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Abstract. Alongside Instrumental Variable (IV) and Fixed Effects (FE), the Con-
trol Function (CF) approach is the most widely used in production function estima-
tion. Olley-Pakes (OP henceforth), Levinsohn-Petrin (LP), Ackerberg-Caves-Frazer
(ACF) have all contributed to the field proposing two-steps estimation procedures,
while Wooldridge showed how to perform a consistent estimation within a single step
GMM framework. In this paper we propose a new estimator, based on Wooldridge’s,
using dynamic panel instruments à la Blundell-Bond and we evaluate its performance
by Monte Carlo simulations. We also present a new Stata module - prodest - for
production function estimation, show its main features and key strengths in a compar-
ative analysis with other user-written Stata commands. Lastly, we provide evidence of
the numerical challenges faced when using OP/LP estimators with ACF correction in
empirical applications and document how the GMM estimates vary depending on the
optimizer/starting points employed.
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I Introduction

The correct estimation of the total factor productivity is a fundamental issue in applied eco-

nomics and is the main topic of several seminal papers. When subject to productivity shocks,

firms respond by expanding their level of output and by demanding more input; negative

shocks, on the other hand, lead to a decline in output and demand for input. The positive

correlation between the observable input levels and the unobservable productivity shocks is

a source of bias in OLS when estimating the total factor productivity. Various methods have

been proposed to tackle such simultaneity issue and, according to their approaches, is pos-

sible to group them in three families: Fixed Effects (FE), Instrumental Variables (IV) and

Control Function (CF). In the latter group, Olley and Pakes (1996) are the first to propose

a two-step procedure aimed at overcoming the endogeneity: they use the investment level

to proxy for productivity. Their approach has been refined by Levinsohn and Petrin (2003)

and Ackerberg et al. (2015). Wooldridge (2009) proposes a novel estimation setting, showing

how to obtain LP estimator within a system GMM econometric framework, which can be

estimated in a single step, and shows the appropriate moment conditions.

All the mentioned models rely on a crucial assumption that underlies the dynamic profit

maximization problem faced by the firm at each period t: the idiosyncratic shock to pro-

ductivity at time t (i.e. ξt) does not affect the choice of the level of state variables, which is

taken at t−b1, but only that of free variables. Therefore, ξt is uncorrelated to the contempo-

raneous value of the state and to all the lagged values of the free and state variables and all

these are valid instruments for parameter identification. However, adding lags to the system

reduces sample dimension and decreases available information. In this paper we propose a

modification to the Wooldridge estimator based on a matrix of dynamic panel instruments.

Such an approach makes it possible to increase the moment restrictions without losing in-

formation, which is a highly desirable feature when dealing with “large N, small T” panel

datasets that are so frequent in the related literature. We then show that MrEst performs

better than Wooldridge’s on simulated data with a small number of periods, increases the

sample size in overidentified models and produces more stable results.

1where b > 0 can take different values depending on state variable dynamics.
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We then introduce a new Stata module - prodest - that implements all the above listed

methodologies. We present the command syntax, describe all options and briefly perform a

comparison with existing user-written Stata modules. Eventually, we focus on ACF method-

ology and, using their data generating process (DGP), we show how such nonlinear problems’

solutions are extremely dependent on the choice of the optimization starting points.

The remainder of the paper is structured as follows: in Section II we review all control

function approaches, list their weaknesses and provide a general overview of the state of the

art; in Section we introduce the new MrEst with a comprehensive presentation of its new

characteristics; Section III introduces prodest, its main features and practical examples of

usage; in Section IV we comparatively describe the module and present evidence on ACF

dependence on starting points; Section V concludes.

II Control function approach

In this section we provide a brief but complete overview of the most common techniques for

production function estimation using control function approach. For the remainder of the

paper, consider a Cobb-Douglas technology for firm i at time t :

yit = α + witβ + xitγ + ωit + εit (1)

where yit is the log gross or the value added output, wit is a 1×J vector of log free variables

and xit is a 1×K vector of log state variables. The random component ωit is the unobservable

productivity or technical efficiency and εit is an idiosyncratic output shock distributed as

white noise. We assume with OP and LP that productivity evolves according to a first-order

Markov process:

ωit = E(ωit |Ωit−1) + ξit = E(ωit |ωit−1) + ξit = g(ωit−1) + ξit (2)

where Ωit−1 is the information set at t− 1 and ξit is the productivity shock, assumed to
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be uncorrelated with productivity ωt and with state variables xit.

II.1 Olley-Pakes method

OP were the first to propose a consistent two-step estimation procedure for (1). Their key

idea is to exploit firm investment levels as a proxy variable for ωit. They prove their estimates

of productivity to be consistent under several assumptions on top of those mentioned above:

A.1 iit = f(xit, ωit) is the investment policy function, invertible in ωit. Moreover, iit is

monotonically increasing in ωit;

A.2 The state variables - typically capital - evolve according to the investment policy function

iit which is decided at time t− 1;

A.3 The free variables wit - typically labor inputs and/or intermediate materials - are non-

dynamic, in the sense that their choice at t does not impact future profits, and are

chosen at time t after the firm productivity shock realizes.

Hence, given A.1 and A.2, the investment iit is orthogonal to the state variable in t such

that E[iit|xit] = 0 and can be inverted, yielding the following proxy for productivity:

ωit = f−1(iit,xit) = h(iit,xit) (3)

which is an unknown function of observable variables. Plugging (3) in (1), we obtain:

yit = α + witβ + xitγ + h(iit,xit) + εit =

= witβ + Φit(iit,xit) + εit (4)

where we define Φit(iit,xit) = xitγ + h(iit,xit) = xitγ + ωit. Equation (4) is a partially

linear model identified only in the free variable vector, wit and can be non parametrically es-
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timated approximating Φit(iit,xit) by a nth order polynomial Φ̂ or by a local linear regression

(First Stage). This yields a consistent estimate of the free variables’ parameters, β̂. Using

(2), then, it becomes possible to estimate γ by rewriting the model for yit−witβ̂ conditional

on xit:

yit −witβ̂ = α0 + xitγ + ωit + εit =

= α0 + xitγ + E[ωit|ωit−1] + ξit + εit =

= α0 + xitγ + g(ωit−1) + eit (5)

where eit = ξit + εit. Being ω̂it = Φ̂it − xitγ equation (5) becomes:

yit −witβ̂ = α0 + xitγ + g(Φ̂it−1 − xit−1γ) + eit (6)

where the function g(.) can be left unspecified and estimated non parametrically. Alter-

natively, if we assume g(·) to follow a random walk we can restate equation (6) as:

yit −witβ̂ = α0 + (xit − xit−1) γ + Φ̂it−1 + eit (7)

and

eit = yit −witβ̂ − α0 − xitγ
∗ − g(Φ̂it−1 − xit−1γ

∗) (8)

at the true γ∗ value.

Equation (7) suggests an immediate approach to the estimation. In fact, residuals eit can be

used to build a GMM estimator exploiting the moment conditions E[eitx
k
it]=0, ∀k (Second

Stage)2, where xk are the single elements of vector mathbfx. The γ∗ vector is the vector of

2Alternatively, estimation of second stage can be carried out on Eq. (7) using non lineal least squares
since eit is a combination of pure errors.
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parameters which minimizes the criterion function:

γ∗ = argmax

−∑
k

(∑
i

∑
t

eitx
k
it

)2
 (9)

In their seminal paper OP discuss potential selection bias due to the non-randomness

in plants dropping out the sample. More specifically, less productive firms could be forced

out of the market exactly due to their low level of productivity, thus leaving only the most

productive firms in the sample. They assume that a firm continues to operate provided that

its productivity level exceeds the lower bound, i.e. χit = 1 ⇐⇒ ωit ≥ ωit, where χit is

a survival binary variable and the ωit is an industry-specific exit-triggering threshold (see

Hopenayn (1992) and Melitz (2003)). Hence, they propose a third step in estimation in order

to account for that: model (6) is expressed conditionally not only on the state variable, but

also on χit - i.e. productivity is a function of its past values and of the survival indicator

variable:

yit −witβ̂ = α0 + xitγ + E[ωit|ωit−1, χit] + eit (10)

The bias correction proposed by OP consists in adding to (7) an estimate of the con-

ditional probability of remaining active in the market, i.e. P̂ rit+1 ≡ Pr {χit+1 = 1|xit}.

Thus:

yit −witβ̂ = α0 + xitγ + g(Φ̂it−1 − xit−1γ, P̂ rit) + eit (11)

where P̂ rit is the fitted surviving probability - typically estimated through a discrete

choice model on a polynomial of the state variable vector xit and the investment.
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II.2 Levinsohn-Petrin method

OP approach has a major drawback in empirical applications which limits its range of appli-

cations: real firm- or plant-level data have many zeros in investment preventing, in practice,

the estimation. This is due to common industrial practices which violate the monotonicity

assumption A.1: investments are not decided at each point in time, but postponed for few

years before being made all at once. LP propose to overcome this issue by exploiting inter-

mediate input levels as a proxy variable for ωit. As in the OP case, LP methodology is based

on assumptions:

B.1 Firms observe their productivity shock and adjust their optimal level of intermediate

inputs - materials - according to the demand function m(ωit, xit);

B.2 mit = f(xit, ωit) is the intermediate input function, invertible in ωit. Moreover, mit is

monotonically increasing in ωit;

B.3 The state variables - typically capital - evolve according to the investment policy function

i() which is decided at time t− 1;

B.4 The free variables wit - typically labor inputs and/or intermediate materials - are non-

dynamic, in the sense that their choice at t does not impact future profits, and are

chosen in t after the firm productivity shock realizes.

Under the set of assumptions B.1-B.4, intermediate input demand is orthogonal to the

set of state variables in t such that E[mit|xit] = 0 and mit can be inverted, yielding the

following technical efficiency proxy:

ωit = h(mit,xit) (12)

which is an unknown function of observable variables. Plugging (12) in (1) and distin-
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guishing the intermediate input variable from the free variables we obtain:

yit = α + witβ + xitγ + δmit + h(mit,xit) + eit =

= witβ + Φit(mit,xit) + eit

(13)

where eit = ξit + εit.

Equation (13) is a partially linear model identified only in the free variable vector but

not in the proxy variable, mit. Similar to OP, equation (12) can be non-parametrically

estimated approximating Φit(mit,xit) by a nth order polynomial or by local linear regression

(First Stage). At the true values [γ∗, δ*] we can define the residual function eit like:

eit = yit −witβ̂ − xitγ
∗ − δ∗mit − g

(
Φ̂it−1 − xit−1γ

∗ − δ∗mit

)
(14)

However, eit is no longer a combination of pure errors. The intermediate input variable

is correlated with the error term given firms’ response to the technology efficiency shock

ξit. Thus, non-linear least squares would provide inconsistent estimates and relying on a

GMM estimator is mandatory. The GMM estimator might be constructed by exploiting the

residuals eit and the set of moment conditions E[eitz
k
it]=0, ∀k, where k is the index of the

instrument vector z = [xit, mit−1]

 γ∗

δ∗

 = argmax

−∑
k

(∑
i

∑
t

eitz
k
it

)2
 (15)

consistently estimates the set of paramenters [γ, δ]ᵀ.

II.3 Ackerberg, Caves and Frazer correction

Both OP and LP assume that firms are able to instantly adjust some inputs at no cost when

subject to productivity shocks. However, ACF and Bond and Soderbom (2005) remark that

the labor coefficient can be consistently estimated in the first stage only if the free variables
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show variability independently of the proxy variable. If this is not the case, their coefficients

would be perfectly collinear in the first-stage estimation and hence not identifiable.

