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THE PLANAR ANISOTROPIC N-CENTRE PROBLEM AT
NEGATIVE ENERGIES

Abstract. We propose a survey of a forthcoming paper, concerning the study of the N-centre
problem on the plane. In particular, we associate an anisotropic potential to every centre
and our idea is to provide non-collision periodic trajectories in negative energy shells. This
will be made through a double technique, which includes both variational and perturbation
methods. The chaotic behaviour of the system is finally suggested by the presence of a
symbolic dynamics.

A. Introduction

The classical N-centre problem of Celestial Mechanics consists in the study of the dy-
namics of a moving particle on the plane or in the space, whose trajectory is determined
by the gravitational attraction of N fixed centres of mass. It is usually considered as
a simplified version of a (N + 1)-body problem, in which one of the bodies is mov-
ing much faster than the others and in which the Coriolis’ and centrifugal forces are
neglected (see [15] and references therein). Actually, this is not the only reason for
which this problem is so interesting and challenging, but it can also be of great interest
in Molecular Physics. Indeed, in this model one can replace the gravitational attraction
by a Coulombic interaction, but also consider the centres as massive components in
atoms (see [16, 21] and references therein).

In a 2 or 3-dimensional Euclidean space and considering radial Kepler-like po-
tentials with the same homogeneity degree, the problem is usually introduced as fol-
lows. Let us indicate by c1, . . . ,cN ∈ Rn (n = 2,3) the position of the centres, with
m1, . . . ,mN > 0 their masses and with x = x(t) ∈ Rn the position of the test particle at
time t ∈ R. The motion equation is

(1) ẍ(t) = −
N

∑
j=1

m j(x(t)− c j)
|x(t)− c j|α+2 , α ∈ [1,2),

which is singular whenever x = c j for some j = 1, . . . ,N and whose solution verify the
energy equation

1
2
|ẋ(t)|2 −V (x(t)) = h,

for h ∈ R. The whole system can be also rephrased in Hamiltonian formalism, intro-
ducing the −α-homogeneous potential

(2) V (x) =
N

∑
j=1

m j

α|x− c j|α
,
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and considering the equivalent form of (1)

ẍ(t) = ∇V (x(t)).

In particular, the Hamiltonian function of the system will be the function

h(x, ẋ) = K(ẋ)−V (x) =
1
2
|ẋ|2 −V (x),

which is nothing but the total energy of the system.
When N = 1, we end up with the classical Kepler problem, which is known to

be super-integrable and whose solutions are conic sections. Moreover, Euler showed
that the 2-centres problem is analytic integrable through an ellipsoidal change of coor-
dinates and its explicit solutions have been computed by Jacobi in his celebrated work
Vorlesungen über dynamik. On the other hand, it has been proved (see [5] for the pla-
nar case and [6, 17] for the spatial case) that the N-centre problem is not analytically
integrable when N ≥ 3.

As we have said, the system is conservative, so that one can choose to study
either negative, positive or zero energy solutions, confined to the energy shell

H =
{

(x, ẋ) ∈ (Rn \{c1, . . . ,cN})×Rn :
1
2
|ẋ|2 −V (x) = h

}
≃ Rn−1.

The existence of a symbolic dynamics for positive energies has been proved in [16],
where the authors gave a qualitative description of the planar scattering for some prob-
lems deriving from the N-centre model. After that, in [15] the author generalized some
parts of the previous paper to the spatial case, providing the existence of unbounded
trajectories for high energy levels. Concerning the zero-energy case, we refer to [7],
where the authors showed the existence of entire parabolic trajectories for the spatial
N-centre problem, with prescribed ingoing and outgoing directions. On the other hand,
the existence of a symbolic dynamics when h < 0 has been established in [20]. In
particular, the authors built collision-less periodic solutions of equation (1) glueing to-
gether perturbation arcs and variational paths. Introducing a small parameter, all the
centres have been confined in a ball and, far from that, the problem turned out to be
a perturbation of a particular Kepler problem. We can consider [20] as our starting
point, since our goal is to produce a similar result under the presence of anisotropic
interactions between the particle and the centres.

