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The formation of small droplets and bubbles in turbulent flows is a crucial process in geophysics
and engineering, whose underlying physical mechanism remains a puzzle. In this letter, we address
this problem by means of high-resolution numerical simulations, comparing a realistic multiphase
configuration with a numerical experiment in which we attenuate the presence of strong velocity
gradients either across the whole mixture or in the disperse phase only. Our results show unambigu-
ously that the formation of small droplets is governed by the internal dynamics which occurs during
the break-up of large drops and that the high vorticity and the extreme dissipation associated to
these events are the consequence and not the cause of the breakup.

Introduction The dynamics of droplet and bubble
breakup in turbulence is fundamental for several indus-
trial [1] and environmental processes [2, 3]. Because
of the complex turbulent environment, drops typically
have a broad range of sizes. In several cases, the di-
ameter of the smallest droplets/bubbles is of the utmost
importance, as for the dissolution of air bubbles in the
oceans [4] or the transport of oil droplets deep into the
marine environment after spilling [3]. The main actors
at play in such processes are turbulence and capillar-
ity, with the balance between the two determining the
minimum droplet diameter for breakup to occur, before
capillarity can resist the turbulent pressure fluctuations
causing fragmentation. This threshold size is called the
Kolmogorov-Hinze (KH) scale [5, 6], and on dimensional
considerations reads as:

dKH ∼ (ρc/σ)
−3/5⟨ε⟩−2/5, (1)

where ρc is the density of the carrier phase, σ is the
surface tension and ⟨ε⟩ is the domain averaged turbu-
lent energy dissipation rate. The fragmentation dynam-
ics for droplets larger than the KH scale is understood in
terms of a local cascade à la Kolmogorov [7], for which
experimental and numerical evidences have been pre-
sented [2, 8, 9]. A broad spectrum of sub-Hinze droplets
with diameter smaller than dKH is also found. Despite
recent attempts to understand this regime [10–13], the
origin/dynamics of these small droplets in turbulence and
their interaction with the surrounding flow remain mostly
unknown.

A key feature of the breakup process appears to be
the presence of strong velocity gradients in proximity
of regions with high interfacial curvature, which con-
tributes to increasing the local vorticity and creates areas
of high energy dissipation [9]. Two possible complemen-
tary mechanisms are thought to be at the origin of the
sub-Hinze droplets: (i) the presence of local events of
extreme turbulence which induce a local decrease of the
KH scale and cause the droplet breakup; (ii) capillary

dynamics, which leads to a pinch-off and eventually gen-
erates intense dissipative events.

In the favour of the second scenario, experiments on
the fragmentation of a single drop have shown that the
sub-Hinze dynamics is non-local in size [11, 12], sug-
gesting that the turbulence strain produces small fila-
ments, which eventually leads to pinch-off via fast cap-
illary dynamics [14]. One numerical example is shown
in Figure 1, where a droplet larger than the KH size
is deformed by turbulence into a thin ligament which,
by Rayleigh-Plateau instabilities, produces several small
droplets. Non locality is evident since the size of the
daughter droplet is related with the diameter of the liga-
ment and not of the entire droplet. Within this scenario,
large dissipation events are induced by the rupture of the
interface at the origin of sub-Hinze structures.

On the other hand, recent works have pointed out that
the presence of the interface increases the probability of
large vorticity and dissipative regions [15], leading to a
higher intermittency than single-phase turbulence [9, 12].
This evidence might support the first mechanism (i),
meaning that intense vorticity external to the droplets
is the main cause of the fragmentation and the forma-
tion of sub-Hinze inclusions. Thus far, no numerical or
laboratory experiment has been able to settle this issue
and the statistical relevance of the two possible scenar-
ios in particular in a realistic configuration with many
droplets.

In this Letter, we address this dilemma by means of
high-resolution numerical simulations, in which we con-
trol the small scale dynamics by penalizing the vorticity
field, something not possible in a laboratory experiment
[16]. The idea comes directly from Equation (1). In
a local sense, d ∼ ε−2/5, suggests that small droplets
are linked to regions of high dissipation. Hence, arti-
ficially penalizing the regions with strong velocity gra-
dients (where ε ≫ ⟨ε⟩) should enable us to understand
where and how sub-Hinze structures are formed. Thanks
to this surgery of the turbulent flow, we are capable to
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FIG. 1. Visualisation of high-intensity vorticity within the
droplet during breakup. (a) a portion of the domain is ex-
tracted from the whole simulation. (b) beginning of a droplet
breakup event: the droplet separates into two regions, divided
by a neck; the vorticity inside the droplet shows high values
(ω ≈ ωth) on the edges. (c-d) As the droplet deforms, regions
of stronger vorticity form in proximity of the neck. (e-f) the
breakup becomes inevitable and smaller droplets form as a
result.

show that it is the flow inside the droplets which dom-
inates the formation of very small droplets and the dy-
namics at the smallest scales, therefore supporting the
second of the proposed mechanisms. Moreover, we show
that turbulent extreme events have some impact on the
structures with a diameter of the order of the KH scale,
but are statistically negligible for the scales in the sub-
Hinze range, where capillary effects are dominant. Our
results demonstrate that the formation of small droplets
below the KH scale is primarily dominated by capillar-
ity, and, in turn, that the generation of small droplets is
responsible for the presence of local maxima of vorticity
and dissipation, rather than the contrary.

