J(AdS5) +

2i

g
C

]
x± 7→1/x±

, (2.35)

where C is the central charge associated to the magnon energy, and g is the square root of the

AdS5 ’t Hooft coupling divided by 4π.

3. RT T -realisation for the deformed gl(1|1)l × gl(1|1)r Yangian

In this section, we construct the RT T -realisation for the Yangian Y(gl(1|1)l × gl(1|1)r) ori-

ginating from the full R-matrix for AdS3 × S3 ×M4. After a brief review in which we shall

explain how the generators arise directly from the R-matrix, we spell out some of the generators

explicitly. Eventually, we discuss central extensions. Our discussion follows the ideas of [8] to

which we refer for further details of the construction.

3.1. RT T -generalities

The following discussion is tailored to the Lie superalgebra gl(p|q). In particular, let V be a

Hilbert superspace with dimC(V ) = p|q. Furthermore, let

R : C2 → End(V ⊗ V ) (3.1)

be the R-matrix which is invariant under the action of the Yangian Y(gl(p|q)) := 〈JmB
A〉,

where A = (A, I), B = (B, J), . . . with A,B, . . . = 1, . . . , p and I, J, . . . = p + 1, . . . , p + q,

for a specific choice of representations. This R-matrix is unique up to scalar factors, and it is

typically a rational function of two spectral parameters (u, v) ∈ C2. Here, m ∈ N0 denotes

the Yangian level in a suitable basis. Moreover, we let |A| denote the Graßmann-parity of

A = (A, I), that is, |A| = 0 and |I| = 1. For instance, the defining (anti-)commutation

relations of Y(gl(p|q)) are[
J0B

A, J0D
C
}

= (−)|B|δB
CJ0D

A − (−)|B||C|+|B||D|+|C||D|δD
AJ0B

C ,[
J0B

A, J1D
C
}

= (−)|B|δB
CJ1D

A − (−)|B||C|+|B||D|+|C||D|δD
AJ1B

C .
(3.2)

Next, letting

TB
A : C → Y(gl(p|q)) (3.3)

be functions of a spectral parameter, say u ∈ C, holomorphic in a vicinity of u = ∞, and

{EB
A} be the standard basis18 for End(V ), we may define a map

T : C → End(V )⊗ Y(gl(p|q)) with T := EA
B ⊗ TB

A . (3.4)

18That is, the only non-zero entry of EB
A is (−)|B| in row A and column B.
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Given this data, the Yangian Y(gl(p|q)) follows from the tensor algebra T (〈TB
A(u)〉) of the

algebra 〈TB
A(u)〉 modulo the so-called RT T -relations

R12(u, v)T13(u)T23(v) = T23(v)T13(u)R12(u, v) , (3.5)

that is,

Y(gl(p|q)) =
T (〈T〉)

〈R12T13T23 − T23T13R12〉
, (3.6)

Indeed, by expanding the RT T -relations (3.5) around (u, v) = (∞,∞), one can see that

the Laurent coefficients TmB
A of TB

A,

TB
A(u) =

∑
m>0

u−m Tm−1B
A , (3.7)

can be combined to form a new set of generators JmA
B which are in one-to-one correspondence

with the Yangian generators JmA
B. For instance, the JmB

As arising in this framework from

the RTT -relations with the standard rational Yang-type R-matrix R(u, v) = 1+ P
u−v (with P

the graded permutation operator) are

J−1B
A = T−1B

A , J0B
A = T0B

A ,

J1B
A = T1B

A − 1
2(−)(|A|+|C|)(|B|+|C|)T0B

CT0C
A ,

(3.8)

and progressively more complicated for JmB
A with m > 1. One notices that whilst J−1B

A is

central and hence must be proportional to the identity, the generators J0B
A and J1B

A obey

(3.8) provided J0B
A ↔ J0B

A and J1B
A ↔ J1B

A.