Anisotropic phenomena have been largely studied during the last 50 years,
mostly for their remarkable interest in physical applications. Considering a moving
particle and a single attraction centre, it is possible to introduce anisotropy in the sys-
tem, defining an appropriate non-radial force field. In this way, the anisotropic Kepler
problem was firstly introduced by Gutzwiller in his two celebrated papers [12, 13], in
which the author actually exploited this model to better understand some deep rela-
tions between classical and quantum mechanics. In particular, he was able to prove
the existence of parabolic orbits for a particle driven by a Coulombic potential, reduc-
ing the equations of motions to an autonomous system and providing some numerical
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results. Through the years, this problem was furthermore investigated by several au-
thors, with Devaney among them. Using a technique introduced by McGehee in the
study of the collinear 3-body problem ([18, 19]), Devaney gave an exhaustive picture
of the main properties of this model (see [8, 9, 10, 11]). To conclude this introduction,
zero-energies trajectories for the anisotropic Kepler problem with prescribed ingoing
and outgoing directions have been largely studied both in the plane ([3, 14]), but also
in higher dimensions ([4]).

B. The problem

Inspired by the previous motivations, we thought to consider an anisotropic version
of the N-centre problem and to investigate the existence of periodic orbits for small
negative energies. In this way, potential (2) can be properly modified, in order to
introduce anisotropy in the system. In particular, our goal is to produce a symbolic
dynamics for the N-centre problem, driven by the following potential

V (x) =
N

∑
j=1

|x− c j|−α jVj

(
x− c j

|x− c j|

)
,

where Vj ∈ C 2(R \ {c j}) is a −α j-homogeneous function, with α j ∈ (1,2), for every
j = 1, . . . ,N. Note that, introducing polar coordinates x = (r cosϑ,r sinϑ) with r > 0
and ϑ ∈ [0,2π), every potential Vj can be rewritten as

Vj(x) = Vj(r cosϑ,r sinϑ) = r−α jUj(ϑ),

where Uj(ϑ) .= Vj(cosϑ,sinϑ) represents the angular component of Vj, for every j =
1, . . . ,N. In this setting, we can present here our complete hypotheses on V , which
read:

Given U1, . . . ,UN : S1 → R of class C 2 such that

(U) ∀ j = 1, . . . ,N ∃ϑ j ∈ S1 s.t. Uj(ϑ) ≥Uj(ϑ j) > 0 and U ′′(ϑ j) > 0,

define

(V ) V (x) =
N

∑
j=1

|x− c j|−α jUj

(
x− c j

|x− c j|

)
,

where α j > ᾱ j and ᾱ j = ᾱ j(Uj) for every j = 1, . . . ,N (following the notations of
[3, 4]).

Notice that the requirement (U) on every angular potential Uj states that it has
to admit at least a non-degenerate minimizer. Under these assumptions, we will study
the planar equation

ẍ(t) = ∇V (x(t)),

requiring without loss of generality that

α1 ≤ α2 ≤ . . . ≤ αN .
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Of course, an energy conservation law still holds, so that we will actually study the
system

(3)

{
ẍ(t) = ∇V (x(t))
1
2 |ẋ(t)|2 −V (x(t)) = −h,

with h > 0 small. All the solutions of our problem will be confined to the Hill’s region
{

x ∈ R2 \{c1, . . . ,cN} : V (x) ≥ h
}

.

REMARK 1. In the first part of the proof, we aim to reduce our model to a per-
turbation of an anisotropic Kepler problem with a certain homogeneity degree. In order
to do this, the Hill’s region has to be big enough so that the particle can be properly far
from the singularity set. This fact basically motivates the choice of studying a problem
in small negative energy shells.

Our main result is the following

THEOREM 1. Given h > 0 sufficiently small, consider a potential V satisfying
hypotheses (U)-(V ). Then, there exist infinitely many periodic orbits for problem (3)
which are collision-less and whose associated dynamical system admits a symbolic
dynamics.