In particular, in the LP setting labor and intermediate inputs are assumed to be allocated

simultaneously at time t. This implies that labor and materials are both chosen as a function

of productivity and state variables xit:

mit = m(ωit, xit)

lit = l (ωit, xit)
(16)

Using the monotonicity condition (B.2) ACF provide the following results:

lit = l [h(mit,xit), xit] (17)

Hence, a collinearity issue arises in estimating the first stage, where the labor appears

both as a free variable and in the non-parametric polynomial approximation Φ̂it. In the same

fashion the collinearity issue affects the OP estimator. ACF propose an alternative approach

based on the following assumptions:

C.1 pit = pit(xit, , lit, ωit) is the proxy variable policy function, invertible in ωit. Moreover,

pit is monotonically increasing in ωit;

C.2 The state variables are decided at time t− b;

C.3 The labor input, lit, is chosen at time t − ζ, where 0 < ζ < b. The free variables, wit,

are chosen at time t when the firm productivity shock is realized.

C.4 The production function is value added in the sense that the intermediate input mit

does not enter the production function to be estimated.

Assumption C.4 is needed because Bond and Soderbom (2005) have shown that under the

scalar unobservable assumptions of ACF, a gross output production function is not identified

without imposing further restrictions of the model, see paragraph 4.1 of (Ackerberg et al.
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2015) for the details. Under the set of assumptions C.1-C.3 the first stage estimation is

meant to remove the shock εit from the the output yit. In particular the policy function can

be inverted and plugged in equation (1) yielding:

yit = Φit(pit,xit, wit, lit) + εit (18)

where Φit(pit,xit, wit, lit) = xitγ+witβ+µlit +h(pit,xit, wit, lit). Once Φ̂it is recovered,

for any candidate vector (γ∗, β∗, µ∗), it is possible to obtain the residuals

ω̂it = Φ̂it − xitγ −witβ − µlit (19)

and, exploiting the Markov chain assumption ωit = E(ωit |ωit−1) + ξit = g(ωit−1) + ξit,

obtain the residuals ξit. These, combined with the set of moment conditions E[ξitz
k
it]=0,

∀k, where k is the index of the instrument vector z = [xit, mit−1, lit−1], lead to the GMM

criterion function (Second stage):


γ∗

β∗

δ∗

 = argmax

−∑
k

(∑
i

∑
t

ξitz
k
it

)2
 (20)

II.4 Wooldridge

Wooldridge (2009) proposes to address the OP/LP problems by replacing the two-step es-

timation procedure with a generalized method of moments (GMM) setup as in Wooldridge

(1996). In particular, he shows how to write the relevant moment restrictions in terms of two

equations: these have the same dependent variable (yit) but are characterized by a different

set of instruments. This approach has useful features with respect to previously proposed

estimation routines:

• it overcomes the potential identification issue highlighted by ACF in the first stage;
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• robust standard errors are easily obtained, accounting for both serial correlation and/or

heteroskedasticity3.

In the first stage by OP/LP, the estimation of the parameters is addressed under the

assumption that

E(εit|ωit−1,wit,xit,mit,wit−1,xit−1,mit−1, ...,wi1,xi1,mi1) = 0 (21)

without imposing any functional form on the control function ωit = h(., .). The second stage

assumption exploits the Markovian nature of productivity and the assumed orthogonality

between productivity shocks and current values of the state variables, as well as between

productivity shocks and past realizations of the free variables and the intermediate inputs.

Following LP and rewriting Eq. (2) it states:

E(ωit|xit,wit−1,xit−1,mit−1, ...,wi1,xi1,mi1) = E(ωit |ωit−1) = f [h(xit−1,mit−1)] (22)

where, as for h(., .), no functional form is imposed on f(.). Assumptions (21) and (22)

directly lead to the formulation of the two following equations:

yit = α + witβ + xitγ + h(xit,mit) + vit (23)

yit = α + witβ + xitγ + f [h(xit−1,mit−1)] + ηit (24)

where ηit = ξit + vit.

In the estimation the approach is to deal with the unknown functional forms using nth

order polynomials in xit and mit
4, where the limiting case with xit and mit (i.e. n = 1)

3LP and OP recommend instead to bootstrap the standard errors of their estimators, as usual in two-step
estimation procedures.

4LP suggest to use third-degree polynomials. However, the higher the degree the better the result.
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entering linearly should always be allowed. In particular, if we assume that

h(xit, mit) = λ0 + k(xit,mit)λ (25)

where k(., .) is a 1×Q collection of functions.

f(h) = δ0 + δ1h+ δ2h
2 + ...+ δGh

G (26)

it implies f(ωit) = δ0+δ1[k(xit−1,mit−1)λ1]+δ2[k(xit−1,mit−1)λ1]
2+...+δG[k(xit−1,mit−1)λ1]

G.

For sake of simplicity, consider the case with G = 1 and δ1 = 15: a simple substitution

in Eqs. (23)-(24) yields

yit = ζ + witβ + xitγ + k(xit,mit)λ1 + vit (27)

yit = θ + witβ + xitγ + k(xit−1,mit−1)λ1 + ηit (28)

where ζ and θ are the new constant parameters obtained through aggregation of all

the constant terms. Under the assumptions of G = 1 and δ1 = 1, the system GMM

has linear moments. The choice of instruments for both Eq. (27) and (28) is straight-

forward and reflects the orthogonality conditions listed above: in particular, we define

zit1 = (1,xit,wit,k(xit,mit)), zit2 = (1,xit,wit−1,k(xit−1,mit−1)) and Zit =

 zit1

zit2

.

For each t > 1 the usual GMM with IV setup applies and the moment conditions are

derived from the residual functions

rit(θ) =

 rit1(θ)

rit2(θ)

 =

 yit − ζ −witβ − xitγ − k(xit,mit)λ1

yit − θ −witβ − xitγ − k(xit−1,mit−1)λ1

 (29)

5This is the case whose estimation is implemented in prodest.
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and E[Z′itrit(θ)] = 0.

In this leading case the estimation is particularly straightforward, as the whole system

boils down to a linear estimation problem. Following Wooldridge (2009), we can rewrite the

system as yit = Xitθ+ rit, where yit is a vector containing yit twice (stacked), θ is the vector

of parameters of interest, rit is defined as above and

Xit =

 1 0 wit xit k(xit,mit)

0 1 wit xit k(xit−1,mit−1)

 (30)

Using Zit as above yields consistent estimates.

II.5 IV estimation of ACF: the Robinson estimator

The Wooldridge (2009) estimator implemented in prodest collapse into the Robinson (1988)

semiparametric estimator for the ACF case. If we agree with the input timing in ACF, the

first equation would be unable to identify any of the parameters. However, identification is

achieved by estimating semi-parametrically eq. 28 only.

Following Wooldridge (2009), equation (24) requires the orthogonality condition

E(ηit|xit,wit−1,xit−1,mit−1, ...,wi1,xi1,mi1) = 0, t = 2, .., T (31)

to be consistently estimated. Provided that, then, within the ACF framework is possible

to estimate β and γ by a instrumental variable version of Robinson (1988)’s estimator,6 with

xit,xit−1 and mit used as included instruments and wit−1 instrumenting the endogenous wit.

6In the same ACF setting, equation (23) does not identify β even under the orthogonality condition in
(21).
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II.6 MrEst: Introducing dynamic panel instruments

As Wooldridge suggests previous lags are valid instruments in the above GMM estimation

framework, but using them can be costly in terms of sample size as each additional lag

implies the loss of n observations during the estimation. Most datasets in the literature

have a relatively modest number of observations per panel, hence this may be problematic;

in particular, it could be detrimental in combination with the use of investments as proxy

variable (OP) which already leads to a reduced sample in the estimation.

In order to tackle this issue we propose to use dynamic panel data instruments à la

Blundell and Bond (1998) within the Wooldridge framework outlined above.

As before, for each t > 1 define a 2× (T − 1) residual function matrix as:

ri(θ) =



yi2 − ζ −wi2β − xi2γ − k(xi2,mi2)λ1

yi2 − θ −wi2β − xi1γ − k(xi1,mi1)λ1

· · ·

· · ·

yiT − ζ −wiTβ − xiTγ − k(xiT ,miT )λ1

yiT − θ −wiTβ − xiTγ − k(xiT−1,miT−1)λ1


(32)

For each panel i we define t − b the last available lag (i.e. when b = 1 at t = 2, b = 2 at

t = 3 and b = T − 1 at t = T ). Then, let Zi denote the dynamic panel instrument matrix

for each panel (we suppress the subscript i to avoid an abuse of notation):

Z =



z′2 z′3 · · · z′T 0 0 0 0

0 0 · · · 0 z̃′3 0 0 0

0 0 · · · 0 0 z̃′4 · · · 0
...

... · · · ...
...

...
. . . 0

0 0 0 0 0 0 0 z̃′T

0 0 0 0 1 1 1 1


(33)
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where component z̃t is a vector of dimension 1× b consisting of zt−1, . . . , zt−b.

As usual, GMM moment conditions are defined as:

E [Ziri(θ)] = 0 (34)

Using dynamic panel data instruments in a setting à la Wooldridge strengthens the robust-

ness and the efficiency of estimates. Indeed, using (34) allows to maximize the number of

restrictions and enhances parameter identification: in section IV we report the results of

several Monte Carlo simulations to show how MrEst performs better than Wooldridge in

many applications due to its increased precision.

III Production Function Estimation Using Stata

III.1 Syntax

Prodest

prodest depvar [if exp ] [in range ] , free(varlist ) proxy(varlist ) state(varlist )

method(name ) [valueadded control(varlist ) acf id(varname ) t(varname ) reps(#)

level(#) poly(#) seed(#) fsresidual(newname ) attrition endogenous(varlist ) opt options

translog overidentification gmm]

Predict

predict newvarname [if exp ], [residuals exponential parameters omega]

III.2 Options

Prodest

14



• free(varlist ) free variable(s). Ln(labour) in OP, LP and ACF.

• state(varlist ) state variable(s). Ln(capital) in OP, LP and ACF.

• proxy(varlist ) proxy variable(s). Ln(investment) in OP, ln(intermediate inputs) in

LP and ACF.

• control(varlist ) control variable(s) to be included

• endogenous(varlist ) endogenous variable(s) to be included

• acf applies the Ackerberg et al. (2015) correction

• valueadded indicates that depvar is output value added. Default is gross output

• attrition correct for attrition - i.e. firm exit - in the data

• method methodology to be used: op (Olley-Pakes), lp (Levinsohn-Petrin), wrdg (Wooldridge),

rob (Wooldridge/Robinson) or mr (Mollisi-Rovigatti)

• id(varname ) specifies the panelvar to which the unit belongs. The user can either

specify id() or xtset panelvar timevar before launching the command. See xtset

• t(varname ) specifies the timevar of the observation. The user can either specify t()

or xtset panelvar timevar before launching the command. See xtset

• reps(#) number of bootstrap repetitions

• poly(#) degree of polynomial approximation for the first stage

• seed(#) seed to be set before estimation

• fsresiduals(newvarname ) store the first stage residuals (OP and LP only) in new-

varname

• translog use a translog production function for estimation

• level(#) specifies the confidence level α

15



• optimizer available optimizers are Nelder Mead (nm), modified Newton-Raphson (nr),

Davidon-Fletcher-Powell (dfp), Broyden-Fletcher-Goldfarb-Shanno (bfgs) and Berndt-

Hall-Hall-Hausman (bhhh)

• maxiter(#) maximum number of iterations, default is 10,000

• evaluator(name ) evaluator type

• tolerance sets the tolerance in optimization algorithm

• gmm uses the gmm command to run the estimation instead of ivregress - wrdg only

• overidentification includes the lagged polynomial in state and proxy variables

among instrumtents - wrdg only

Predict

• newvarname, residuals stores the residuals of the log production function (equation

1) after the estimation - in newvarname.