The true power of the RT T -formulation, as employed in [8] (see also [42]), lies in the

fact that the very R-matrix is a representation of the maps T defined above. Thus, in order

to find either the Yangian (anti-)commutation relations or a representation of the TB
As, one

simply computes the Laurent series for R = R(u, v). Specifically, denoting by πv a spectral-

parameter-dependent representation of Y(gl(p|q)) onto End(V ) with v ∈ C and setting

TB
A(u, v) := πv(TB

A(u)) ⇐⇒ TmB
A(v) := πv(TmB

A) (3.9a)

we have

R(u, v) = (1⊗ πv)T (u) = EA
B ⊗

∑
m>0

u−m Tm−1B
A(v) . (3.9b)

3.2. Algebraic formulation and representations

Let us now move on and specialise to the Yangian Y(gl(1|1)l). We shall first analyse the

algebraic formulation of the TB
As and then discuss explicit representations.

Algebraic formalism. Let us first focus on the left representation πL,uL
, and, consequently,

on the left-left R-matrix RLL as given in (2.5). In order to be able to write (3.9b) and derive

14



abstract commutation relations of the generators TmB
A, we need to set (see (2.4b))

uL := i
h

2
x+

1 ⇒ i
h

2
x−1 = uL + s− h2s

4u2
L

+O(u−3
L ) ,

vL := i
h

2
x+

2 ⇒ i
h

2
x−2 = vL + s− h2s

4v2
L

+O(v−3
L )

(3.10)

and expand RLL for large uL. One finds that

T−1B
A = δB

AU|B| . (3.11)

The RT T -relations (3.5) involving T−1B
A show it is central. This, in turn, implies the cent-

rality of U. Furthermore, the RT T -relations involving T0B
A yield the (anti-)commutation

relations of a certain deformation of the Lie superalgebra gl(1|1)l. In fact, to obtain the

(anti-)commutation relations of gl(1|1)l, one should re-define the generators and work with

J0B
A := U−

1
2

(|A|+|B|)T0B
A (3.12)

instead of T0B
A. Moreover, from level 1 upwards, the RT T -relations (3.5) neither yield directly

the (anti-)commutation relations of gl(1|1)l nor those of its Yangian Y(gl(1|1)l). For instance,

one may check that{
T12

1,T01
2
}

= s
(
− UT11

1 + T12
2 + 1

4T02
1T01

2 − 1
4T01

2T02
1
)
. (3.13)

Hence, to bring the (anti-)commutation relations into Yangian form we shall follow [8] and, in

addition to (3.12), consider

J1B
A := U−

1
2

(|A|+|B|)T1B
A − 1

2(−)(|A|+|C|)(B|+|C|)U−
1
2

(|A|+|B|+2|C|)T0B
CT0C

A . (3.14)

The JmB
A we defined are slightly different from those reported in [8] as we want the corres-

ponding coproducts to be in the most symmetric frame.

Since the symmetry of the R-matrix for AdS3 × S3 ×M4 is a deformation of the Yangian

Y(gl(1|1)l × gl(1|1)r), we expect identifications that resemble the AdS5 × S5 ones. Indeed, a

short calculation shows that the combinations19

B0 := 2
s (J01

1 + J02
2) , B1 := 1

s

(
J11

1 + J12
2) + J01

1 + 1
2

(
Q0S0 − S0Q0) + 1

2B0B0 ,

H0 := −J01
1 + J02

2 , H1 := −J11
1 + J12

2 + 1
2H0H0 + s

2H0 ,

Q0 := 1√
s
J01

2 , Q1 := 1√
s
J11

2 + 1
2Q0H0 + s

2Q0 ,

S0 := − 1√
s
J02

1 , S1 := − 1√
s
J12

1 + 1
2S0H0 + s

2S0,

(3.15)

for the left copy gl(1|1)l in terms of the J0B
A and J1B

A as given in (3.12) and (3.14) obey

(m,n = 0, 1)

[B0,Qn] = −2Qn , [B0,Sn] = 2 Sn , {Qm, Sn} = −Hm+n ,

[Bm,Bn] = 0 , [Hm, ·] = 0 , {Qm,Bn} = {Sm, Sn} = 0 ,

[Bm+1,Qn]− [Bm,Qn+1] + {Bm,Qn} = 0 , [Bm+1, Sn]− [Bm, Sn+1]− {Bm,Sn} = 0 .
(3.16)

19 The discussion for higher-level generators can be performed similarly.
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The (anti-)commutation relations coincide precisely with (2.26). Here, B1 corresponds the first

secret generator embedded in the Yangian we have found in the first part of the paper: see

(2.21a) and (2.22a).