The proof of this statement is divided in several steps and the main ideas therein
employed are collected below:

• Outer arcs. We perform a perturbation argument, including all the centres in a
small ball and thus reducing the system to a perturbed anisotropic Kepler prob-
lem driven by one of the potentials associated to the centres, up to a small param-
eter. Indeed, around a non-degenerate minimizer of this potential, it is possible
to shadow homothetic solutions in order to prove the existence of an outer arc
for the perturbed problem. This will be made using a shooting method, which
stays stable when the perturbation parameter goes to zero.

• Inner arcs. We investigate the existence of fixed-end trajectories inside a ball
of chosen radius, taking care of a possible interaction with the centres. This
will be made through a minimization of both the Maupertuis’ and Lagrange-
action’s functionals under a suitable topological constraint. Combining together
the variational approaches introduced in [3], [4] and [20], we will be finally able
to build collision-less arcs which connect two points chosen on the boundary of
the ball, up to a threshold on the degree of homogeneity −α j associated to every
centre c j (see hypotheses (U)-(V )).

• Glueing pieces. The idea is to alternate an outer and an inner arc and then to
glue them together, in order to obtain a closed periodic trajectory. Even if every
single trajectory obtained in the two previous steps is smooth, we need to show
that such smoothness is preserved in the contact point. This will be made using
a broken-geodesics argument, through a finite dimensional reduction.
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• Symbolic dynamics. We want to show that our model admits a symbolic dynam-
ics, i.e., that our dynamical system is topologically semi-conjugate with a metric
space of bi-infinite sequences of symbols under the action of a Bernoulli shift
map. In our setting, every symbol is represented by a partition of the centres in
two non-trivial subsets and a non-degenerate minimizer of one of the potentials
associated to the centres. In particular, given N centres and m non-degenerate
minimizers, the number of admissible symbols is n

.= m(2N−1 − 1). Hence, in
order to have a non-trivial symbolic dynamics, we need to require N ≥ 2 and
m ≥ 1, with one of the two inequalities holding strictly, so that n > 1.

To conclude this discussion, we want to inform the reader that this paper is
mainly concerned with the idea of construction of inner and outer arcs for the problem,
since the other two steps of the proof are still in progress and will not be stressed here.

Figure 1: An example of a collision-less periodic trajectory.

C. Outer dynamics

Given ε > 0 and y ∈ R2 \{c1, . . . ,cN}, let us introduce the rescaled potential

Vε(y) = V1(y− εc1)+
N

∑
j=2

εα j−α1Vj(y− εc j).
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REMARK 2. If we assume without loss of generality that max
j

|c j| = 1, we have

that the new centres c′j = εc j are included in the ball Bε.

The next proposition shows that we are allowed to study a rescaled version of
our initial problem (3), driven by potential Vε and where the energy −h is normalized
to −1.

PROPOSITION 1. Let x ∈ C 2((a,b);R2) be a classical solution of

(4)

{
ẍ(t) = ∇V (x(t))
1
2 |ẋ(t)|2 −V (x(t)) = −h, h > 0.

Then, in the interval (h
α+2
2α a,h

α+2
2α b), the function

y(t) .= h1/αx(h−
α+2
2α t)

solves the problem

(5)

{
ÿ(t) = ∇Vε(y(t))
1
2 |ẏ(t)|2 −Vε(y(t)) = −1,

where ε = h1/α.
Conversely, if y ∈ C 2((c,d);R2) is a solution of (5) then, taking h = εα, the

function

x(t) .= h−1/αy(h
2+α
2α t)

is a solution of (4) in the interval (h−
α+2
2α c,h−

α+2
2α d).

Proof. It is enough to plug y(t) into the equation and to see that even the energy
conservation law holds as well. This is a consequence of the fact that if V is −α-
homogeneous, then the gradient ∇V is (−α−1)-homogeneous.