• newvarname, exponential stores the exponential of the residuals of the log produc-

tion function in newvarname.

• parameters reports the estimated input elasticities. In case of Cobb-Dougles, they

are the estimated parameters. In the case of translog production function, β̄translogw =∑N
i=1

∑T
t=1(β̂w+2β̂wwwit+β̂wxxit)

N×T for free variable and, similarly, β̄translogx =
∑N

i=1

∑T
t=1(β̂x+2β̂xxxit+β̂wxwit)

N×T

for state variables.

• newvarname, omega stores the predicted values of omega - i.e., φ̂it − f(wit, kit, β̂) in

newvarname

III.3 Example

In the following examples we show the use of prodest; interested readers will find that the

syntax is similar to other user-written Stata modules for production function estimation,
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namely opreg (see Yasar et al. (2008)) for OP estimation, levpet (see Petrin et al. (2004))

for LP and acfest for ACF. Our command is able to estimate all models and adds new

methodologies, is faster in many applications (see tables (1) and (2) for a comparison), al-

lows the user to customize the optimization processes - which is a desirable feature mostly

with ACF applications - and makes use of GMM optimization instead of non-linear least

squares in OP estimation.

We test prodest on a dataset of Chilean firms 1995-20137. Once uploaded the data, type

. xtset ID ANIO

panel variable: ID (unbalanced)

time variable: ANIO, 1995 to 2013, but with gaps

delta: 1 unit

. prodest va, free(skilled unskilled) proxy(water ele) state(k) poly(3) met(lp)

> valueadded reps(50)

.........10.........20.........30.........40.........50

lp productivity estimator Cobb-Douglas PF

Dependent variable: value added Number of obs = 91598

Group variable (id): ID Number of groups = 17956

Time variable (t): ANIO

Obs per group: min = 1

avg = 5.1

max = 14

------------------------------------------------------------------------------

7It is a well-known and broadly used dataset in the related literature. See Petrin et al. (2004) among the
others.
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va | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

skilled | .2925325 .0060256 48.55 0.000 .2807225 .3043424

unskilled | .1793727 .0054555 32.88 0.000 .1686802 .1900652

k | .1457316 .003931 37.07 0.000 .138027 .1534362

------------------------------------------------------------------------------

Wald test on Constant returns to scale: Chi2 = 1152.39

p = (0.00)

. prodest va, free(skilled unskilled) proxy(water ele) state(k) poly(3) met(wrdg)

> valueadded

wrdg productivity estimator Cobb-Douglas PF

Dependent variable: value added Number of obs = 69376

Group variable (id): ID Number of groups = 17956

Time variable (t): ANIO

Obs per group: min = 1

avg = 5.1

max = 14

------------------------------------------------------------------------------

va | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

skilled | .3458727 .0045537 75.95 0.000 .3369477 .3547978

unskilled | .1920877 .0035589 53.97 0.000 .1851125 .199063

k | .1385763 .0015803 87.69 0.000 .135479 .1416736

------------------------------------------------------------------------------

Wald test on Constant returns to scale: Chi2 = 2553.98

p = (0.00)
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. prodest va, free(skilled unskilled) proxy(water ele) state(k) poly(3) met(wrdg)

> valueadded gmm

wrdg productivity estimator gmm Cobb-Douglas PF

Dependent variable: value added Number of obs = 69376

Group variable (id): ID Number of groups = 17956

Time variable (t): ANIO

Obs per group: min = 1

avg = 5.1

max = 14

------------------------------------------------------------------------------

va | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

skilled | .3135499 .0039656 79.07 0.000 .3057774 .3213224

unskilled | .2097768 .0033723 62.21 0.000 .2031673 .2163863

k | .1392172 .0029231 47.63 0.000 .133488 .1449464

------------------------------------------------------------------------------

Wald test on Constant returns to scale: Chi2 = 2697.60

p = (0.00)

The output table is similar to most Stata panel commands8 as it indicates the panel and

timevar, the dependent variable, the methodology employed and the number of observations

and groups.

8In programming the code and the output we were inspired by levpet both due to its user-friendly structure
and to its clear output interpretation.
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IV Methods

IV.1 OP, LP and WRDG with prodest

In Table (1) we report the estimates relative to various models / commands. Columns (1)

and (2) refer to OLS and FE as benchmarks, while columns (3)-(6) report results of the OP

methodology, without (3)-(4) and with (5)-(6) attrition. levpet with investment as a proxy

variable yields the same results as prodest. Both models do not account for attrition in the

data; in order to deal with the issue we show opreg - column (5) - and prodest with the

attrition - column (6). In both cases there is no statistical differences between the models’

estimates.9 Again, our command proves to be faster than any other available module.

Table 1: Olley-Pakes (1996) comparison: Chilean dataset value added

OLS FE Levpet Prodest Opreg Prodest exit
main
βk 0.116∗∗∗ 0.0828∗∗∗ 0.402∗∗∗ 0.402∗∗∗ 0.408∗∗∗ 0.398∗∗∗

(0.00127) (0.00126) (0.00904) (0.00816) (0.00893) (0.0106)

βskil 0.668∗∗∗ 0.458∗∗∗ 0.313∗∗∗ 0.313∗∗∗ 0.313∗∗∗ 0.313∗∗∗

(0.00317) (0.00341) (0.00746) (0.00630) (0.00746) (0.00630)

βunskil 0.436∗∗∗ 0.339∗∗∗ 0.224∗∗∗ 0.224∗∗∗ 0.224∗∗∗ 0.224∗∗∗

(0.00266) (0.00283) (0.00588) (0.00551) (0.00588) (0.00551)
time 0.0480 1.480 77.11 59.78 455.6 196.2
N 91598 91598 60253 60253 60253 60253

Note: Column (1) reports results of a linear regression of log output - value added - on free and state variables,
in column (2) we add individual fixed effects; column (3) uses the user-written command levpet ( levpet va,

free(skilled unskilled) capital(k) proxy(inv) reps(50) valueadded ) with investment as proxy
variable; in column (4) and (6) we perform the same exercise with prodest ( prodest va, free(skilled

unskilled) state(k) proxy(inv) met(op) valueadded reps(50) [attrition] ), with and without the
attrition; lastly, column (5) reports parameter estimates computed by the opreg command ( opreg va,

exit(exit) free(skilled unskilled) proxy(inv) state(k) )

Table (2), with a structure similar to (1), presents comparative results of OLS and FE

models (benchmarks), levpet - (3) - and various methodologies implemented by prodest,

namely lp (4), lp with attrition (5) and wrdg (6). Levinsohn and Petrin (2003) argue that

OLS overestimate parameters of the free variables: it is the case in our application as well10.

9This suggesting that the attrition is a relatively rare phenomenon in these markets
10The bias on state variable parameter, instead, depends on the correlation between inputs and produc-

tivity shocks; thus there exist no prior on it.
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prodest (column 4) shows point estimates identical to levpet (3), but it is faster (89 vs 157

seconds). Attrition does not significantly affect results. Wooldridge methodology (column

6) yields results consistent with previous commands but with smaller standard errors.

Table 2: Levinsohn-Petrin (2004) comparison: Chilean dataset value added

OLS FE Levpet Prodest Prodest exit Wooldridge
βk 0.116∗∗∗ 0.0828∗∗∗ 0.146∗∗∗ 0.146∗∗∗ 0.147∗∗∗ 0.135∗∗∗

(0.00127) (0.00126) (0.00416) (0.00424) (0.00423) (0.00157)

βskil 0.668∗∗∗ 0.458∗∗∗ 0.293∗∗∗ 0.293∗∗∗ 0.293∗∗∗ 0.358∗∗∗

(0.00317) (0.00341) (0.00761) (0.00630) (0.00630) (0.00449)

βunskil 0.436∗∗∗ 0.339∗∗∗ 0.179∗∗∗ 0.179∗∗∗ 0.179∗∗∗ 0.210∗∗∗

(0.00266) (0.00283) (0.00641) (0.00635) (0.00635) (0.00342)
time 0.0480 1.553 124.3 126.1 535.9 4.303
N 91598 91598 91598 91598 91598 69376

Note: Column (1) reports results of a linear regression of log output - value added - on free and
state variables, in column (2) we add individual fixed effects; column (3) reports results using the
user-written command levpet ( levpet va, free(skilled unskilled) capital(k) proxy(water ele)

reps(50) valueadded ) with investment as proxy variable; in column (4) and (5) we perform the same
exercise with prodest ( prodest va, free(skilled unskilled) state(k) proxy(water ele) met(lp)

valueadded reps(50) [attrition] ), with and without the attrition; at last, column (6) reports the
estimation with prodest using the Wooldridge method with a second order polynomial ( prodest va,

free(skilled unskilled) state(k) proxy(water ele) poly(2) met(wrdg) valueadded ).

IV.2 ACF: simulations and discussion

Ackerberg et al. (2015) propose a correction to the OP and the LP methodologies. Their

paper presents i) a new approach, ii) an application to real data and iii) estimates using

simulated data. These have been generated according to 3 distinct DGPs: with serially

correlated wages and labor input decisions set at t-δ (DGP 1), with an optimization error in

labor (DGP 2) and both the elements at once (DGP 3). On top of that, they simulate data

with 4 different amounts of measurement error in the intermediate input (σ2
m = 0,.1,.2 and

.5, respectively).

In Tables (3) and (5) we report a comparison between prodest and acfest by Manjón

and Mañez (2016). More specifically, we run various models on both the Chilean and a
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simulated dataset (DGP2) in order to test several features of both commands. We focus on

table (3): prodest - columns (3), (6) and (9) - yields more stable and ’plausible’ results. All

estimates β̂prodestg ∈ [0, 1], g = [skil, unskil, k] and - with 50 cluster bootstrap repetitions -

standard errors are smaller than acfest ’s, on average. Timing shows mixed evidence: prodest

is faster in the gross output, 3rd degree application but way slower with the value added, 2nd

degree. In its 3rd degree version the elapsed time is very similar for the two commands.