We would like to emphasise that the above (anti-)commutation relations are inherited from

the RT T -relations: consequently, they are truly universal. Indeed, the generators given in

(2.4a) and (2.21a) are simply representations (by means of πL,uL
) of these abstract ones, as we

will demonstrate shortly.

The coproducts for the generators (3.15) correctly match the expected ones (see e.g. (2.25a)

and (2.25b)). To verify this, one needs to make use of the identity

∆
(
TB

A(u)
)

= TB
C(u)⊗ TC

A(u) (3.17)

induced by the R-matrix fusion relations.

The coproduct and commutation rules for

ß := −1
s

(
J11

1 + J12
2)− J01

1 (3.18)

are the same as those for the second secret generator, however, the representations πL,uL
(ß)

and πL,uL
(b̂) do not coincide. On the other hand,

b̂L := −1
s

(
J11

1 + J12
2)− J01

1 − 1
21 (3.19)

gives the correct representation, but not the right coproduct. The key to resolving this issue is

to consider equivalence classes of generators as in (2.29). This enables us to reproduce all the

results from Section 2.3.

Representations. By projecting the second leg of the R-matrix we obtain a representation for

the abstract generators we found in the previous section. In particular, upon Laurent-expanding

the left-left R-matrix (2.5) in the spectral parameter uL around infinity, we obtain immediately

from (3.9b) the following expressions for TmB
A(vL) for m = −1, 0:

TL−11
1(vL) = 1 , TL−12

2(vL) = U(vL)1 ,

TL−11
2(vL) = 0 = TL−12

1(vL)
(3.20a)

and

TL 01
1(vL) = h

4γ
2(vL)1+ s

4

(
E1

1 + E2
2
)
, TL 02

1(vL) = γ(vL)
√

h
2 sU(vL)E2

1 ,

TL 01
2(vL) = γ(vL)

√
h
2 sU(vL)E1

2, TL 02
2(vL) = U(vL)

[
− h

4γ
2(vL)1+ s

4

(
E1

1 + E2
2
)]

(3.20b)

with

U(vL) :=

√
x+

2

x−2
and γ(vL) :=

√
i(x−2 − x

+
2 ) (3.20c)

All higher level generators can be found in the same spirit. By using (3.15), this precisely

reproduces the representation of the first part of the paper, with the level-1 Yangian generators

indeed given in the evaluation representation with spectral parameter vL, that is, JL 1A
B =

vLJL 0A
B. Here, JL 0,1A

B denotes the left representation of the generators in (3.15).
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3.3. Central Extensions

Finally, we would like to comment on central extensions. We can show that, if now we take the

right-left R-matrix (2.14) and proceed with the RT T -formalism in that case, we are actually

capable of reproducing the right copy gl(1|1)r of the algebra gl(1|1)l×gl(1|1)r. This means that

the Laurent expansion of the right-left R-matrix (2.14) in uR around zero yields the appropriate

TR mB
A(vL) generators for the right copy of the factor algebra.20 The explicit calculation

confirms that, as anticipated, they behave as their left partner.21 We therefore refrain from

repeating the whole procedure. Instead, we shall rather derive the central extensions of the

algebra by means of the RT T -relations (3.5) via the expansion of RRL:

{Ql0,Qr0} = P0 , {Ql1,Qr0} = Pl1 , {Ql0,Qr1} = Pr1 ,

{Sl0,Sr0} = K0 , {Sl1, Sr0} = Kl1 , {Sl0,Sr1} = Kr1 ,
(3.21a)

with

P0 = K0 = ih2
(
U− U−1

)
and Pl,r 1 = Kl,r 1 = ih2UHl,r 0 . (3.21b)

In summary, the RT T -formulation does not only gives back the whole deformed Yangian

but also puts left and right algebras on the same footing.

Finally, we wish to emphasise that one should be capable of deriving these relations from

the universal R-matrix R of the full algebra by means of

T (u) = EA
B ⊗ TB

A(u) = EA
B ⊗

∑
m>0

u−mTm−1B
A(u) = (πu ⊗ 1)R . (3.22)

Here, πu denotes the suitable spectral-parameter-dependent representation onto End(V ). Turn-

ing the argument around, our treatment can give important insight into the issue of formulating

a universal R-matrix for the current problem.
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