REMARK 3. We have named this section Outer dynamics because our first step
is to build a solution arc yext(t) which solves (5) in a certain interval [0,Text ], satisfying
the additional conditions

{
y(0) = p0, y(Text) = p1

|y(t)| > R, for t ∈ (0,Text),

where p0, p1 ∈ ∂BR(0), for some R > 0. The choice of R is not arbitrary, since we need
at least to make some room between the sphere ∂BR(0) and the boundary of the Hill’s
region {Vε ≥ 1} of (5), in which the external solution arc yext should live. However,
if we choose ε small enough, {Vε ≥ 1} contains a ball of radius R ≫ ε, so that our
perturbation method can finally take place.
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The next proposition states that, outside the ball of radius R and centred in the
origin, problem (5) is a perturbation of an anisotropic Kepler problem driven by the
first potential V1.

PROPOSITION 2. Given ε > 0 small enough and R > ε properly choosen, for
every y ∈ R2 such that |y| > R we have

Vε(y) = |y|−α1V1

(
y
|y|

)
+O(εα2−α1) as ε → 0+.

Moreover, the potential Vε is smooth with respect to ε.

Proof. As a sketchy proof, the main idea is to exploit the fact that as ε → 0+, if we fix
j ∈ {1, . . . ,N} and |y| > R, for every σ ∈ R we have

|y− εc j|−σ = |y|−σ + εσ
⟨y,c j⟩
|y|σ+2 +o(ε) = |y|−σ +O(ε).

C.1. Shadowing homothetic trajectories

Since the previous perturbation holds, it makes sense to analyse some particular tra-
jectories of the anisotropic Kepler problem, which are called homothetic trajectories.
In particular, Proposition 2 tells us that when we are far enough from the centres, the
leading potential is V1, i.e., the one with the smallest homogeneity degree α1. For this
reason, we will firstly consider the problem

(6)

{
ẍ = ∇V1(x), x ∈ R2 \{0}
1
2 |ẋ|2 −V1(x) = −1,

which, roughly speaking, models the dynamics of the particle in (5) when we are really
far from the centres and ε → 0+.

Now, given R > 0, we look for homothetic solutions of (6), i.e., for

(7) x(t) .= λ(t)ξ,

with λ : [0,T ] → R+, T > 0 and ξ ∈ ∂BR such that

λ(t) > 1 for every t ∈ (0,T ), λ(0) = 1 = λ(T ).

Plugging (7) into the motion equation ẍ = ∇V1(x), and defining the moment of
inertia I(x) = 1/2|x|2, we find out that λ solves the equation

λ̈(t) = − µ
λα1+1(t)

,

while ξ solves
∇V1(ξ)+µ∇I(ξ) = 0,
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for some µ > 0. In other words, we have that the scaling term λ(t) of an homothetic
orbit for (6) is a solution of a 1-dimensional −α1-Kepler problem, while its motion
direction ξ is a central configuration for the potential V1, i.e., a critical point of V1
constrained to a level surface of I. Note that, comparing this with assumption (U) and
using polar coordinates, ξ = (r cosϑξ,Rsinϑξ) is a non-degenerate minimal central
configuration for V1 if its angular component U1 satisfies

U ′
1(ϑξ) = 0, U ′′

1 (ϑξ) > 0.

Now, a trajectory of equation (7) starts its rectilinear motion in the sphere ∂BR(0) with
a certain velocity vξ and, after a time T > 0, touches again the sphere with opposite
velocity −vξ. In other words, given R > 0 and a central configuration ξ ∈ ∂BR for V1,
we can consider the following Cauchy problem

(8)

{
ẍ(t) = ∇V1(x(t))
x(0) = ξ, ẋ(0) = vξ = 1

R

√
2(V1(ξ)−1))ξ,

where the starting velocity is determined by the conservation of energy and that admits
as unique solution the homothetic trajectory x described above. Actually, exploiting the
transversality of the vector field associated to (8) to the inertial surface {I(x) = R2/2}
in the phase space, we can prove the existence of a first-return map, which is defined
in a sufficiently small neighbourhood U ×V of (ξ,vξ). This map gives us information
about how a Cauchy problem behaves when we slightly modify the initial conditions
in (8). In particular, since we are far from the singularity, the continuous dependence
of initial data together with the transversality of the vector field imply that, for every
(x0,v0) ∈ U ×V , there exists a unique solution for

{
ẍ(t) = ∇V1(x(t))
x(0) = x0, ẋ(0) = v0.