Table 3: ACF (2015) comparison: Chilean dataset

GO VA - II VA
LP ACFest Prodest LP ACFest Prodest LP ACFest Prodest

βskil 0.268∗∗∗ 1.991∗∗∗ 0.427∗∗∗ 0.322∗∗∗ -0.147∗∗∗ 0.701∗∗∗ 0.309∗∗∗ -0.212∗∗∗ 0.702∗∗∗

(0.006) (0.380) (0.005) (0.006) (0.040) (0.008) (0.006) (0.042) (0.007)

βunskil 0.160∗∗∗ -0.528∗∗∗ 0.279∗∗∗ 0.210∗∗∗ -0.089∗∗∗ 0.467∗∗∗ 0.192∗∗∗ -0.161∗∗∗ 0.467∗∗∗

(0.006) (0.185) (0.006) (0.005) (0.032) (0.002) (0.005) (0.037) (0.002)

βk 0.073∗∗∗ 0.069∗∗∗ 0.039∗∗∗ 0.139∗∗∗ 0.252∗∗∗ 0.060∗∗∗ 0.143∗∗∗ 0.269∗∗∗ 0.057∗∗∗

(0.003) (0.011) (0.003) (0.004) (0.008) (0.004) (0.004) (0.008) (0.004)
time 140 792 415 85 234 330 93 294 297
N 93,191 71,369 93,191 91,598 70,238 91,598 91,598 70,238 91,598

Note: In colums (1)-(3) the dependent variable is log(gross output) - GO - in (4)-(9) is log(value added)
- VA. (1), (4) and (7) report the benchmark Levinsohn-Petrin estimates; (2), (5) and (8) report results
obtained on Chilean data using the user-written command acfest with 50 bootstrap repetitions (acfest
[go/va], free(skilled unskilled) proxy(ele) state(k) nbs(50) robust [va] [second]), whereas
columns (3), (6) and (9) refer to the same models estimated with prodest (prodest [go/va], free(skilled

unskilled) proxy(ele) state(k) acf reps(50) [va] [poly(2)]). Value added models have been esti-
mated with a second degree - columns (4)-(6) - and third-degree polynomials - columns (7)-(9).

Table (5) shows various value added models implemented on a DGP3 simulated dataset,

with β?k = .4 and β?l = .6 and 1,000 firms observed 10 times. Though constantly slower,

prodest performs better than acfest both in the second and in the third order polynomial

versions: in all cases, Newton-Raphson (NR) algorithm overcomes Davidon-Fletcher-Powell

(DFP) and Nelder-Mead (NM) in terms of model Mean Squared Error.

Table (6) replicates Table I of ACF paper: for each DGP/measurement error couple we

present the estimated parameters using ACF-corrected and LP parameters. A Monte carlo

simulation of the estimates is performed with 1000 repetitions and results reported are co-

efficient averages with the standard deviations across the replications. The true values of βl

and βk are .6 and .4, respectively, and ACF persistently performs better than Levinsohn-
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Table 4: ACF (2015) comparison: Chilean dataset

GO VA - II VA
LP ACFest Prodest LP ACFest Prodest LP ACFest Prodest

βskil 0.268∗∗∗ 1.991∗∗∗ 0.427∗∗∗ 0.322∗∗∗ -0.147∗∗∗ 0.701∗∗∗ 0.309∗∗∗ -0.212∗∗∗ 0.702∗∗∗

(0.006) (0.398) (0.005) (0.006) (0.038) (0.008) (0.006) (0.035) (0.007)

βunskil 0.160∗∗∗ -0.528∗∗∗ 0.279∗∗∗ 0.210∗∗∗ -0.089∗∗ 0.467∗∗∗ 0.192∗∗∗ -0.161∗∗∗ 0.467∗∗∗

(0.006) (0.137) (0.006) (0.005) (0.037) (0.002) (0.005) (0.034) (0.002)

βk 0.073∗∗∗ 0.069∗∗∗ 0.039∗∗∗ 0.139∗∗∗ 0.252∗∗∗ 0.060∗∗∗ 0.143∗∗∗ 0.269∗∗∗ 0.057∗∗∗

(0.003) (0.011) (0.003) (0.004) (0.007) (0.004) (0.004) (0.007) (0.004)
time 145 825 468 98 315 382 126 299 360
N 93,191 71,369 93,191 91,598 70,238 91,598 91,598 70,238 91,598

Note: In colums (1)-(3) the dependent variable is log(gross output) - GO - in (4)-(9) is log(value added)
- VA. (1), (4) and (7) report the benchmark Levinsohn-Petrin estimates; (2), (5) and (8) report results
obtained on Chilean data using the user-written command acfest with 50 bootstrap repetitions (acfest
[go/va], free(skilled unskilled) proxy(ele) state(k) nbs(50) robust [va] [second]), whereas
columns (3), (6) and (9) refer to the same models estimated with prodest (prodest [go/va], free(skilled

unskilled) proxy(ele) state(k) acf reps(50) [va] [poly(2)]). Value added models have been esti-
mated with a second degree - columns (4)-(6) - and third-degree polynomials - columns (7)-(9).

Table 5: ACF (2015) comparison: DGP3 dataset

VA - II VA
LP ACFest Prodest Prodest-DFP Prodest-NR LP ACFest Prodest Prodest-DFP Prodest-NR

βl 0.473∗∗∗ 1.009∗∗∗ 0.596∗∗∗ 0.610∗∗∗ 0.598∗∗∗ 0.473∗∗∗ 1.009∗∗∗ 0.596∗∗∗ 0.610∗∗∗ 0.597∗∗∗

(0.003) (0.004) (0.006) (0.008) (0.008) (0.003) (0.004) (0.006) (0.007) (0.010)

βk 0.562∗∗∗ -0.012∗ 0.386∗∗∗ 0.464∗∗∗ 0.401∗∗∗ 0.562∗∗∗ -0.012∗ 0.386∗∗∗ 0.464∗∗∗ 0.397∗∗∗

(0.016) (0.006) (0.007) (0.016) (0.019) (0.016) (0.006) (0.007) (0.024) (0.023)
time 9 21 24 21 34 9 22 30 27 47
N 10,000 9,000 10,000 10,000 10,000 10,000 9,000 10,000 10,000 10,000

Note: (1)-(5) report results of value added estimation with a 2nd-order degree polynomial, (6)-(10) with a
3rd-order degree. (1) and (6) are Levinsohn-Petrin benchmark results, (2) and (7) are acfest ’s - acfest y,

free(l) proxy(m) state(k) va nbs(50) [second] robust - while remaining prodest models estimated
with Nelder-Mead, Davidon-Fletcher-Powell and Newton-Raphson optimization algorithms, respectively.

Petrin, even if the routine takes longer to complete. In table (7), we report the same results

in terms of Bias and MSE: in all but one model (i.e. DGP2, no measurement error) ACF

shows a Mean Squared Error which is persistently of an order of magnitude smaller than

LP’s. Results are extremely robust to various specifications of the AR(1) parameter of the

productivity - i.e., ρ - and optimizers across simulations11.

11See Appendix
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Table 6: ACF and LP - Monte Carlo Simulations

ACF LP

βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.609 0.015 0.415 0.024 -0.000 0.005 1.089 0.030
0.1 0.594 0.019 0.425 0.020 0.676 0.009 0.364 0.012
0.2 0.634 0.024 0.399 0.017 0.788 0.007 0.241 0.010
0.5 0.670 0.011 0.356 0.013 0.875 0.005 0.170 0.126

DGP2 - Optimization Error in Labor
0.0 0.619 0.022 0.424 0.024 0.600 0.003 0.399 0.013
0.1 0.610 0.016 0.404 0.019 0.753 0.004 0.255 0.009
0.2 0.612 0.018 0.397 0.021 0.807 0.004 0.202 0.011
0.5 0.651 0.019 0.374 0.016 0.863 0.003 0.312 0.304

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.620 0.022 0.478 0.052 0.473 0.004 0.570 0.016
0.1 0.610 0.019 0.440 0.022 0.634 0.005 0.412 0.012
0.2 0.606 0.011 0.428 0.017 0.700 0.005 0.344 0.012
0.5 0.615 0.013 0.414 0.019 0.777 0.005 0.877 0.605

Note: 1000 replications. In each replication the estimated models are prodest lnva, free(lnl)

proxy(lnm) state(lnk) poly(3) met(lp) valueadded reps(50) [acf]. True values of parameters are
βl = 0.6 and βk = 0.4. Standard deviations have been calculated among 1000 replications. ρ is set at .7 and
we used Newton-Raphson optimizer.
DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)

ACF methodology, however, shows serious limitations in empirical applications. Table (8)

reports estimates - in terms of bias and MSE - obtained using a DGP3 simulated dataset with

different starting points for the optimization routine with the Newton-Raphson optimizer.

The starting points [β0
lnl, β

0
lnk] in column (1) are [0.1,(1-0.1)], in column (2) are [0.2,(1-0.2)]

and up to [0.9,0.1]. It is immediate to note how results differ, even dramatically, when
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Table 7: ACF and LP Bias and MSE - Monte Carlo Simulations

ACF LP

Meas.
Error Biasl Biask MSE Biasl Biask MSE

DGP1 - Serially Correlated Wages and Labor
Set at Time t− b

0.0 0.009 0.015 0.001 -0.600 0.689 0.418
0.1 -0.006 0.025 0.001 0.076 -0.036 0.004
0.2 0.034 -0.001 0.001 0.188 -0.159 0.030
0.5 0.070 -0.044 0.004 0.275 -0.230 0.072

DGP2 - Optimization Error in Labor
0.0 0.019 0.024 0.001 -0.000 -0.001 0.000
0.1 0.010 0.004 0.000 0.153 -0.145 0.022
0.2 0.012 -0.003 0.000 0.207 -0.198 0.041
0.5 0.051 -0.026 0.002 0.263 -0.088 0.085

DGP3 - Opt Error in Labor and Serially Correlated
Wages and Labor Set at Time t− b (DGP1 plus DGP2)

0.0 0.020 0.078 0.005 -0.127 0.170 0.023
0.1 0.010 0.040 0.001 0.034 0.012 0.001
0.2 0.006 0.028 0.001 0.100 -0.056 0.007
0.5 0.015 0.014 0.000 0.177 0.477 0.312

Note: 1000 replications. In each replication the estimated models are prodest lnva, free(lnl)

proxy(lnm) state(lnk) poly(3) met(lp) valueadded reps(50) [acf]. True values of parameters are
βl = 0.6 and βk = 0.4. ρ is set at .7 and we used Newton-Raphson optimizer. The definition of
Biasig = β̂ig − β?

ig, where g ∈ [l, k] stands for state and free variables and i ∈ [1, .., 1000] identifies each
Monte Carlo replication. Biask and Biask are averaged across replications. MSE is defined as the average
across replications of MSEi = (Bias2ik + Bias2il)/2.
DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)

starting points depart from the true values - in column (6), in blue, the starting points are

fixed at the true values.12 This is true in particular for extreme values of the starting points

(columns 1 and 9)13 when the model yields to estimates greater than 1, non-significant or

12Apart from the optimization starting points the data and the command are the same: prodest lny,

free(lnl) proxy(lnm) state(lnk) poly(3) met(lp) va reps(50) acf init("‘starting points’")
13In our exercises we fixed the sum of starting points to 1. The bias is even worse when starting from
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Figure 1: Bias of ACF estimates with respect to starting points - Free variable
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Note: The figure reports on the y axis the average bias (continuous line) with its confidence interval (dotted
lines) for each difference level between the starting point and the real parameter value (x axis).

basically 0.

Figure (1) reports the average bias on the y axis - we define bias as |E(θ̂)− θ?| - and the

distance of the starting point from the true parameter value on the x axis - i.e., θ0− θ?. It is

straightforward to note that both the bias and its standard deviation reach their minimum

at θ0 = θ? (that is, when the starting point is at the true value); however, the bias pattern

differs depending on whether the starting point is above of below the true θ. Lower starting

points lead to very noisy but not much biased results, while when θ0 > θ? the bias increases

and is statistically significant.

Figure (2) is the heat map of the MSE (defined as
∑

j(β̂j − β?j )2, with j = [k, l]) of 6,400

models estimated with starting points in a ±.4 range around the true parameter value (step

larger values (in absolute terms).