Methods We solve the one-fluid Navier-Stokes equa-
tions (NSE) including deformable interfaces [17]:

du

dt
= −∇P +∇·

[
ν([∇u+∇uT)

]
+σξδsn+ f+ fC, (2)

where u is the velocity field, P is the pressure, ν is the
kinematic viscosity, ξ is the interface curvature, n is the
interface normal, δs is a delta-Dirac function localised at
the interface between the two phases, and σ is the surface
tension coefficient. Turbulence is sustained through the
ABC forcing f [18].

To control the flow we add the penalizing term fC =
−Cu [16], where regions of high vorticity ω can be sup-
pressed directly in the momentum equation through the
masking function:

C = β

(
tanh(ω − ωth) + 1

2

)
, (3)

where β is the filter amplitude (β = 0 corresponds to
standard NSE), ω = |∑ij(∂iuj − ∂jui)| is the vorticity
modulus, and ωth = 5σω is the maximum threshold value,
with σω the standard deviation of the vorticity for the
reference multiphase case (see below).
It is worth noticing that a penalization force which

suppresses the regions with large values of the energy
dissipation rate ε cannot be applied because its effect
would be canceled by the pressure gradients. In a pre-
liminary test, we observed that a direct masking based on
ε alters the local structure of the velocity-gradient ten-
sor and it does not preserve the incompressibility of the
velocity field. Enforcing the incompressibility restores
the local velocity gradients and cancels the effect of the
penalization force. To overcome this issue we adopt a
penalization method that suppresses the regions of high
vorticity, which are linked to the events of strong dis-
sipation while having a different local structure of the
velocity gradients [19].
Simulations are carried out via the open-source code

FLUTAS [20], and the interface is reconstructed using
the Volume of Fluid method MTHINC [21]. Simula-
tions are performed at the Taylor-scale Reynolds num-
ber Reλ = 137, measured in the single-phase turbu-
lent field [9]. The box-side length is 2π, discretised us-
ing N = 512 grid-points, with turbulence sustained at
Lf = π, with a kinematic viscosity ν = 0.006, and a
matching density and viscosity between the phases. The
volume fraction is α = Vd/V = 0.1, where Vd is the vol-
ume of the dispersed phase and V is the volume of the
computational domain. The large-scale Weber number is
We = ρu2

rmsLf/σ = 42.6. The present setup has been
shown to develop a droplet distribution N(d) displaying
both the −10/3 and −3/2 scaling ranges at scales larger
and smaller than the KH scale [9].

Numerical Results We report results from four nu-
merical experiments, comparing three different multi-
phase simulations and one single-phase. Reference sim-
ulations are for single-phase (SP) and multiphase (MP)
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flow. The two simulations in which the vorticity is pe-
nalized in the whole domain (MPp) and only inside the
dispersed phase (MPp,i). For the results corresponding
to the single-phase penalized simulation see Supplemen-
tal Material.

(a)

(b)

FIG. 2. Render of (a) non filtered MP flow and (b) fil-
tered MPp flow. We show iso-contours of the color function
(the droplet interface) and the vorticity field projected on the
background planes.

From the visual comparison of the MP and MPp sim-
ulations shown in Figure 2, we may already qualita-
tively observe that suppressing local gradients partially
inhibits the formation of small droplets, while preserv-
ing the large-scale flow structures. In particular, in the
multiphase simulation with the penalization force (MP,
Figure 2(b) we observe the formation of elongated fluid
structures stretched by large-scale vortices, but the frag-
mentation of the droplets is overall attenuated.

To quantify the penalization effects, we report in Fig-
ure 3 the probability density function (PDF) of the vor-
ticity magnitude (panel (a)) and of the energy dissipation
(panel (b)). Comparing with the SP case, the MP flow
displays an increment of the PDF tails both for vorticity
and dissipation, confirming that the presence of the in-
terface increases intermittency [12]. The increase is sub-
stantial for the energy dissipation. The effect of the filter
appears in the vorticity PDFs sharply at ω = ωth, i.e. ex-
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FIG. 3. Probability density functions of vorticity magnitude,
panel (a) and energy dissipation ε ≡ ν|∂iuj |2, panel (b). SP
and MP refer to C = 0 cases, while MPp and MPp,i are the
penalized cases, for which ωth = 5σω (σω being the vorticity
standard deviation for case MP) and β = 0.02. Vorticity is
normalised by ωth, while energy dissipation by its standard
deviation for the single-phase case σSP . The label i stands
for inside, which indicates when the vorticity is penalised only
inside the droplet phase, which corresponds to the α = 10%
of the mixture.

actly at the masking threshold. High values of ω are still
possible due to the incompressibility constraint of Equa-
tion (2), as observed also for Navier-Stokes, SP simula-
tions [16]. From Figure 3a it is evident that the statistics
of vorticity obtained penalising inside the droplet phase
only (MPp,i) is close to the unfiltered field MP, because
of the penalization only acts on 10% of the total volume.
The PDF of dissipation appears to be less affected by
penalization. We find that the average dissipation in the
MPp run is reduced of about 15% with respect to the
MP case. According to Equation (1) this correspond to
a change of 6% in dKH .