Of course, there exists a point x1 ∈ ∂BR depending on the initial velocity v0 such that,
after a time T̄ > 0, the solution of the previous problem will verify x(T ) = x1. We
want to point out that, as a preliminary step, our purpose is to prove the existence of an
external fixed-end arc, whose starting and arriving points belong to a neighbourhood
of ξ on the sphere ∂BR. For this reason, we need to switch from a Cauchy problem to a
boundary value problem, so that the piece of external solution will be determined once
x0,x1 are fixed in the neighbourhood. This is the core of the next result.

THEOREM 2. Let ξ ∈ ∂BR be a minimal non-degenerate central configuration
for V1. Then, there exists a neighbourhood U of ξ such that, for any x0,x1 ∈ U with
|x0|= |x1|= R, there exist T̄ > 0 and a solution x = x(t) of the boundary value problem





ẍ(t) = ∇U(x(t))
1
2 |ẋ(t)|2 −U(x(t)) = −1
|x(t)| > R
x(0) = x0, x(T̄ ) = x1.
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With some technical modifications and by means of Proposition 2, the previous
result can be proved also for potential Vε, since the shooting technique used in the proof
remains stable when ε → 0+. In this way, if ε is sufficiently small, we have shown the
existence of external solution arcs yext satisfying the problem





ÿext(t) = ∇Vε(yext(t))
1
2 |ẏext(t)|2 −Vε(yext(t)) = −1
|yext(t)| > R
yext(0) = p0, yext(Text) = p1,

for some Text > 0, once p0, p1 belong to a neighbourhood on ∂BR of any minimal non-
degenerate central configuration of the leading potential V1.

Figure 2: Shadowing Keplerian homothetic trajectories.

D. Inner dynamics

The next step of the proof consists in showing that, for ε > 0 sufficiently small and for
any p1, p2 ∈ ∂BR, there exists a solution yint(t) of the following problem

(9)





ÿint(t) = ∇Vε(yint(t)) t ∈ [0,T ]
1
2
|ẏint(t)|2 −Vε(yint(t)) = −1 t ∈ [0,T ]

|yint(t)| < R t ∈ (0,T )
yint(0) = p1, yint(Tint) = p2,

for some Tint > 0.
As previously said, our idea is to adopt a minimization technique in order to

infer the existence of a collision-less solution of the fixed-end problem (9). Therefore,
let us consider the set of H1 paths with fixed ends

Hp1,p2([a,b]) .= {u ∈ H1([a,b];R2) : u(a) = p1 and u(b) = p2}
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Figure 3: An example of solution of problem (9).

and the Maupertuis’ functional M : Hp1,p2([a,b]) → R

M (u) =
1
2

∫ b

a
|u̇|2 dt

∫ b

a
(Vε(u)+1)dt.

The well known Maupertuis’ Principle assures that a critical point u of M can be
properly reparameterized in order to obtain a solution of (9) (see for instance [2, 1]).
Considering a smaller space than Hp1,p2([a,b]), in which we require that every path
separates the centres exhibiting a fixed non-trivial partition of them, we can fulfil the
hypotheses of the Maupertuis’ Principle and thus provide the existence of a solution for
(9). Despite that, it could happen that this path u collapses in one of the centres at some
instant τ ∈ [0,T ]. In order to avoid that, our idea is to consider the Lagrange-action
functional for potential Vε

A([t1, t2];x) =
∫ t2

t1

[
1
2
|ẋ|2 +Vε(x)

]
dt

and it is not difficult to prove that an ad-hoc reparameterization of a minimizer u of M
produces a minimizer x of A . At this point, we intend to apply to x a result contained in
[3], which, properly rephrased, guarantees that once hypotheses (U)-(V ) are satisfied,
every fixed-time Bolza minimizer for A can not collide with the centres.
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