26



Table 8: ACF (DGP3) Bias and MSE - Monte Carlo Simulations

Panel (a): Meas. Err. 0
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Biasl 0.277 0.030 0.041 0.020 0.007 0.004 0.016 0.156 0.397
(0.177) (0.057) (0.042) (0.061) (0.006) (0.004) (0.017) (0.069) (0.009)

Biask 0.301 0.089 0.113 0.053 0.020 0.026 0.085 0.925 0.382
(0.184) (0.141) (0.103) (0.063) (0.016) (0.020) (0.085) (0.930) (0.023)

MSE 0.116 0.016 0.013 0.005 0.000 0.001 0.008 0.875 0.152
(0.096) (0.109) (0.048) (0.025) (0.001) (0.001) (0.013) (1.863) (0.012)

Panel (b): Meas. Err. 0.1
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Biasl 0.053 0.073 0.034 0.011 0.010 0.004 0.010 0.106 0.409
(0.088) (0.178) (0.091) (0.024) (0.028) (0.004) (0.006) (0.108) (0.053)

Biask 0.146 0.194 0.056 0.038 0.030 0.029 0.091 0.251 0.480
(0.249) (0.334) (0.092) (0.026) (0.026) (0.015) (0.069) (0.501) (0.093)

MSE 0.047 0.093 0.011 0.001 0.001 0.001 0.007 0.168 0.205
(0.170) (0.354) (0.036) (0.008) (0.009) (0.001) (0.007) (0.924) (0.075)

Panel (c): Meas. Err. 0.2
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Biasl 0.054 0.032 0.036 0.009 0.019 0.006 0.011 0.140 0.329
(0.108) (0.101) (0.073) (0.020) (0.057) (0.005) (0.007) (0.115) (0.009)

Biask 0.115 0.068 0.103 0.028 0.036 0.027 0.070 0.246 0.332
(0.276) (0.152) (0.166) (0.023) (0.052) (0.013) (0.054) (0.533) (0.016)

MSE 0.052 0.019 0.022 0.001 0.004 0.000 0.004 0.189 0.109
(0.440) (0.156) (0.067) (0.006) (0.018) (0.000) (0.004) (0.756) (0.009)

Panel (d): Meas. Err. 0.5
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Biasl 0.052 0.052 0.033 0.024 0.040 0.014 0.021 0.229 0.296
(0.097) (0.116) (0.048) (0.035) (0.076) (0.009) (0.015) (0.057) (0.006)

Biask 0.057 0.057 0.046 0.034 0.038 0.019 0.043 0.215 0.285
(0.114) (0.129) (0.120) (0.056) (0.068) (0.012) (0.045) (0.269) (0.012)

MSE 0.014 0.018 0.010 0.003 0.007 0.000 0.002 0.087 0.085
(0.105) (0.158) (0.107) (0.012) (0.021) (0.000) (0.003) (0.176) (0.005)

Note: 1000 replications. In columns (1) to (9) we report the Bias in ACF estimates with different optimization
starting points from [0.1,(1-0.1)] to [0.9,(1-0.9)] and the relative MSE. In blue - column (6) - results with the
starting points equal to the true values. All results are averaged across 1000 Monte Carlo simulations.
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Figure 2: Mean Squared Error and Starting Points in ACF estimates
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Note: heat map of the Mean Squared Error (defined as
∑

j(β̂j − β?
j )2) of ACF models with

Newton-Raphson optimizer.

= 0.01). More specifically, we use a simulated dataset (DGP3, measurement error = 0.2)

and for each pair [θ0l , θ
0
k], θ

0
l ∈ [0.2, 1] and θ0k ∈ [0, 0.8], we run the command prodest lny,

free(lnl) proxy(lnm) state(lnk) poly(3) met(lp) valueadded acf init("[θ0l , θ
0
k]").

The plot highlights the limitations of ACF methodology with respect to optimization pro-

cedures: it is easy to note how the MSE increases as the starting point for the free variable

outweighs the true value. Apart from this element, however, no clear pattern emerges as

we find a patchwork of high-MSE regions throughout the starting points’ domain and sin-

gle models yielding correct values within regions of severely biased estimates. In turn, this

indicates that the optimization procedures (Newton-Raphson in the present case) are often

trapped in local maxima.

In the spirit of Knittel and Metaxoglu (2014), who show how often numerical conver-
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gence in nonlinear GMM models leads to severely biased results14, in the Appendix we have

repeated all the above exercises with different choices of optimizers. More specifically, all

results hold with Davidon-Fletcher-Powell (table A.4), Broyden-Fletcher-Goldfarb-Shanno

(table A.3) and Berndt-Hall-Hall-Hausman (table A.12).

IV.3 Translog Production Function - ACF

Firstly introduced by Kmenta (1967), the translog production function has been proposed

as a feasible approximation of CES production functions through a 2nd order Taylor expan-

sion. Unlike the Cobb-Douglas, the Translog does not require the assumption of smooth

substitution between production factors.

In the present section, we briefly describe the models estimated via the translog option

of ACF methods in prodest.15 The translog production function

yit = witβw + xitβx + w2
itβww + x2

itβxx +
∑
j,k

βwxw
kxj + ωit + εit (35)

The first stage equation, which is the same in the value added and gross output cases,

turns into

yit = witβw+xitβx+w2
itβww+x2

itβxx+
∑
j,k

βwxw
kxj+h(pit,xit,wit)+εit = Φ(pit,xit,wit)+εit

(36)

Once obtained Φ̂ the estimation of productivity terms θ = (βw, βx, βww, βxx, βwx) in (35)

follows as in the usual ACF case.16 The interpretation of translog parameters, though,

differs with respect to that of the Cobb-Douglas ACF. Indeed, the elasticities for free and

14In the paper they deal with models à la Berry, Levinsohn and Pakes.
15See De Loecker and Warzynski (2012) and Gandhi et al. (2011) for a review of the models presented

here.
16Exploiting the fact that ω̂it(θ) = Φ̂it −witβw − xitβx −w2

itβww − x2
itβxx −

∑
j,k βwxw

kxj is possible to
regress it on its past values and recover the productivity shocks ξit and proceed with the GMM estimation.
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state variables are given by:

β̄translog =

∑N
i=1

∑T
t=1(β̂w + 2β̂wwwit + β̂wxxit)

N × T

γ̄translog =

∑N
i=1

∑T
t=1(β̂x + 2β̂xxxit + β̂wxwit)

N × T

Table (9) reports results of Cobb-Douglas (odd columns) and Translog production func-

tions (even columns) both for gross output and value added models. The number of translog

parameters are obviously higher, and increasing the number of parameters implies that the

GMM optimization takes longer to complete.
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Table 9: Translog Production Function comparison: Chilean dataset

VA GO
Cobb-Douglas Translog Cobb-Douglas Translog

βskil 0.617∗∗∗ 0.512∗∗∗ 0.515∗∗∗ 0.816∗∗∗

(0.027) (0.000) (0.000) (0.002)

βunskil 0.603∗∗∗ 0.525∗∗∗ 0.523∗∗∗ 0.779∗∗∗

(0.018) (0.000) (0.000) (0.002)

βk 0.053∗∗∗ 0.726∗∗∗ 0.008∗∗∗ 0.573∗∗∗

(0.002) (0.001) (0.003) (0.000)

βwater 0.724∗∗∗ 0.569∗∗∗

(0.001) (0.000)

βskil2 0.639∗∗∗ 0.603∗∗∗

(0.000) (0.001)

βskil,unskil 0.542∗∗∗ 0.540∗∗∗

(0.000) (0.000)

βskil,k 0.548∗∗∗ 0.529∗∗∗

(0.000) (0.000)

βunskil2 0.499∗∗∗ 0.815∗∗∗

(0.000) (0.002)

βunskil,k 0.492∗∗∗ 0.433∗∗∗

(0.000) (0.000)

βk2 -0.302∗∗∗ -0.472∗∗∗

(0.002) (0.007)

βskil,water 0.713∗∗∗

(0.001)

βunskil,water 0.551∗∗∗

(0.000)

βk,water 0.134∗∗∗

(0.002)

βwater2 0.441∗∗∗

(0.000)
time 44 202 77 294
N 91,598 91,598 93,191 93,191
# Pars 3 9 4 14

Note: in columns (1)-(2) the parameters of Cobb-Douglas and Translog production function on value added
models - VA - while in columns (3)-(4) results of gross output models - GO. All models have been esti-
mated with prodest [va/go], free(skilled unskilled) proxy(water) state(k) acf [va] reps(5)

init(".5,.5,.5").
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IV.4 The endogenous option

The endogeous() option in prodest allows the user to specify one or more variables which

endogenously affect the dynamics of productivity ω. In particular, if any variable ai,t has an

effect on productivity level at time t, the law of motion (2) should read ωit = g(ωit−1, ai,t−1)+

ξi,t - i.e., ωit follows a first-order markov chain process and g(.) is a non-parametric function

of ωit−1 and ait−1. Such model is able to capture productivity changes conditional on the level

of the endogenous variables: i.e., it accounts for the fact that firms update their expectation

of the productivity level and adjust their investment based on the optimal level of the

endogenous variable.

Models with endogenous variables have been implemented, among the others, by De Loecker

(2007) - who used the lagged export quotas as drivers of productivity dynamics - and Do-

raszelski and Jaumandreu (2013) - who account for the R&D expenditure in estimating ω.

Finally, Konings and Vanormelingen (2015) evaluate the impact of workforce training on

both output and firm’s productivity. Using a subsample of their data, in table 10 we report

two examples of the endogenous() option on both LP and ACF models.

Table 10: OLS, LP and ACF models with and without the endogenous option

OLS LP ACF
Plain End Plain End

Labour 0.617∗∗∗ 0.509∗∗∗ 0.615∗∗∗ 0.615∗∗∗ 0.667∗∗∗ 0.692∗∗∗

(0.00907) (0.0197) (0.0200) (0.0200) (0.0216) (0.0171)

Capital 0.191∗∗∗ 0.104∗∗∗ 0.0969∗∗∗ 0.0989∗∗∗ 0.135∗∗∗ 0.125∗∗∗

(0.00484) (0.0103) (0.0259) (0.0263) (0.0320) (0.0315)

Training 0.181∗∗∗ 0.0405 0.0917∗∗ 0.110∗∗∗ 0.202∗∗∗ 0.194∗∗∗

(0.0535) (0.0313) (0.0358) (0.0384) (0.0593) (0.0588)
N 2651 2651 2651 2651 2651 2651
FE X

Note: OLS and OLS with fixed effects (columns 1 and 2, respectively) are compared to LP (columns 3-4) and
ACF (columns 5-6). In columns Plain models without the endogenous variable, which is instead added in End
columns. The model estimated is prodest y if e(sample), free( Labour ) state( Capital Training

) proxy( Materials ) va met(lp) opt(dfp) reps(50) [acf] [endogenous(lagTraining)]
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IV.5 Wooldridge and MrEst

Introducing dynamic panel instruments could be useful in the estimation of “large N, small

T” panel datasets. The overidentification helps improving estimation fit by increasing lags -

and moment conditions. Table (11) reports the results of the estimation of LP, Wooldridge

and MrEst with 2, 3 and 4 lags on subsets of Chilean data. In particular, we report the β̂sk,

β̂unsk and β̂k
17, estimated with the LP methodology and averaged across 61 industrial sectors

(CIIU2) with various sample sizes - panel (a). We define Biasj = β̂j−βlpj , ∀j ∈ [sk, unsk, k]

and MSE = E(Bias2j) (i.e. we test Wooldridge and MrEst estimator performance with

respect to the benchmark LP method) and report their average values across sectors.