Further insight on the flow statistics is provided by the
analysis of the PDF of the velocity increments δℓuℓ =
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FIG. 4. PDF of velocity increments at ℓ = 0.03Lf , normalized
by the standard deviation for case SP. The PDF is obtained at
small scales, much smaller than the Kolmogorov-Hinze scale.
The legend is the same as in Figure 3.

u(x + ℓ) − u(x) [22], reported in Figure 4 for a separa-
tion below the Hinze scale. In the absence of penaliza-
tion, the multiphase case (MP) is more intermittent, as
also recently investigated [23]. When the mask is acting
on the whole fluid (MPp case) the distributions become
gaussian-like in multiphase flows, similarly to the single-
phase case discussed in Ref. [16]. However, if the vor-
ticity is filtered only inside the dispersed phase (MPp,i
case) the probability distributions vary little when com-
pared to the SP flow, the curves being distinguishable
only in the far tails. This is explained by the low vol-
ume fraction considered, as most of the field (i.e. 90%)
remains unchanged. The data lie between those of the
the single phase and the multiphase flow, since the mask-
ing is not removing the interfaces, which are responsible
for the increase in intermittency. Which scales are af-
fected by the masking function is discussed in the Supple-
mental Material, where we show that penalizing strong
vorticity regions is equivalent to act at scales below the
Kolmogorov-Hinze one.

The effect of vorticity penalization (both in the dis-
persed phase and in the whole flow) on the droplet-size
distribution is shown in Figure 5 together with the com-
parison with the unmasked case. To ease the compari-
son, we normalize the different curves by the total num-
ber of droplets of the unmasked MP flow. The distri-
bution of large droplets (above the KH scale) for both
the MPp and MPp,i cases are close to the MP refer-
ence run. However, significant quantitative differences
are found in the total number of small droplets, espe-
cially for d < dKH ≈ 0.15Lf ; notably, the number of
droplets in the MPp flow is approximately 60% of those
in the MP case. This can be better appreciated in the
inset of Figure 5, where we display the ratio between the
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FIG. 5. Droplet-size-distribution for cases MP (red dot-
ted line with triangles), MPp (black dashed line with dots),
and MPp,i (blue dashed line with dots) where probability
is obtained by normalizing all cases for the total number of
droplets of the MP case. The inset shows the ratio for the to-
tal number of droplets of the filtered cases and the reference
MP case. The black dotted vertical line represents the KH
scale

number of droplets of the masked cases and the unmasked
MP case. As the mass is conserved, the number of larger
droplets increases in the masked cases. The most im-
portant result is that the distribution is the same when
the mask is applied to the whole mixture or only inside
the dispersed phase. This observation is at odd with
the statistics of dissipation which are almost unaffected
by the penalization in the dispersed phase and demon-
strates that high levels of vorticity and the most extreme
dissipation events are a consequence of the destabiliza-
tion process which leads to the breakup.
Discussion The present results indicate that the

mechanism underlying the production of droplets below
the Kolmogorov-Hinze scale in a turbulent emulsion is
reduced when the vorticity is limited inside the droplets.
Consequently, the origin of very small droplets can be
traced back to capillary stresses, which act faster than
the smallest turbulent eddies.
The following dynamical process has been unveiled:

turbulent motions deform the droplets locally creating
filaments, typically larger than the Kolmogorov-Hinze
scale. Capillary instabilies are then triggered by the tur-
bulent fluctuations (appearance of necks). This further
reduces the filament dimension and produces vorticity in-
side the droplet, which, in turn, accelerates the filament
instability in a self-sustained process, eventually leading
to the rupture into different drops.
This last singular step is associated with strong vor-

ticity release and increased dissipation. Therefore, ex-
treme dissipation events are not the cause, but rather
the effect of the break-up. Note also that the physics
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of the fragmentation of droplets larger than dKH is in-
stead largely unaffected by the masking, confirming the
quasi-local cascade à la Kolmogorov in this range.

Our findings show that it is possible to simplify the
study of small droplets formation in turbulence by ne-
glecting the action of large scale motion, and focusing
on the droplet deformed state and its internal dynam-
ics. For future works, it would be precious to analyse in
detail the dynamics of the rupture of ligaments in rela-
tion with the creation of vorticity and dissipation. That
would be important to build up reduced models relevant
for applications.
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