MrEst consistently performs better than Wooldridge in terms of Mean Squared Error -

even if not always in terms of bias. MrEst models are particularly time intensive but the

computational time does not increase dramatically with the number of lags required for each

dynamic panel instrument, whereas it increases consistency and precision.

In table (12) we report the MSE of MrEst - with 2, 3 or 4 lags - on simulated data (DGP2

, no measurement error) as n increases with T fixed - panel (a) - and as T increases with n

fixed. In particular, increasing the sample size leads to lower MSE and, as expected, adding

lags increases estimate precision. Increasing the time dimension keeping n fixed, instead,

does not appear to have clear effects on the Mean Squared Error.

17Skilled labor, unskilled labor and capital, respectively.
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Table 11: Wooldridge and MrEst - various DGP

Panel (a): Levinsohn-Petrin

β̂sk β̂unsk β̂k MSE

Levinsohn-Petrin 0.303 0.228 0.039 0.000
(0.121) (0.086) (0.045) (0.000)

Panel (b): Wrdg and MrEst: Bias + MSE

Biassk Biasunsk Biask MSE

Wooldridge -0.007 -0.014 -0.003 0.002
(0.050) (0.041) (0.021) (0.002)

MrEst - 2 lags -0.025 -0.017 -0.004 0.001
(0.042) (0.036) (0.016) (0.002)

MrEst - 3 lags -0.025 -0.014 -0.002 0.001
(0.043) (0.034) (0.013) (0.002)

MrEst - 4 lags -0.026 -0.014 -0.004 0.001
(0.044) (0.033) (0.012) (0.002)

Note: in panel (a) we report the average β̂ value of Levinsohn and Petrin estimation on 60 subsets (i.e.
industry sectors, according to the CIIU2 variable) of Chilean firm-level data. These are the benchmark

values: we define Biasj = β̂j − βlp
j , ∀j ∈ [sk, unsk, k] and MSE = E(Bias2j ). Panel (b) reports the average

bias and the MSE, with their standard deviations, of Wooldridge and MrEst models (various lags).
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Table 12: MrEst - MSE with simulated data (DGP2)

Panel (a): n→∞, fixed T

(1) (2) (3) (4) (5) (6)
MrEst - 2 lags 0.184 0.111 0.067 0.026 0.000 0.005

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

MrEst - 3 lags 0.179 0.106 0.064 0.025 0.000 0.004
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

MrEst - 4 lags 0.175 0.099 0.062 0.025 0.000 0.004
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 1500 3000 5000 6500 8000 10000

Panel (b): increasing T, fixed n

(1) (2) (3) (4) (5) (6)
MrEst - 2 lags 0.032 0.080 0.070 0.040 0.052 0.067

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

MrEst - 3 lags 0.029 0.076 0.067 0.037 0.049 0.064
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

MrEst - 4 lags 0.028 0.075 0.065 0.036 0.048 0.062
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 2500 3000 3500 4000 4500 5000

Note: MSE of MrEst with 2,3 and 4 lags on simulated data - DGP3, no measurement error - with increasing
number of firms in the sample and T = 10 fixed.
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V Conclusions

There are three main approaches in the literature of production function estimation, namely

Instrumental Variable, Fixed Effects and Control Function. Olley and Pakes, Levinsohn and

Petrin, Ackerberg, Caves and Frazer all decisively contributed to the latter strand by devel-

oping widely used methodologies. Wooldridge showed how to implement the control function

approach in a system GMM framework. We build a new estimator, MrEst, based on his re-

sults, adding dynamic panel instruments in order to improve efficiency and gain predictive

power. Our estimator proves to be consistent and to perform better than Wooldridge’s as

the number of individuals increases.

Moreover, we provide evidence that non-linear GMM models in general, and OP/LP

models with ACF correction in particular, have to be handled with care in empirical appli-

cations. In our Monte Carlo simulations - based on the ACF data generating process - results

change dramatically depending on the starting points passed to the optimization algorithm;

this result is robust to different choices of optimizer, model, and sample.

Furthermore, we have introduced a new Stata module, prodest, aimed at implement-

ing all the methods listed above in a user-friendly and effective way. It performs well in

comparison with other user-written commands on several datasets and introduces new esti-

mation methods. It features a number of options for expert users aimed at controlling the

optimization procedures, the model specification and results handling.
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VI Saved Results

prodest saves in e():

Scalars

e(N)

e(N g)

e(tmin)

e(tmean)

e(tmax)

number of observations

number of panel IDs

min number of periods

average number of peri-

ods

max number of periods

Macros

e(cmd)

e(depvar)

e(free)

e(state)

e(proxy)

e(control)

e(endogenous)

e(technique)

e(idvar)

e(timevar)

prodest

depvar

free variable(s)

state variable(s)

proxy variable(s)

control variable(s)

endogenous variable(s)

optimization technique

panelvar

timevar
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e(method)

e(model)

e(correction)

e(hans j)

e(hans p)

e(waldT)

e(waldP)

estimation method

va or go

correction - ACF

Hansen’s J - Wrdg

Hansen’s J p-value

Wald Test on constant

returns to scale

Wald Test P-value

Matrices

e(b)

e(V)

coefficient vector

var-covar matrix

Functions

e(sample) estimation sample
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A Online Appendix

Table A.1: ACF and LP - ρ = .5

Panel (a): Meas. Err. 0
DGP1 DGP2 DGP3

ACF LP ACF LP ACF LP
lnl 0.596∗∗∗ -0.00474 0.572∗∗∗ 0.598∗∗∗ 0.582∗∗∗ 0.431∗∗∗

(0.0169) (0.00442) (0.0219) (0.00266) (0.0116) (0.00361)

lnk 0.394∗∗∗ 1.025∗∗∗ 0.431∗∗∗ 0.407∗∗∗ 0.418∗∗∗ 0.579∗∗∗

(0.0202) (0.0183) (0.0282) (0.0107) (0.0163) (0.0145)
time 37.85 6.864 28.27 6.329 36.31 6.618

Panel (b): Meas. Err. 0.1
ACF LP ACF LP ACF LP

lnl 0.583∗∗∗ 0.535∗∗∗ 0.576∗∗∗ 0.742∗∗∗ 0.582∗∗∗ 0.564∗∗∗

(0.0334) (0.00666) (0.0466) (0.00227) (0.0106) (0.00446)

lnk 0.425∗∗∗ 0.479∗∗∗ 0.433∗∗∗ 0.268∗∗∗ 0.426∗∗∗ 0.452∗∗∗

(0.0219) (0.0119) (0.0314) (0.00804) (0.0157) (0.0130)
time 33.21 6.599 27.80 6.438 37.86 8.566

Panel (c): Meas. Err. 0.2
ACF LP ACF LP ACF LP

lnl 0.660∗∗∗ 0.675∗∗∗ 0.653∗∗∗ 0.801∗∗∗ 0.584∗∗∗ 0.637∗∗∗

(0.0391) (0.00606) (0.0422) (0.00240) (0.0138) (0.00485)

lnk 0.378∗∗∗ 0.337∗∗∗ 0.379∗∗∗ 0.211∗∗∗ 0.427∗∗∗ 0.380∗∗∗

(0.0291) (0.0102) (0.0342) (0.00634) (0.0134) (0.0113)
time 33.81 6.211 24.89 9.686 43.48 11.68

Panel (d): Meas. Err. 0.5
(1) (2) (3) (4) (5) (6)

ACF LP ACF LP ACF LP
lnl 0.626∗∗∗ 0.803∗∗∗ 0.660∗∗∗ 0.856∗∗∗ 0.598∗∗∗ 0.713∗∗∗

(0.0263) (0.00468) (0.0234) (0.00191) (0.0234) (0.00452)

lnk 0.388∗∗∗ 0.203∗∗∗ 0.357∗∗∗ 0.157∗∗∗ 0.414∗∗∗ 0.306∗∗∗

(0.0177) (0.00871) (0.0183) (0.00610) (0.0164) (0.0107)
time 23.97 6.225 17.09 9.362 36.13 11.15
N 10000 10000 10000 10000 10000 10000

Note: models have been estimated through prodest lnva, free(lnl) proxy(lnm) state(lnk) poly(3)

met(lp) valueadded reps(50) [acf]

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)
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Table A.2: ACF (nm) - various starting points - DGP3

Panel (a): Meas. Err. 0
(1) (2) (3) (4) (5) (6) (7) (8)

lnl 0.814∗∗∗ 0.830∗∗∗ 0.804∗∗∗ 0.595∗∗∗ 0.596∗∗∗ 0.600∗∗∗ 0.595∗∗∗ 0.974∗∗∗

(0.234) (0.0892) (0.00728) (0.00617) (0.00618) (0.0000167) (0.129) (0.00458)

lnk 2.241∗∗∗ 2.701∗∗∗ 1.876∗∗∗ 0.369∗∗∗ 0.386∗∗∗ 0.400∗∗∗ 0.373∗∗∗ 0.114∗∗∗

(0.440) (0.269) (0.0170) (0.00735) (0.00737) (0.0000167) (0.0620) (0.000868)

time 20.46 20.42 11.31 19.25 17.70 4.591 20.97 17.72

Panel (b): Meas. Err. 0.1
(1) (2) (3) (4) (5) (6) (7) (8)

lnl 0.100 0.200 0.861∗∗∗ 0.400 0.500 0.600∗∗∗ 0.849∗∗∗ 0.931∗∗∗

(.) (.) (0.00741) (.) (.) (0.0000170) (0.00238) (0.00306)

lnk 0.900 0.800 2.010∗∗∗ 0.600 0.500 0.400∗∗∗ 0.461∗∗∗ 0.106∗∗∗

(.) (.) (0.0173) (.) (.) (0.0000166) (0.0126) (0.000592)

time 4.719 4.586 10.90 4.598 4.601 4.586 18.72 16.00

Panel (c): Meas. Err. 0.2
(1) (2) (3) (4) (5) (6) (7) (8)

lnl 0.100 0.200 0.884∗∗∗ 0.400 0.500 0.600∗∗∗ 0.859∗∗∗ 0.915∗∗∗

(.) (.) (0.00698) (.) (.) (0.0000170) (0.0256) (0.00355)

lnk 0.900 0.800 2.062∗∗∗ 0.600 0.500 0.400∗∗∗ 0.520∗∗∗ 0.103∗∗∗

(.) (.) (0.0163) (.) (.) (0.0000164) (0.138) (0.000645)

time 4.609 4.747 15.12 5.331 4.512 4.501 12.69 14.14

Panel (d): Meas. Err. 0.5
(1) (2) (3) (4) (5) (6) (7) (8)

lnl 0.100 0.200 0.906∗∗∗ 0.400 0.500 0.600 0.800∗∗∗ 0.900∗∗∗

(.) (.) (0.00668) (.) (.) (.) (0.0000106) (0.0000175)

lnk 0.900 0.800 2.114∗∗∗ 0.600∗∗∗ 0.500∗∗∗ 0.400∗∗∗ 0.200 0.100
(.) (.) (0.0156) (0.00000839) (0.00000840) (0.0000174) (.) (.)

time 4.510 4.548 11.42 4.706 4.529 4.535 4.611 4.527

Note: in column (1) to (8) we report ACF estimates with different optimization starting points from [0.1,(1-
0.1)] to [0.8,(1-0.8)], respectively.
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Table A.3: ACF (bfgs) - various starting points - DGP3

Panel (a): Meas. Err. 0
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.429∗∗∗ 0.616∗∗∗ 0.591∗∗∗ 0.591∗∗∗ 0.607∗∗∗ 0.588∗∗∗ 0.590∗∗∗ 1.011∗∗∗

(0.0989) (0.134) (0.0269) (0.0226) (0.00778) (0.00509) (0.0599) (0.00401)

lnk 0.536 0.499∗∗∗ 0.425∗∗∗ 0.424∗∗∗ 0.483∗∗∗ 0.402∗∗∗ 0.424∗∗∗ 0.000360
(0.371) (0.140) (0.0658) (0.0461) (0.0228) (0.000644) (0.136) (0.00677)

time 5.067 4.465 4.371 4.041 2.438 2.035 4.338 4.008

Panel (b): Meas. Err. 0.1
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.590 0.593∗∗∗ 0.593∗∗∗ 0.591∗∗∗ 0.594∗∗∗ 0.584∗∗∗ 0.858∗∗∗ 0.952∗∗∗

(0.618) (0.0688) (0.0325) (0.00912) (0.0116) (0.00926) (0.110) (0.00306)

lnk 0.427 0.440∗∗ 0.439∗∗∗ 0.443∗∗∗ 0.440∗∗∗ 0.406∗∗∗ 1.891∗∗∗ 0.0654∗∗∗

(0.738) (0.214) (0.159) (0.0185) (0.0148) (0.0181) (0.406) (0.00636)
time 5.277 4.787 4.107 3.568 2.814 2.335 5.625 3.518

Panel (c): Meas. Err. 0.2
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.597∗∗∗ 0.597∗∗ 0.596∗∗∗ 0.591∗∗∗ 0.597∗∗∗ 0.596∗∗∗ 0.865∗∗∗ 0.922∗∗∗

(0.0327) (0.269) (0.0453) (0.0436) (0.0177) (0.0120) (0.116) (0.00419)

lnk 0.444∗∗∗ 0.443 0.442∗∗ 0.437∗∗ 0.444∗∗∗ 0.444∗∗∗ 0.336 0.108∗∗∗

(0.100) (0.367) (0.189) (0.185) (0.0149) (0.0200) (0.351) (0.0126)
time 5.608 4.769 4.843 3.578 3.250 2.786 4.315 2.543

Panel (d): Meas. Err. 0.5
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 2.772∗∗∗ 0.597∗∗∗ 0.596∗∗∗ 0.598∗∗∗ 0.597∗∗∗ 0.572∗∗∗ 0.832∗∗∗ 0.906∗∗∗

(0.716) (0.0530) (0.0366) (0.00870) (0.0224) (0.0117) (0.130) (0.00473)

lnk -1.894∗∗ 0.445∗∗∗ 0.444∗∗∗ 0.444∗∗∗ 0.445∗∗∗ 0.447∗∗∗ 0.295∗ 0.103∗∗∗

(0.757) (0.105) (0.0999) (0.0102) (0.0253) (0.0100) (0.169) (0.0112)
time 4.730 5.465 4.652 4.757 3.320 2.754 3.806 2.009

Note: in column (1) to (8) we report ACF estimates with different optimization starting points from [0.1,(1-
0.1)] to [0.8,(1-0.8)], respectively.
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Table A.4: ACF (dfp) - various starting points - DGP3

Panel (a): Meas. Err. 0
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.566∗∗∗ 1.039∗∗∗ 0.634∗∗∗ 0.613∗∗∗ 0.607∗∗∗ 0.598∗∗∗ 0.771∗∗∗ 1.002∗∗∗

(0.0937) (0.0622) (0.0155) (0.0192) (0.00945) (0.00706) (0.0810) (0.00801)

lnk -0.232 -0.0935 0.499∗∗∗ 0.481∗∗∗ 0.454∗∗∗ 0.400∗∗∗ 0.942 0.000845
(0.341) (0.180) (0.0405) (0.0490) (0.0207) (0.00214) (0.814) (0.0170)

time 27.46 19.23 19.77 28.44 17.99 10.20 121.8 55.95

Panel (b): Meas. Err. 0.1
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.586∗∗∗ 0.601∗∗∗ 0.709∗∗∗ 0.602∗∗∗ 0.609∗∗∗ 0.596∗∗∗ 0.887∗∗∗ 0.931∗∗∗

(0.219) (0.107) (0.0733) (0.0741) (0.0106) (0.00988) (0.0886) (0.00820)

lnk 0.386 0.418∗ -0.157 0.418∗∗∗ 0.436∗∗∗ 0.402∗∗∗ 0.253 0.104∗∗∗

(0.336) (0.230) (0.216) (0.122) (0.0160) (0.00401) (0.161) (0.0202)
time 67.36 59.37 48.03 30.33 25.09 17.72 141.2 42.42

Panel (c): Meas. Err. 0.2
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.785∗∗∗ 0.572∗∗∗ 0.630 0.708∗∗∗ 0.613∗∗∗ 0.613∗∗∗ 0.866∗∗∗ 0.915∗∗∗

(0.0856) (0.113) (0.493) (0.0604) (0.0124) (0.0107) (0.0153) (0.00322)

lnk 0.451∗∗∗ 0.268 0.240 0.0225 0.420∗∗∗ 0.411∗∗∗ 0.297 0.105∗∗∗

(0.168) (0.203) (0.561) (0.165) (0.0225) (0.0119) (0.204) (0.00356)
time 85.00 77.39 57.00 40.90 21.99 15.33 24.41 15.49

Panel (d): Meas. Err. 0.5
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.612∗ 0.632∗∗∗ 0.612∗∗∗ 0.633∗∗∗ 0.636∗∗∗ 0.631∗∗∗ 0.837∗∗∗ 0.900∗∗∗

(0.317) (0.152) (0.102) (0.0662) (0.0232) (0.00954) (0.0390) (0.00404)

lnk 0.435 0.397∗∗ 0.399∗∗∗ 0.397∗∗∗ 0.397∗∗∗ 0.401∗∗∗ 0.274∗∗∗ 0.100∗∗∗

(0.350) (0.188) (0.125) (0.123) (0.0671) (0.0154) (0.0619) (0.00657)
time 85.20 88.25 71.45 80.25 52.01 16.64 20.20 14.42

Note: in column (1) to (8) we report ACF estimates with different optimization starting points from [0.1,(1-
0.1)] to [0.8,(1-0.8)], respectively.
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Table A.5: ACF (bhhh) - various starting points - DGP3

Panel (a): Meas. Err. 0
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.979∗∗∗ 0.621∗∗∗ 0.588∗∗∗ 0.634∗∗∗ 0.590∗∗∗ 0.590∗∗∗ 0.593∗∗∗ 0.980∗∗∗

(0.198) (0.0290) (0.0441) (0.0773) (0.0552) (0.00409) (0.0136) (0.0221)

lnk 0.168 0.0769 0.414 -0.0165 0.421 0.419∗∗∗ 0.258∗ 0.192∗∗∗

(0.160) (0.298) (0.813) (0.239) (0.460) (0.0140) (0.146) (0.0306)
time 466.5 853.2 1895.1 918.6 1343.5 282.6 587.3 300.9

Panel (b): Meas. Err. 0.1
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.204 0.923∗∗∗ 0.597∗∗∗ 0.596∗∗∗ 0.591∗∗∗ 0.589∗∗∗ 0.940∗∗∗ 0.937∗∗∗

(0.196) (0.251) (0.132) (0.0767) (0.0348) (0.00728) (0.137) (0.00881)

lnk 0.812∗∗∗ 0.277∗ 0.446 0.442∗∗ 0.437∗∗∗ 0.430∗∗∗ 0.103 0.118∗∗∗

(0.171) (0.168) (0.757) (0.191) (0.0596) (0.0183) (0.0696) (0.0373)
time 295.7 649.5 1367.6 535.6 292.9 282.4 284.7 281.6

Panel (c): Meas. Err. 0.2
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.0917 0.874∗∗∗ 0.568∗∗∗ 0.564∗∗∗ 0.595∗∗∗ 0.587∗∗∗ 0.852∗∗∗ 0.913∗∗∗

(0.272) (0.263) (0.128) (0.0737) (0.0382) (0.0109) (0.134) (0.00635)

lnk 0.893∗∗∗ 1.553∗∗∗ 0.433∗∗∗ 0.433∗∗∗ 0.443∗∗∗ 0.423∗∗∗ 0.965∗∗∗ 0.134∗∗∗

(0.279) (0.209) (0.120) (0.113) (0.0284) (0.0205) (0.119) (0.0220)
time 285.9 478.6 274.4 293.8 282.6 274.0 352.1 281.6

Panel (d): Meas. Err. 0.5
(1) (2) (3) (4) (5) (6) (7) (8)
lny lny lny lny lny lny lny lny

lnl 0.906∗∗∗ 0.248 0.326∗∗ 0.592∗∗∗ 0.509∗∗∗ 0.601∗∗∗ 0.921∗∗∗ 0.904∗∗∗

(0.137) (0.172) (0.141) (0.0851) (0.0277) (0.0221) (0.120) (0.00167)

lnk 0.366∗∗∗ 0.746∗∗∗ 0.676∗∗∗ 0.446∗∗∗ 0.488∗∗∗ 0.442∗∗∗ 0.313∗∗ 0.109∗∗∗

(0.116) (0.125) (0.115) (0.0629) (0.0248) (0.0190) (0.122) (0.00741)
time 445.7 285.0 278.4 280.1 280.9 272.8 282.4 423.7

Note: in column (1) to (8) we report ACF estimates with different optimization starting points from [0.1,(1-
0.1)] to [0.8,(1-0.8)], respectively.
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Table A.6: ACF and LP - Newton-Raphson with ρ = .6

ACF LP

βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.598 0.012 0.396 0.021 -0.000 0.005 1.048 0.025
0.1 0.611 0.031 0.417 0.018 0.608 0.009 0.420 0.012
0.2 0.637 0.031 0.396 0.021 0.737 0.008 0.283 0.010
0.5 0.668 0.017 0.358 0.014 0.845 0.006 0.168 0.008

DGP2 - Optimization Error in Labor
0.0 0.603 0.015 0.404 0.017 0.600 0.003 0.400 0.011
0.1 0.608 0.019 0.397 0.020 0.750 0.004 0.254 0.007
0.2 0.633 0.024 0.384 0.018 0.805 0.004 0.200 0.007
0.5 0.657 0.018 0.361 0.015 0.862 0.003 0.145 0.025

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.599 0.014 0.422 0.029 0.452 0.004 0.573 0.015
0.1 0.597 0.012 0.420 0.014 0.603 0.005 0.424 0.011
0.2 0.598 0.011 0.419 0.016 0.671 0.005 0.355 0.011
0.5 0.620 0.019 0.407 0.016 0.752 0.005 0.271 0.032

Note: models have been estimated through prodest lnva, free(lnl) proxy(lnm) state(lnk) poly(3)

met(lp) valueadded reps(50) [acf]

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)
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Table A.7: ACF and LP - DFP with ρ = .6

ACF LP

βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.603 0.012 0.402 0.015 -0.000 0.005 1.047 0.025
0.1 0.638 0.014 0.409 0.015 0.607 0.010 0.420 0.012
0.2 0.654 0.005 0.388 0.011 0.737 0.008 0.283 0.010
0.5 0.658 0.003 0.366 0.008 0.845 0.006 0.168 0.009

DGP2 - Optimization Error in Labor
0.0 0.593 0.013 0.379 0.008 0.600 0.003 0.400 0.011
0.1 0.619 0.017 0.398 0.017 0.751 0.004 0.253 0.007
0.2 0.647 0.006 0.380 0.013 0.805 0.004 0.200 0.007
0.5 0.656 0.004 0.362 0.008 0.862 0.003 0.145 0.024

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.585 0.008 0.373 0.008 0.452 0.004 0.573 0.015
0.1 0.587 0.011 0.403 0.017 0.604 0.005 0.424 0.011
0.2 0.594 0.013 0.416 0.014 0.672 0.005 0.355 0.011
0.5 0.628 0.016 0.406 0.016 0.753 0.005 0.276 0.073

Note: models have been estimated through prodest lnva, free(lnl) proxy(lnm) state(lnk) poly(3)

met(lp) valueadded reps(50) [acf]

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)

47



Table A.8: ACF and LP - DFP with ρ = .7

ACF LP

βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.594 0.010 0.373 0.005 -0.000 0.005 1.087 0.029
0.1 0.590 0.022 0.422 0.013 0.676 0.009 0.363 0.012
0.2 0.634 0.016 0.400 0.017 0.788 0.007 0.240 0.010
0.5 0.656 0.003 0.364 0.009 0.875 0.005 0.260 0.239

DGP2 - Optimization Error in Labor
0.0 0.596 0.009 0.362 0.004 0.600 0.003 0.400 0.012
0.1 0.598 0.013 0.378 0.011 0.753 0.004 0.256 0.008
0.2 0.606 0.019 0.393 0.015 0.807 0.004 0.203 0.010
0.5 0.649 0.012 0.377 0.016 0.863 0.003 0.370 0.320

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.589 0.006 0.360 0.002 0.473 0.003 0.571 0.016
0.1 0.588 0.007 0.370 0.010 0.634 0.005 0.413 0.012
0.2 0.589 0.010 0.380 0.015 0.701 0.005 0.344 0.012
0.5 0.598 0.015 0.393 0.016 0.777 0.005 1.444 0.123

Note: models have been estimated through prodest lnva, free(lnl) proxy(lnm) state(lnk) poly(3)

met(lp) valueadded reps(50) [acf]

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)
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Table A.9: ACF and LP - BFGS with ρ = .6

ACF LP

βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.603 0.012 0.401 0.015 -0.000 0.005 1.047 0.025
0.1 0.631 0.022 0.410 0.015 0.607 0.009 0.420 0.012
0.2 0.652 0.011 0.388 0.012 0.737 0.008 0.283 0.010
0.5 0.658 0.004 0.366 0.008 0.845 0.006 0.168 0.008

DGP2 - Optimization Error in Labor
0.0 0.594 0.013 0.379 0.010 0.600 0.003 0.399 0.011
0.1 0.619 0.016 0.398 0.017 0.751 0.004 0.253 0.007
0.2 0.647 0.007 0.380 0.013 0.805 0.004 0.200 0.007
0.5 0.655 0.004 0.362 0.008 0.862 0.003 0.145 0.029

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.586 0.007 0.374 0.011 0.452 0.004 0.572 0.014
0.1 0.589 0.009 0.405 0.019 0.604 0.005 0.424 0.010
0.2 0.596 0.010 0.417 0.015 0.672 0.005 0.355 0.010
0.5 0.627 0.016 0.406 0.015 0.753 0.005 0.275 0.072

Note: models have been estimated through prodest lnva, free(lnl) proxy(lnm) state(lnk) poly(3)

met(lp) valueadded reps(50) [acf]

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)
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Table A.10: ACF and LP - BFGS with ρ = .7

ACF LP

βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.594 0.010 0.373 0.006 0.000 0.005 1.088 0.029
0.1 0.591 0.020 0.422 0.014 0.677 0.009 0.363 0.012
0.2 0.633 0.017 0.401 0.017 0.788 0.007 0.240 0.010
0.5 0.656 0.003 0.365 0.010 0.875 0.005 0.258 0.237

DGP2 - Optimization Error in Labor
0.0 0.596 0.010 0.362 0.005 0.600 0.003 0.400 0.013
0.1 0.599 0.013 0.378 0.012 0.753 0.004 0.256 0.008
0.2 0.606 0.019 0.393 0.015 0.807 0.004 0.203 0.010
0.5 0.650 0.011 0.376 0.015 0.863 0.003 0.374 0.321

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.590 0.006 0.360 0.002 0.473 0.004 0.570 0.016
0.1 0.589 0.008 0.374 0.019 0.634 0.005 0.412 0.012
0.2 0.594 0.011 0.393 0.028 0.701 0.005 0.344 0.033
0.5 0.603 0.015 0.398 0.019 0.777 0.005 1.449 0.127

Note: models have been estimated through prodest lnva, free(lnl) proxy(lnm) state(lnk) poly(3)

met(lp) valueadded reps(50) [acf]

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)
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Table A.11: ACF and LP - BHHH with ρ = .7

ACF LP

βl βk βl βk

Meas.
Error Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev. Coeff. St. Dev.

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
0.0 0.611 0.009 0.414 0.018 0.003 0.004 1.099 0.021
0.1 0.579 0.023 0.424 0.023 0.683 0.011 0.360 0.015
0.2 0.643 0.018 0.399 0.011 0.792 0.008 0.238 0.009
0.5 0.669 0.007 0.360 0.004 0.877 0.007 0.142 0.009

DGP2 - Optimization Error in Labor
0.0 0.607 0.014 0.416 0.025 0.600 0.003 0.392 0.015
0.1 0.608 0.013 0.407 0.016 0.755 0.004 0.248 0.009
0.2 0.602 0.019 0.403 0.017 0.809 0.003 0.197 0.009
0.5 0.642 0.025 0.376 0.026 0.866 0.003 0.713 0.066

DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor
Set at Time t− b (DGP1 plus DGP2)

0.0 0.617 0.014 0.476 0.033 0.475 0.004 0.571 0.019
0.1 0.612 0.006 0.443 0.011 0.634 0.005 0.415 0.013
0.2 0.606 0.008 0.423 0.019 0.702 0.004 0.344 0.009
0.5 0.610 0.017 0.413 0.016 0.775 0.006 1.462 0.048

Note: models have been estimated through prodest lnva, free(lnl) proxy(lnm) state(lnk) poly(3)

met(lp) valueadded reps(50) [acf]

DGP1 - Serially Correlated Wages and Labor Set at Time t− b
DGP2 - Optimization Error in Labor
DGP3 - Optimization Error in Labor and Serially Correlated Wages and Labor Set at Time t − b (DGP1
plus DGP2)
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Table A.12: ACF (nr) - Monte Carlo - DGP2

Panel (a): Meas. Err. 0
(1) (2) (3) (4) (5) (6) (7) (8) (9)

βl 0.656 0.636 0.641 0.609 0.630 0.601 0.636 0.644 0.981
(0.086) (0.079) (0.107) (0.014) (0.096) (0.008) (0.051) (0.019) (0.065)

βk 0.384 0.336 0.345 0.416 0.387 0.401 0.433 0.175 0.261
(0.189) (0.164) (0.140) (0.021) (0.095) (0.018) (0.031) (0.076) (0.622)

Panel (b): Meas. Err. 0.1
(1) (2) (3) (4) (5) (6) (7) (8) (9)

βl 0.628 0.620 0.615 0.611 0.628 0.607 0.613 0.695 0.957
(0.111) (0.084) (0.071) (0.041) (0.086) (0.012) (0.018) (0.031) (0.032)

βk 0.377 0.378 0.382 0.376 0.384 0.403 0.382 0.149 0.148
(0.124) (0.110) (0.104) (0.081) (0.086) (0.017) (0.049) (0.074) (0.134)

Panel (c): Meas. Err. 0.2
(1) (2) (3) (4) (5) (6) (7) (8) (9)

βl 0.553 0.571 0.583 0.590 0.624 0.613 0.620 0.715 0.943
(0.189) (0.140) (0.103) (0.064) (0.062) (0.014) (0.015) (0.027) (0.016)

βk 0.442 0.424 0.421 0.412 0.389 0.400 0.356 0.155 0.139
(0.181) (0.142) (0.121) (0.064) (0.060) (0.018) (0.050) (0.059) (0.084)

Panel (d): Meas. Err. 0.5
(1) (2) (3) (4) (5) (6) (7) (8) (9)

βl 0.307 0.382 0.447 0.521 0.610 0.628 0.675 0.731 0.927
(0.239) (0.196) (0.145) (0.099) (0.057) (0.020) (0.042) (0.034) (0.022)

βk 0.674 0.603 0.544 0.477 0.404 0.389 0.344 0.181 0.128
(0.224) (0.183) (0.132) (0.086) (0.046) (0.022) (0.040) (0.055) (0.093)

Note: in column (1) to (8) we report ACF estimates with different optimization starting points from [0.1,(1-
0.1)] to [0.8,(1-0.8)], respectively.
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Table A.13: ACF (dfp) - Monte Carlo - DGP3

Panel (a): Meas. Err. 0
(1) (2) (3) (4) (5) (6) (7) (8) (9)

βl 0.595 0.626 0.622 0.620 0.607 0.592 0.589 0.739 1.006
(0.116) (0.101) (0.024) (0.019) (0.009) (0.006) (0.005) (0.088) (0.007)

βk 0.108 0.401 0.487 0.487 0.466 0.401 0.325 0.942 -0.00786
(0.324) (0.158) (0.053) (0.049) (0.022) (0.001) (0.006) (0.739) (0.013)

Panel (b): Meas. Err. 0.1
(1) (2) (3) (4) (5) (6) (7) (8) (9)

βl 0.645 0.657 0.642 0.610 0.613 0.591 0.590 0.904 0.943
(0.099) (0.226) (0.210) (0.042) (0.010) (0.009) (0.008) (0.112) (0.009)

βk 0.315 0.241 0.226 0.425 0.447 0.405 0.343 0.234 0.0694
(0.224) (0.322) (0.293) (0.059) (0.015) (0.004) (0.021) (0.303) (0.021)

Panel (c): Meas. Err. 0.2
(1) (2) (3) (4) (5) (6) (7) (8) (9)

βl 0.651 0.676 0.672 0.623 0.607 0.593 0.593 0.868 0.917
(0.121) (0.274) (0.256) (0.053) (0.013) (0.012) (0.009) (0.038) (0.004)

βk 0.319 0.281 0.241 0.320 0.428 0.412 0.347 0.304 0.102
(0.186) (0.325) (0.319) (0.162) (0.026) (0.009) (0.021) (0.160) (0.007)

Panel (d): Meas. Err. 0.5
(1) (2) (3) (4) (5) (6) (7) (8) (9)

βl 0.610 0.660 0.656 0.632 0.608 0.606 0.605 0.841 0.901
(0.308) (0.215) (0.097) (0.050) (0.023) (0.013) (0.015) (0.035) (0.003)

βk 0.373 0.324 0.321 0.351 0.413 0.419 0.353 0.305 0.101
(0.327) (0.241) (0.141) (0.114) (0.028) (0.013) (0.029) (0.088) (0.003)

Note: in column (1) to (8) we report ACF estimates with different optimization starting points from [0.1,(1-
0.1)] to [0.8,(1-0.8)], respectively.
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